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Abstract: Orthogonal matching pursuit (OMP for short) is a classical method for sparse signal
recovery in compressed sensing. In this paper, we consider the application of OMP to reconstruct
sparse polynomials generated by uniformly bounded orthonormal systems, which is an extension of
the work on OMP to reconstruct sparse trigonometric polynomials. Firstly, in both cases of sampled
data with and without noise, sufficient conditions for OMP to recover the coefficient vector of a
sparse polynomial are given, which are more loose than the existing results. Then, based on a more
accurate estimation of the mutual coherence of a structured random matrix, the recovery guarantees
and success probabilities for OMP to reconstruct sparse polynomials are obtained with the help of
those sufficient conditions. In addition, the error estimation for the recovered coefficient vector is
gained when the sampled data contain noise. Finally, the validity and correctness of the theoretical
conclusions are verified by numerical experiments.

Keywords: uniformly bounded orthonormal system; orthogonal matching pursuit method; law of
large number; mutual coherence; recovery guarantee
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1. Introduction

It is well known that smooth functions have approximately sparse expansions under
certain orthogonal systems. Therefore, one of the fundamental research problems in func-
tion approximation is the theoretical and algorithmic study of the exact reconstruction of
the sparse polynomials [1-6]. In this paper, the form of the polynomial g(x) is considered as

g(x) = cigj(x),

jea

where {¢;(x)};cn is a set of uniformly bounded orthonormal basis functions defined on
Q C R?, A is the index set with |A| = 1, where |A| denotes the number of elements in
the set A, n can be finite or infinite. If the coefficient vector ¢ = [¢y, ..., cn]T € R"1 has
at most s elements that are not zero, where 2 < s < n, we call the polynomial g(x) an
s-sparse polynomial, and s is the sparsity of the polynomial g(x) and the coefficient vector c.
Obviously, if the sparse coefficient vector ¢ can be recovered exactly, the sparse polynomial
¢(x) can be reconstructed. Therefore, we transform the problem of reconstructing the
sparse polynomial g(x) into the problem of recovering the sparse coefficient vector ¢. Only
the case that # is finite and d = 1 is studied in this paper, but the results in this case can be
generalized to high dimensions.

The commonly used recovery method is the interpolation method, which requires that
the coefficient vector c of the undetermined interpolation polynomial §(x) must satisfy the
following system of linear equations:

Mathematics 2022, 10, 3703. https:/ /doi.org/10.3390/math10193703

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math10193703
https://doi.org/10.3390/math10193703
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10193703
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193703?type=check_update&version=2

Mathematics 2022, 10, 3703

2 0f23

dc =b, 1)

where @ € R"*" is the interpolation matrix generated by the values of the basis functions
taken at the sampling points {x;}" |, b = [g(x1), - ,g(xs)]" € R"*! are the sampled
data, ¢ € R"*1 is the coefficient vector.

When the number of basis functions # is large, the system (1) is often ill-conditioned
and cannot give a good recovery of the coefficient vector c. Moreover, in practical applica-
tions, sampling is often expensive. Therefore, determining how to give a better recovery of
the sparse coefficient vector ¢ by a small amount of samples is a key issue in the reconstruc-
tion of the sparse polynomial g(x).

1.1. Compressed Sensing and the Reconstruction of Sparse Polynomial

In recent years, compressed sensing has developed rapidly [7]. Its main idea is to use
nonlinear optimization to recover a sparse signal with as few observations as possible [8].
The original model for sparse signal recovery is

min ||c||o st. dc=D, ()
ceR"

where ||c||o denotes the number of nonzero elements in the vector ¢, ® € R™*" is the
measurement matrix, and b € R"*1 is the observation vector. It is not difficult to find that
the constraints in the model (2) are of the same form as the interpolation conditions (1).
Hence, one considers applying the compressed sensing to recover the sparse coefficient
vector with a small amount of samples and then reconstruct the sparse polynomial.

Unfortunately, the model (2) is an NP-hard problem. If we know in advance that
the sparsity of the signal to be reconstructed is s, then we convert the model (2) into the
following ¢>-norm model with inequality constraints:

min |[®c — b||2 st cllo <s. 3
ceR”

Greedy algorithm is one of the commonly used algorithms for solving the model (3).
The orthogonal matching pursuit (OMP for short) algorithm is one of the most classic and
popular greedy algorithms with its advantages of high efficiency and accuracy [9-12].

1.2. The Recovery Guarantee for OMP to Recover Sparse Signals

The recovery guarantees for OMP to recover sparse signals are the sufficient conditions
for OMP to recover sparse signals accurately, which are often given by the restricted isome-
try constant or the mutual coherence of the measurement matrix ®. A formal definition of
some of the terms used in this section will be formally introduced in Section 2.

The restricted isometry constant [13] (RIC for short) J; of the measurement matrix is
one of its important characteristic quantities, which is the smallest value in (0, 1) that makes

(1= &)ellz < [l@efl3 < (1+6)lell3

holds for every s-sparse vector ¢ € R". In 2012, Mo and Shen [14] gave a sufficient condition
for OMP to accurately recover s-sparse signals within s-step iterations as Js.1 < 1/(y/s+1).
Wang and Shim [15] gave the same result in the same year. In 2015, Mo [16,17] and other
scholars further optimized the above sufficient condition to d; 11 < 1/+/s + 1 and showed
that OMP cannot recover any s-sparse signal when 65,1 = 1/+/s + 1.

Another way to give the recovery guarantee for OMP to recover s-signals is to directly
analyze the selection mechanism of OMP and give the minimum number of sampling points.
Tropp [18] et al. showed that if the measurement matrix is an admissible measurement
matrix, such as Gaussian random matrix or Bernoulli random matrix, when the number
of noiseless sampling points satisfies m ~ slnn, OMP can recover any s-sparse signals.
However, since the admissible measurement matrix requires high independence among
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the elements of the matrix, and the generated measurement matrix usually cannot satisfy
its independence requirement in practical applications, the results and the analysis method
in [18] are difficult to further generalize.

Other scholars considered giving the sufficient conditions for OMP by the mutual co-
herence of the measurement matrix. For both cases of sampled data with and without noise,
the sufficient conditions for OMP to recover s-sparse vectors are shown in Proposition 1 [9]
and Proposition 2 [19], respectively.

Proposition 1. If the mutual coherence y(®) satisfies

1
u(®) < %1’

then OMP can accurately reconstruct arbitrary s-sparse vectors when sampling is free of noise.

Proposition 2. Let the noise vector € satisfy ||€||2 < €, where € > 0 is the noise bound, and the
mutual coherence of the measurement matrix ® satisfies u(®) < 1/(2s — 1). When the stopping
rule of OMP is ||x;||2 < € and all the nonzero elements in the sparse vector ¢ € R" satisfy

2¢ .
s - D@y |

’Cf| > 1—

where r; means the residual vector generated in the Ith iteration of OMP and supp(c) denotes the
support set of the vector c. Then, OMP can find the exact position of the nonzero elements in c.

Tropp [9] and Cai et al. [20] explained that the sufficient conditions in Proposition 1
and Proposition 2 are sharp by constructing counter-examples. However, in most practical
applications, the measurement matrix often has some good properties, such as random-
ness and column orthogonality. Therefore, we hope to relax the sufficient conditions in
Proposition 1 and Proposition 2 with the help of those good properties, so that OMP can
also recover sparse vectors with high probability in both the cases of sampled data with
and without noise.

1.3. The Recovery Guarantee for OMP to Reconstruct Sparse Polynomials

The recovery guarantee for OMP to reconstruct sparse polynomials is often given by
the relationship among the number of basis functions n, sparsity s, and the number of
sampling points m.

The applications of OMP to the reconstruction of sparse polynomials are mostly
focused on reconstructing sparse trigonometric polynomials, which is due to the good
form of trigonometric polynomials. In 2008, Kunis and Rauhut [21] proved that the s-
sparse trigonometric polynomial can be reconstructed exactly with high probability by
using OMP under random sampling when the number of sampling points m satisfies
m ~ s2In(n). In 2011, Xu [4] constructed a set of deterministic samples to reconstruct
sparse trigonometric polynomials and provided the recovery guarantee for OMP under
the deterministic sampling. However, it is difficult to generalize this type of analysis to
the study of reconstructing general sparse polynomials, and the above studies were all
performed in the case of sampled data without noise.

Huang et al. [11] applied OMP to reconstruct general sparse polynomials generated
by a uniformly bounded orthonormal system. With the help of greedy selection ratio and
extensive knowledge in probability theory, they gave the recovery guarantee and success
probability for OMP to reconstruct general sparse polynomials. Their results showed
that the recovery guarantee for OMP to reconstruct general sparse polynomials is also
m ~ s2In(n). However, their analytical method relies on the exact sampled data, and thus
cannot be extended to the case of sampled data with noise.

In addition, most scholars gave the reconstruction of general sparse polynomials by
solving the ¢;-minimization [5,22,23] and the recovery guarantee through the RIC of the
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measurement matrix. However, the RIC-type recovery guarantees often contain some
constants that are difficult to estimate, and solving the /;-minimization requires more time
cost than OMP when the problem size is large [11].

Therefore, we consider applying OMP to reconstruct general sparse polynomials
under both cases of sampled data with and without noise, and hope to give some more
specific recovery guarantees and success probability for OMP. Moreover, for the case of
sampled data with noise, estimating the reconstruction error is necessary.

1.4. Contributions

In this paper, we apply OMP to the reconstruction problem of the sparse polynomial
g(x) generated by a uniformly bounded orthonormal system {¢;(x)}c. Here, the mea-
surement matrix ® € R™*" in (3) is a structured random matrix generated by the values of
the system {¢;(x)}ca at the independent random sampling points {x;}]" ;.

Firstly, although Feng [10] et al. and Rauhut [13] et al. have estimated the upper
bound of the mutual coherence for structured random matrix ®, we use the knowledge of
probability theory to further optimize the upper bound to

2(p+2)In(n)

<
u(d) <2K 3

@)
with probability at least 1 — n~7, where p > 0 is a fixed number.

Secondly, combining the selection mechanism of OMP and the condition that the
measurement matrix is a structured random matrix as ®, for both cases of sampled data
with and without noise, we give more relaxed sufficient conditions for OMP to recover the
sparse coefficient vector of the sparse polynomial g(x), respectively. In addition, we also
prove that the ¢;-norm of the recovered error can be controlled by the noise bound &€ when
the sampled data contain noise.

Finally, by (4) and those sufficient conditions, we show that the recovery guarantees
for OMP to reconstruct sparse polynomials is m ~ s?Inn regardless if the sampled data
contain noise or not, which is consistent with the recovery guarantee for OMP to reconstruct
sparse trigonometric polynomials given in [21] for the case of sampled data without noise.

The rest of this paper is organized as follows: Section 2 introduces some preliminary
knowledge required for this paper. Section 3 gives the recovery guarantees for OMP
to reconstruct sparse polynomials in both cases of sampled data with and without noise,
and gives the error estimation of the recovered coefficient vector by OMP when the sampled
data contain noise. Section 4 contains the numerical experiments. Section 5 contains the
conclusion.

2. Preparation of Manuscript

In this section, we will introduce some knowledge required for this paper.

2.1. Uniformly Bounded Orthonormal System

Let O C R be endowed with a probability measure w(x). Suppose that {¢;(x) };cn is
a set of basis functions on Q with A = {1,2, - - -, n}, which are orthonormal with respect to
the probability measure w(x) [13], i.e.,

0, j#k

i (x)ax = by, = {1, A

If {¢;(x) }jea have a uniform bound K > 0 on ), i.e.,

; <K,
max 4;(x) o <
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then we say that the system {¢;(x)}ca is a uniformly bounded orthonormal system on Q.
When we apply compressed sensing to recover the sparse coefficient vector c of the sparse
polynomial g(x), the measurement matrix ® € R"™*" in model (2) is a structured random
matrix generated by taking values of {§;(x)};ca at the sampling point {x;}1,, i.e.,

$1(x1)  Pa(x1) - Pulx1)

o <P1(:X2) 4>z(:Xz> "’”(:’Q) =@ ® - Dy, (5)

where {x; }m , are sampled independently according to the probability measure w(x),
®;, j=1,2,--- ,n denote the jth column of the matrix ®. The observation vector is

b = [g(x1),.. .,g(xm)]T e R™. (6)

2.2. Orthogonal Matching Pursuit Algorithm

The greedy algorithm is an important class of methods for solving the model (3) [10,24],
of which the orthogonal matching pursuit (OMP for short) algorithm is one of the most
commonly used methods [9]. As shown in Algorithm 1, OMP first calculates the orthogonal
projection complement of b in the space spanned by the currently selected column of ®
(the second line in the ‘update’ session), and then calculates the absolute value of the inner
product between the orthogonal projection complement and the column in ® (the ‘match’
session). We usually select the column that maximizes the absolute value of the inner
product each time (the ‘identify” session) [8].

Algorithm 1 Orthogonal matching pursuit algorithm.

Input: Measurement matrix ®, observation vector b, sparsity s, tolerance ¢
Output: Recovered vector c¢*
Initialization: 1 =b,a =0,A"=®,1 =0
while! < sor ||t > edo
match: h! = &'+
identify: A1 = ATU {argmax]-\hl ()|}
update: a! 1 = argming, g ()
1 —p — Palt!
I=14+1

end while
o = ast!

CAl+1 [b — Pz|>

In the case of sampled data without noise, based on the selection mechanism of OMP,
Tropp [9] et al. gave a sufficient condition for the exact recovery of s-sparse vectors when
the columns of measurement matrix have normalized />-norm.

Proposition 3. Let Oy € R™*® be a matrix consisting of the columns of the measurement matrix
D whose index lies in the support set of the s-sparse vector c. Then, OMP can recover the s-sparse
vector ¢ exactly when

max || @5, ¥l <1, )

where ¥ consists of the columns of the measurement matrix whose index is not in the support set
-1

of the vector c, Cbopt = (Cboptcbopt) CIDOTpt is the pseudo-inverse of the matrix Pgp, dDOTpt is the

transpose of the matrix Dgpt.

Equation (7) is often referred to as the ERC (exact recovery condition) of OMP.
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Remark 1. It is not difficult to verify that when the columns of the measurement matrix do not
have normalized {>-norm, the ERC still guarantees that OMP can accurately recover the s-sparse
vector ¢ when the sampled data do not contain noise.

2.3. Mutual Coherence and Cumulative Coherence Function

Mutual coherence and cumulative coherence function of the matrix are important
parameters to measure the orthogonality of the matrix. They are defined as follows [13].

Definition 1. The mutual coherence of a matrix ® € R™*" is defined as

(@), )|
®) ;= max ———F—,
H(®) = M T, Tl

where @;, Py represent the jth and kth column of the matrix, respectively.

Definition 2. For a positive integer s < n, the cumulative coherence function p1(s) of the matrix
® € R™*" is defined as

(1, ¥))

p1(s) := maxmax » ———2
[Pall2 - [I'Fll2

2 ¥,
IAl=s ¥ A

where A is an index set with cardinality s. @) and ¥ ; denote the columns of ® whose index are in
and not in A, respectively.

Remark 2. According to the Schwarz inequality, the mutual coherence y(®) obviously satisfies
u(®) € [0,1]

Mutual coherence y(®) and cumulative coherence function y1(s) of a matrix have the
following relationship [13].

Proposition 4. Suppose that the mutual coherence of a matrix ® is yu(P), then
pa(s) < sp(P)
holds for any natural number s.

2.4. Bernstein Inequality

Bernstein inequality is a classic inequality for variance estimation and higher-order
moment estimation for independent bounded or unbounded random variables. Its form on
bounded random variables is as follows.

Proposition 5. Suppose X1, ..., Xy are independent random variables with zero mean. Then,

fori € {1,...,m}, there exists a constant M > 0 such that |X;| < M hold almost surely.
For constants y; > 0,i € {1,...,m}, suppose further that E|X;|*> < 2, then for all e > 0, it

holds that
e2/2
P > <2 _
mb( - 8) - exP( 72+Me/3>’ ®

For other forms of Bernstein inequality, see [25].

m

>x

i=1

here 2 := 31" 2.
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3. The Recovery Guarantee and Reconstruction Error for OMP to Reconstruct
Sparse Polynomials

In this section, we first give a more accurate estimation of the upper bound for the
mutual coherence of the structured random matrix. Then, for both cases of sampled data
with and without noise, we obtain the sufficient conditions for OMP to recover sparse
vectors when the measurement matrix is a structured random matrix. Finally, combining
the above results, we derive the recovery guarantees and the success probability for OMP to
reconstruct sparse polynomials. Moreover, for the case of sampled data with noise, we also
show that the reconstruction error between the recovered and original coefficient vector
can be controlled by the noise bound.

3.1. The Estimation for the Upper Bound of the Mutual Coherence

In this subsection, we give an upper bound estimation for the mutual coherence of
the structured random measurement matrix (5) with the help of the definition of mutual
coherence, the law of large numbers, and Proposition 5.

Lemma 1. Suppose that the matrix ® € R™*" is a structured random matrix generated by the
values of {¢;(x)}i_; at the sampling points {x;}[,, which is shown in (5), where {x;}}., are
independently sampled according to the corresponding probability measure w(x). When m is
sufficiently large, the mutual coherence u(®) satisfies

2(p+2)In(n)

<
u(®) < 2K =

7

with probability at least 1 — n=P; here p > 0 is a fixed number, and K > 0 is the uniform upper
bound of the basis functions {¢;(x) }i_;.

Proof. According to the orthonormality of basis functions, for any j = 1,2, - - - ,n, we have

E[¢?(x)] = / P2 (x)w(x)dx = 1.
Q
Then, by the law of large numbers, when m — oo, it holds that

1 2_ 1< 2 2
— il = = > ¢Hx) = E[gF(x)| = 1,
i=1
where ®; represents the jth column of the matrix ®. Therefore, when m — oo, we have

HCD]- || ~ +/m. From the definition of the mutual coherence, it is clear that as m increases, it
holds that

(@), Pr)|
(D = maX -—F——"———
H(®) = maX 1 T, Tl

1
e max (), P)|

1
(@ Py

= max
j#k

Let X; = ¢;(xi)¢e(x;), i =1,...,m, j # k, then L(®;, ;) = L >, X;, and by the
orthonormality of {¢;(x) };7:1, we have

EIX) = [ p@nedr =0, £k
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that is, for any i = 1,...,m, it holds that E[X;] = 0. In addition, since {49]-(x)}j€A are
uniformly bounded and orthonormal,

E|X;? = E(¢;(x:)x(x:))
< K2E(¢y(x7))* = K2

holds. Because of the independence of {x;}/";, {X;}!" ; are also independent of each other
and have the uniform bound |X;| < K2. Therefore, according to Proposition 5 and Remark 2,

forany d € [0,1], we have
> 5) = Prob( > 7115>
mo?

Prob(1
m
B m262/2
mK? + mK?5/3
=2ex 3. mo
TP\ T 31 K%
<_3m.52).

m

>

i=1

m

>

i=1

Based on Boole’s inequality [13], there are

1 3m
Prob(max > (5) < En(n—l) -2exp<—8K2 ) )

@
7k o

1
A

Letd = 2K W' p > 0is a fixed number, then we have

Prob (max

1
j#k E <<D]/ q>k>

> 5) <n’t,

which means
Prob(u(®) >6) <n*.

Furthermore, it holds that
Prob(u(®) <é) >1—n"".
In summary, the mutual coherence y(®) of P satisfies

2(p+2)In(n)

<
u(®) < 2K =

7

with probability at least 1 —n~7. [

Remark 3. From Definition 1, it is easy to find that the column normalization of the matrix does
not affect its mutual coherence and the value of its cumulative coherence function.

3.2. The Recovery Guarantee for OMP under the Noiseless Condition

In this subsection, we first give a sufficient condition for OMP to exactly recover the
s-sparse vectors by the mutual coherence y(®) of the measurement matrix (5). Firstly, some
assumptions and notations are introduced. Without loss of generality, assume that the
first s elements of the original coefficient vector ¢ € R" are nonzero elements, and use the
sets A; and A;_; to denote the support and nonsupport sets of the vector ¢, respectively.
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Clearly, there are |As| = s and |A,—s| = n — s. Then, partition the measurement matrix
P as
D= [cDoptHJ] = [q)opt|T1/ ce /TTI*S]I (9)

where ®qpt € R™*S and ¥ € R™*("=5) are the submatrices consisting of the first s columns
and the last (n — s) columns of the measurement matrix ®, respectively, ‘I’j, j € Ny—s
denotes the jth column of the submatrix ¥.

Theorem 1. If the measurement matrix & € R™*" is the structured random matrix given in

Lemma 1 and the the observation vector b = [g(x1),...,8(xm)]" € R™1, then, when m is
sufficiently large, and the mutual coherence p(P) satisfies

solving model (3) by OMP can exactly recover arbitrary s-sparse vector ¢ with high probability.

Remark 4. Since the law of large numbers is used in the proof of Theorem 1, the result in Theorem 1
holds with high probability.

Proof. Starting from the (ERC) condition in Proposition 3, expanding the pseudo-inverse
by definition, we have

-1
t T T
max ||D ‘I’H = max (CD o t) [OJIN &
JEAn—s opt *J 1 JEAn—s opt ¥ op opt ~J 1
-1
< (qpT ® ) - max ||®] ‘I’H . 10
- opt opt 1 JEAn—s opt 1 ( )

Firstly, consider the first term on the right-hand side of Equation (10). Since {¢;(x) 1
is a uniformly bounded orthonormal system, it follows from the law of large numbers that
when m — oo, it holds that

> 9 (x) 3 da(x)pr(xi) e S s (xi)r (%)

1 %2?21471(961')472(%) A 3 (x) %Z?llﬁl’s(xi)fl?z(xi)
mq)opt(popt : :
LS 14>1<x1) (%) w2t pa(x)gs(xi) - R T 1¢s<x1)
E[¢7(x)]  E[pa(x )4>1(x)] oo Efgs(x)r1(x)] 10 0
E[¢ (x )¢z( ) Elp3(x)] - Elgs(x)¢a(x)] 01 0
- : : : : - o : =1
Elp1(x)¢s(x)]  Elpa(x)ps(x)] ---  E[gZ(x)] 00 1
that is,
c1>§pta1>opt ~ ml.
Thus, B .
(cpgpt@opt) ~ (D) = L
Then, it holds that
| (@5) | =~ 1] = 0= 5 a

Secondly, we analyze the second term on the right-hand side of Equation (10). Similarly,
by the law of large numbers, when m — oo, we have

1@l = v, j=1,...,n
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Then, it holds that
D, ¥
max ’
o 2 <|¢A||z K
max 1 <¢ ‘P >
pu— . T = 1 1lar 1 A’ ]
i€An=s X | Pall2 - [1¥jll2 !
1
~— D,, ¥
o max > (@) Y))]

Since |As| = s, it is clear from the definition of the cumulative coherence function that
we have

1 1 -
() = o max 3 [(@n, ¥ = - max [log, ]
AEAs
that is,
.
[max CDopt‘i’;H | S mpa(s). (12)

In summary, substituting (11) and (12) into (10) yields

max

- max
JEAn—s i

1 ]EAn_s

-1
ot < | (@inon)

q):)rpt‘FjHl < Z’ll(S)'

Finally, by the assumption y(®) < 1/s of this theorem, according to Proposition 4, it
follows that

pi(s) <s-u(®) <1

holds. Furthermore, the (ERC) condition holds. Based on Proposition 3, the conclusion of
this theorem is proved. [

In the case of sampled data without noise, Theorem 1 gives the sufficient condition
for OMP to exactly recover s-sparse vectors with high probability through the mutual
coherence of the structured random matrix. Then, with the help of Lemma 1 and Theorem 1,
the recovery guarantee and success probability for OMP to reconstruct sparse polynomials
is given in the following theorem.

Theorem 2. Suppose that g(x) = 3ic 5 |a|=n ¢jPj(X) is an s-sparse polynomial, where {¢;(x) } je
is a uniformly bounded orthonormal system defined on Q) with probability measure w(x) and a uniform
upper bound K > 0. Suppose that the measurement matrix ® € R™ " in the model (3) is a
structured random matrix generated by the value of {¢;(x) } jea at the sampling points {x;},, where
{x;}"., are independently sampled according to the probability measure w(x). The observation vector
b =[g(x1),...,8(xm)]" € R™*L. Then, when

m> ng(p +2)s%In(n),

solving model (3) by OMP can reconstruct the s-sparse polynomial g(x) with probability at least
1 —n~P; here, p > 0 s a fixed number.

Proof. Based on the assumptions, it is easy to verify that the measurement matrix ¢
satisfies the conditions in Lemma 1, so the mutual coherence u(®) satisfies

2(p+2)In(n)

<
(@) < 2K =

(13)

with probability at least 1 — n~". Then, when the number of sampling points satisfies
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m> ng(p +2)s%In(n),
it can be proved that the right-hand side of Equation (13) is less than 1/s. Therefore,
from Lemma 1, it is obvious that solving model (3) by OMP can exactly recover the s-sparse
coefficient vector ¢, and further reconstruct the s-sparse polynomial ¢(x). O

Remark 5. From Theorem 2, it is easy to find that when the constant p is taken as a large number,
it will make the recovery guarantee m too large or even exceed the number of basis functions
n, which leads to it not being able to reconstruct the sparse polynomial g(x) by fewer sampling
points. However, if the constant p is small, the lower bound of the theoretical success probability
will be too small, making it useless. Therefore, to balance the relationship between the recovery
guarantee and the lower bound of the theoretical success probability, the constant p is usually taken
as p € [0.2,0.4].

3.3. The Recovery Guarantee and the Reconstruction Error for OMP under the Noisy Condition

In this subsection, we discuss the recovery guarantee, the success probability, and
the reconstruction error for OMP to reconstruct s-sparse polynomials in the case of the
sampling data with noise. Before that, we firstly perform column normalization of the
measurement matrix ®, i.e.,

- q>1 ‘DZ (Dn
[®1ll2 [|P2]12 [®nll2 )

(14)

Similar to (9), here, we partition the measurement matrix ® as
q‘v) = [&Doptll?ll Tt /qrn—s]~

By the law of large numbers, when m — oo, we have ||®;[]2 ~ /m, j =1,2,--- ,n.
Thus, as m increases, there are ® ~ - & and

v
n n
4’] xl 1 .
Z cj ~ —chgbj(xi) =—g(x;),i=1,2,---,m.
oyl ™ Vi 2 v
Therefore, the corresponding observation vector in noisy condition is

Bzib—i—e%@c—ke, (15)

Vm

where € = [e1,€2,- - €] € R™ is the noise vector and satisfies ||e|l, < ¢, and e > 0is
the noise bound. Based on the above analysis, the model (3) can be rewritten as

min |[®¢ — b, st &0 <s, (16)
ceR”

where the measurement matrix ® € R™*" and the observation vector b € R"*! are shown
in (14) and (15), respectively. Solving model (16) by OMP can recover the sparse coefficient
¢, and then reconstruct the s-sparse polynomial g(x).

We next analyze OMP. For this purpose, we introduce some notations here. Suppose
that OMP selects k indices located in the support set after k iterations, and let the set formed
by these indices be Ay. Since Ay C A;, we denote A g = Ag/Ay. Let &Kk e R"™*k be the
submatrix consisting of the columns in the measurement matrix  whose indicators lie in
Ak- Let

Proj(b) = &) (Cb(k)y ‘b
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be the projection of the observation b onto the space spanned by the columns of oH),
and denote the projection operator as Py. Thus, the residual vector 1y of OMP in the kth
iteration is

For convenience, let ay = (I — P,)®c, By = (I — P;)e, and introduce the following
notations from reference [19]:

— Ht G
M= mox {[[ @t}

M, = max {“T’sz
k,2 P j k

M :max{‘CTDTtx
k1 AEAs A Tk

3

Nk = ’eax{ (iDJTIBk‘}

JEA

Reference [19] showed that OMP can select an element in the index set A;_j in the
current iteration if

Mk,l > Ng.

1-M
Furthermore, according to the (ERC) condition (7), when (@) < 1/s, combining with
Equation (12) and Proposition 4, we obtain that

M1 >

2
: 71_514(@)1\& (17)

is also a sufficient condition for OMP to select an element in the index set A;_j in the
current iteration. We then give the following theorem.

Theorem 3. Suppose that the measurement matrix ® and the observation vector b are given in (14)
and (15), respectively, and the noise vector € satisfies ||€ || < e. Then, when m is sufficiently large
and u(®) < 1/s, if the nonzero elements in the s-sparse vector satisfy

2e
1—sp(®))(1— (s —1)u(®))’

then solving model (16) by OMP with the stop rule ||x|, < € can accurately find the positions of
the nonzero elements in vector c.

j € supp(c), (18)

’CJ‘Z(

Before proving Theorem 3, we first give the following proposition [19] which is
important in the proof.

Proposition 6. If u(®) < L, then all the eigenvalues of the matrix ()T (I — P ) K
are located in the interval

[1=(s=Du(®@),1+ (s - u(P)],

where &K denotes the submatrix consisting of the columns of the measurement matrix ® whose
index lie in Ag_.

With the help of Proposition 6, we give the proof of Theorem 3.
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Proof. Let c*~¥) be the vector consisting of the elements of the vector ¢ whose index lie in
Ns_k, and by the definition of My 1, the relationship between the /«-norm and the />-norm,
and the properties of the eigenvalues, we have

Myy = || (@57 (1= BBl Hels

‘ o]

> (s =) 7E [ (@) T (1= BYBE el

> (S _k)_j)‘min C(S_ )

7

where A, is the smallest eigenvalue of the matrix (ST (1 — P)®6K) . According to
Proposition 6, it holds that

My > (s= k)72 (1= (s = )u(®)) [ .

Combining with (17), if
~(s—k) 24/s — ka
> @) ey 1

then OMP can select an element in the index set A;_ in the current iteration.
Furthermore, for any j € Ay, according to ||e||2 < € and Schwarz inequality, we have

©7 Be| < 19, lIBkllz = 11— Poel2 < llell> < e,

that is, N < e. Thus, (19) holds when [c;|,j € supp(c) satisfies (18), i.e., OMP can select an
index located in A;_j in the current iteration.

We next consider the stopping rule ||rx||2 < e. Here, we show that OMP does not stop
when k < s under this rule. Recall that ry is the residual vector at the kth step of OMP, then
from the triangle inequality and the definition of r;, we have

||1‘k||2: || I—Pk C+(I—Pk €||2
> [|(T—Py) cH2— [(I= Pe)el]
> |- R)@eeE], -

Furthermore, by Proposition 6 and the assumption in this theorem, it holds that

(1= P)@C I >y

e H > 2 g
2 2

1—sp(P)

Therefore,
tella > 26 —e =¢,

that is, when k < s, the £,-norm of the residual vector r;, does not satisfy the stopping rule,
and OMP does not stop at the current iteration. [

Remark 6. Compared with the requirement of the column orthogonality of the measurement matrix
limited by the upper bound of the mutual coherence given in Proposition 1 and Proposition 2,
the requirement of that given in Theorem 1 and Theorem 3 is significantly relaxed, allowing more
matrices to be used as measurement matrix that satisfy the requirement.

Based on the above theorem, similar to Theorem 2, we can derive the following
theorem.
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Theorem 4. Suppose that g(x) = 3 ic 5 |a|=n €jPj(x) is an s-sparse polynomial, where {¢;(x) } jer
is a uniformly bounded orthonormal system defined on Q) with probability measure w(x) and a
uniform upper bound K > 0. Let & € R™*" be the measurement matrix with normalized
columns, as shown in (14), which is generated by the value of {$;(x)}jca at the sampling points
{x;}1,, where {x;}" | are independently sampled according to the probability measure w(x).
The observation vector b = (1/y/m)[g(x1),...,8(xm)]" + €, where € = [e1,...,€m]" is the
noise vector with |||y < e. Further, assume that the coefficients of g(x) satisfy

2¢
(1-spu(®) (1~ (s = 1)u(®))’

(= j € supp(A). (20)

Then, when
m> ng(p +2)s%In(n), (21)

solving model (16) by OMP with stopping rule ||x||2 < € can accurately find the positions of the
nonzero terms of the sparse polynomials g(x) with probability at least 1 — n™F, where p > 0isa
fixed number. Furthermore, when OMP succeeds, the reconstruction error between the original
coefficient vector ¢ and the recovered vector € satisfies

[e—¢€2<C-¢ (22)
where C > 0 is a constant independent of e.

Proof. The proof of Theorem 4 is divided into two parts: first, we give the recovery
guarantee and the success probability for OMP to accurately find the positions of nonzero
terms of ¢(x); second, we estimate the reconstruction error between the original and
recovered coefficient vector.

The first part of the proof is similar to that of Theorem 2. Since the column normal-
ization of the matrix does not affect the mutual coherence of the matrix, the estimation of
the recovery guarantee and the success probability can be derived directly with the help of
Lemma 1 and Theorem 3.

The second part is proved below. Without loss of generality, assume that A =
{1,...,n} and As; = supp(c) = {1,...,s}, i.e., the first s elements of the original coef-
ficient vector ¢ are nonzero elements. The analysis in the first part shows that OMP can
exactly find all elements in the set A with probability at least 1 — n~7 if the assumptions
of this theorem hold.

Decompose the original coefficient vector ¢ and the recovered coefficient vector ¢ into

c=[a 0, &=[& 0],

where ¢; and €& denote the first s elements of the vectors ¢ and ¢, respectively. At this time,
the nonzero part of the recovered vector is

¢ = égptf),
where @gpt denotes the pseudo-inverse of the matrix ®opt. Since b = dc + € = Dopier + €,
we have
G = (i)gpt]s
= (i)gpt( 0 optcl + 6)
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Finally, let C = chgpt ||l2, then the reconstruction error of the coefficient vector is

lle—¢l2=ller —&ll2 = H(i)j)pteHz
< (1 DEpel2 - el
=C-e

Combining the above two parts, the conclusion of the theorem is proved. O

Remark 7. Equation (22) shows that if (20) and (21) hold, then OMP can recover the coefficient
vector ¢ accurately with probability at least 1 — n~F when e = 0.

Remark 8. Through a similar analysis to Remark 5, the constant p is still taken as p € [0.2,0.4]
when the sampled data contain noise.

Remark 9. The conclusion of Theorem 2 and Theorem 4 shows that regardless of whether the
sampled data contain noise or not, the recovery guarantee for OMP to reconstruct sparse polynomials
generated by uniformly orthonormal systems is consistent with that of OMP to reconstruct sparse
trigonometric polynomials.

4. Numerical Experiments

In this section, we first introduce three commonly used uniformly bounded orthonor-
mal systems, and then apply OMP to reconstruct the sparse polynomials generated by these
three types of uniformly bounded orthonormal system. The first experiments verify the
validity of the recovery guarantees and the lower bound of the success probability given in
Theorem 2 and Theorem 4. The second experiments verify the accuracy of the estimation of
the reconstruction error between the recovered and original vector given in (22). The last
experiments show that even if the coefficient vector has a small disturbance, OMP can gain
a good recovery of it.

4.1. Commonly Used Uniformly Bounded Orthonormal Systems

In this subsection, we introduce three commonly used uniformly bounded orthonor-
mal systems: preconditioned Legendre polynomial system, Chebyshev polynomial system,
and trigonometric polynomial system.

Preconditioned Legendre polynomial system: The standard univariate Legendre poly-
nomials [26] are

Lo(x) =1,
V2T, N .
L](x)—Tj!E(x —1), xe[-1,1, j=12-

They are orthonormal with respect to the uniform measure w(x) = 1/2 on [—1,1] and
their Lo-norm are

ILj(0)lleo = [Lj(V)| = [Li(=D)[ = 2+ 1, j=0,1,---,n.

It is obvious that the standard Legendre polynomials are not uniformly bounded on
[—1,1]. Therefore, we consider the following function system [13]:

Qj(x) = \/§(1 —x2>iLj(x), j=0,1,--n.

{Q)(x)}en, are orthonormal with respect to the Chebyshev measure w (x) = 77~ (1 — x2) 1z

on [—1,1] and have the uniform upper bound K = +/3. The function system 1Qj(x) }eny is
called the preconditioned Legendre polynomial system.
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Chebyshev polynomial system: The standard univariate Chebyshev polynomials are [27]
To(x) =1
Ti(x) = V2cos(j-arccosx), j=1,2,..., x€[-1,1].

They are orthonormal with respect to Chebyshev measure w(x) = 7~ 1(1 — x?) 2,

[—1,1] with a uniform upper bound K = /2.
Trigonometric polynomial system: The real univariate trigonometric polynomials are [28]

n

Fo(x) = 1,
F.(x) = cos(n +1

Fi(x) = sin(gx), n=0,24---, x€l|-mm,

x>, n=135--, x€l-mmn|,

They are orthonormal with respect to uniform measure w(x) = 7 on [—7, 71| and
have the uniform upper bound K = 1, obviously.

4.2. The Verification of Recovery Guarantee and Success Probability of OMP Algorithm

In this subsection, for the two cases of sampled data with and without noise, we
take the uniformly bounded orthonormal systems in Section 4.1 as examples to verify
the validity of the recovery guarantees and the lower bounds of the success probability
given by Theorem 2 and Theorem 4, respectively. Here, the sparsity s = 5 and s = 10,
the parameter p = 0.2, 0.3, and 0.4, and the noise bound ¢ = 107 are taken, respectively.
The main steps of this experiment are as follows:

Step 1: Randomly generate an n-dimensional s-sparse coefficient vector ¢ € R” with a
support set As.

Step 2: Taking the three types of uniformly bounded orthonormal system mentioned in
Section 4.1 as examples, according to the corresponding probability measure, randomly
select m sampling points {x;}!" ; on corresponding domain.

Step 3: Generate b; = g(x;) = }jcp ¢j¢j(xi) or by = (1//m)g(x;)+e;.

Step 4: Use OMP to solve model (3) or (16).

Step 5: Compare the obtained results with the original coefficient vector and polynomial.

According to Theorem 2 and Theorem 4, we calculate the lower bounds of the number
of sampling points m required for the three types of uniformly bounded orthonormal
systems with different numbers of basis functions n and parameters p, which are the
recovery guarantees for OMP to exactly reconstruct sparse polynomials. The recovery
guarantees for the cases of s = 5 and s = 10 are shown in Tables 1 and 2, respectively.

The first column of Tables 1 and 2 denotes the number of basis functions 7, and the
remaining columns denote the lower bound of the number of sampling points m required
for different constants p at sparsity s = 5 and s = 10 for the three types of the uniformly
bounded orthonormal systems, respectively. From Tables 1 and 2, it is easy to see that the
lower bound of the number of sampling points m increases with the increase of that of basis
functions n, but the growth rate of the former is much smaller than the latter, and for the
same n and s, the larger the parameter p is, the larger the lower bound of the number of
sampling points m is. In addition, for the same number of basis functions n, sparsity s, and
parameter p, the recovery guarantee of the trigonometric polynomial system is the smallest.

Next, for the sparse polynomials generated by the three types of uniformly bounded or-
thonormal system mentioned before, we take the number of basis functions 7 and sampling
points m given in Tables 1 and 2, and we solve model (3) by OMP for 1000 independent
repeated experiments and record the frequency of exact reconstruction as the actual success
probability of OMP. It is clear that for different number of basis functions n and parameter
p, the theoretical success probability is 1 — n~?. For the two cases of sampled data with
and without noise, Figures 1-6 show the comparison between the theoretical and actual
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success probability for OMP to exactly reconstruct the three types of sparse polynomials
for different numbers of basis functions 1, parameter p, and sparsity s.

Table 1. The lower bound of the number of sampling points m for the three types of the uniformly
bounded orthonormal system when the sparsity s = 5.

Lower Bound of the Number of Sampling Points m

Preconditioned Legendre Chebyshev Trigonometric
p 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

5000 3748 3918 4089 2499 2612 2726 1250 1306 1363
10,000 4053 4237 4421 2702 2825 2948 1351 1413 1474
15,000 4231 4424 4616 2821 2949 3078 1411 1475 1539
20,000 4358 4556 4754 2906 3038 3170 1453 1519 1585
25,000 4456 4659 4861 2971 3106 3241 1486 1553 1621
30,000 4536 4743 4949 3024 3162 3299 1512 1581 1650
35,000 4604 4814 5023 3070 3209 3349 1535 1605 1675
40,000 4663 4875 5087 3109 3250 3391 1555 1625 1696
45,000 4715 4929 5143 3143 3286 3429 1572 1643 1715
50,000 4761 4978 5194 3174 3319 3463 1587 1660 1731

Table 2. The lower bound of the number of sampling points m for the three types of the uniformly
bounded orthonormal system when the sparsity s = 10.

Lower Bound of the Number of Sampling Points m

Preconditioned Legendre Chebyshev Trigonometric
p 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

20,000 17,431 18,223 19,015 11,621 12,149 12,677 5811 6075 6339
25,000 17,823 18,634 19,444 11,882 12,423 12,963 5941 6212 6482
30,000 18,144 18,969 19,794 12,096 12,646 13,196 6048 6323 6589
35,000 18,416 19,253 20,090 12,277 12,835 13,393 6139 6418 6697
40,000 18,615 19,498 20,346 12,434 12,999 13,564 6217 6500 6782
45,000 18,858 19,715 20572 12,572 13,144 13,715 6286 6572 6858
50,000 19,043 19,909 20,774 12,69 13,273 13,850 6348 6637 6925
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Figure 1. Comparison between the theoretical and actual success probability of OMP to reconstruct
three types of sparse polynomials when the sampled data are noiseless and noisy, s = 5, p = 0.2.
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Figure 3. Comparison between the theoretical and actual success probability of OMP to reconstruct

three types of sparse polynomials when the sampled data are noiseless and noisy, s = 5, p = 0.4.
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three types of sparse polynomials when the sampled data are noiseless and noisy, s = 10, p = 0.2.
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Figure 5. Comparison between the theoretical and actual success probability of OMP to reconstruct
three types of sparse polynomials when the sampled data are noiseless and noisy, s = 10, p = 0.3.
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Figure 6. Comparison between the theoretical and actual success probability of OMP to reconstruct
three types of sparse polynomials when the sampled data are noiseless and noisy, s = 10, p = 0.4.

From Figures 1-6, it is easy to see that the theoretical success probability (red line)
of OMP to reconstruct the three types of sparse polynomials with different parameters
p gradually increases and tends to the actual success probability as the number of basis
functions # increases, and the actual success probability is higher than the theoretical
success probability in both noisy and noiseless cases. When the number of basis functions n
is the same, the theoretical success probability also increases with the increase of parameter
p, which illustrates the correctness and validity of the conclusions of Theorem 2 and
Theorem 4. In addition, Figures 1-6 also show that when the sampled data contain noise
of magnitude ¢ = 107>, the success probability for OMP is comparable to that of the case
when the sampled data do not contain noise, which also illustrates the robustness of OMP.

4.3. Verification of the Accuracy of the Reconstruction Error Estimation When Sampled Data
Contain Noise

In this subsection, for the sampled data containing noise, we verify the accuracy of
the reconstruction error estimation for the sparse coefficient vector. The number of basis
functions n, sampling points m, and the noise bound are still taken as Table 1, Table 2, and
e = 1075, respectively. The experimental procedure is similar to that in Section 4.2, where
we still perform 1000 independent repeated experiments by using OMP to reconstruct
the three types of sparse polynomials. Different from the experiments in Section 4.2, we
randomly generate a noise vector € with ||e| < € and record the values of constant C
and the real noise bound & = ||e|, when OMP succeeds. For the two cases of sparsity



Mathematics 2022, 10, 3703

20 of 23

s = 5and s = 10, the average reconstruction error and the upper bound of it are shown in

Tables 3 and 4 when the parameter p = 0.2, 0.3, and 0.4 and OMP succeeds.

Table 3. The actual reconstruction error and the upper bound of reconstruction error for OMP to

recover the coefficient vectors of the three types of sparse polynomials, s = 5.

Preconditioned Legendre Chebyshev Trigonometric
" P Upper Bound Error Upper Bound Error Upper Bound Error
02 59420 x 107 1.8612x 1077 59226 x 107¢  2.3162 x 1077 5.9950 x 10~®  3.3156 x 1077
20,000 03 59346 x 107°  1.8189 x 1077 59223 x 1076 2.2176 x 1077 5.9860 x 10~®  3.2614 x 1077
04 59347 x 107 17854 x 1077 59195 x 1076  2.1832 x 107 5.9863 x 10°®  3.1439 x 107
0.2 59415 x 107® 17713 x 1077 59179 x 107% 22273 x 107 5.9893 x 10®  3.2066 x 107
40,000 0.3 5.9288 x 107¢  1.7402 x 10~7 59160 x 107° 2.1478 x 10~7 5.9808 x 107  3.1279 x 10~7
04 59308 x 1076 1.7416 x 1077 59150 x 107% 21179 x 107 5.9810 x 10®  3.0817 x 10~/
02 59307 x 107 1.7897 x 1077 59201 x 1076  2.2058 x 107 5.9869 x 10~®  3.1696 x 10~7
50,000 03 59301 x 107 17361 x 1077 59149 x 1076 2.1592x 10~7 59777 x 107  3.0936 x 10~7
0.4 59258 x 1076 1.7054 x 1077 59106 x 107°  2.0830 x 107 5.9787 x 10°®  3.0729 x 107
Table 4. The actual reconstruction error and the upper bound of reconstruction error for OMP to
recover the coefficient vectors of the three types of sparse polynomials, s = 10.
Preconditioned Legendre Chebyshev Trigonometric
" P Upper Bound Error Upper Bound Error Upper Bound Error
0.2 59530 x 107%  1.3369 x 10~7 5.8490 x 107 1.1562 x 1077 5.9638 x 107® 22914 x 1077
20,000 0.3 5.9462 x 107° 13542 x 1077 5.8489 x 107® 1.1564 x 10~7 5.9590 x 10~¢  2.3235 x 107
0.4 59176 x 107®  1.2626 x 1077  5.8494 x 107® 1.0587 x 10~7 5.9622 x 107  2.2498 x 10~7
0.2 5.9412 x 107¢  1.2278 x 1077 5.8480 x 107®  1.0481 x 10~7 5.9567 x 107  2.2734 x 1077
40,000 0.3 59063 x 107®  1.2800 x 1077 5.8443 x 107 1.1113x 1077 5.9534 x 10~® 2.1706 x 10~
0.4 5.9037 x 107%  1.2962 x 10~7 5.8419 x 107® 9.9783 x 108 5.9500 x 107®  2.1759 x 10~7
0.2 5.9082 x 107¢  1.3328 x 107 5.8454 x 107® 1.0770 x 10~7 5.9634 x 107®  2.2618 x 1077
50,000 0.3 59097 x 107° 12813 x 1077 5.8436 x 107 1.0537 x 1077 5.9548 x 107¢ 2.1822 x 1077
0.4 5.9085 x 107¢ 13133 x 1077 5.8403 x 107® 1.0581 x 1077 5.9489 x 107 2.1657 x 1077

The columns of “upper bound” in Tables 3 and 4 are the estimation of the upper
bound of the reconstruction error, i.e., C - & and the columns of ‘error’ mean the average
reconstruction error when OMP succeeds, i.e., ||c — &||. From Tables 3 and 4, it is easy to
see that for the three types of sparse polynomials, with different numbers of basis functions
n and parameters p, all the upper bounds of the reconstruction errors are larger than the
average reconstruction errors, which shows the correctness of the conclusion in Theorem 4.

4.4. Verification of the Accuracy of OMP to Recover Coefficient Vectors When Sampled Data

Contain Noise

The case of sampled data g(x;), i =1,2,-- -

that the coefficient vector contains noise, which can be expressed as

n

, m with noise can be regarded as the case

¢;(x;) . ¢j(xi)
= Ci , 1=1,2,---,m.
=2 ], T 20,
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It can be written in the matrix vector form as

b = d,

where ® and b = b are given as (14) and (15), respectively, and the vector & = [¢1, - - - , 5] Te
R™1 At this point, only s main term in the vector ¢ has a large absolute value, and the
absolute values of the remaining terms are small. Therefore, in this subsection, for the
case of coefficient vector with noise, we apply OMP to recover the noisy coefficient vector
¢ and then verify the recovery effect of OMP. In this experiment, the noise bound is still
taken as ¢ = 107>, and the number of basis functions n and sampling points m are still
taken as those in Tables 1 and 2 for s = 5 and s = 10, respectively. We solve model (16) by
OMP for 1000 independent repeated experiments and record the actual error ||¢ — &||; when
OMP succeeds. The average actual errors of s = 5 and s = 10 are shown in Tables 5 and 6,
respectively.

Table 5. The average actual error for OMP to recover the coefficients of the three types of sparse
polynomials, s = 5.

Actual Error

" P Preconditioned Legendre Chebyshev Trigonometric
0.2 5.7726 x 10~° 5.7793 x 107® 57755 x 10~°

20,000 0.3 5.7735 x 10~° 57718 x 107° 57818 x 10~°
0.4 5.7751 x 10~° 57731 x 107° 57799 x 10~°

0.2 5.7864 x 107° 5.7733 x 107®  5.7849 x 10~°

40,000 0.3 5.7796 x 107° 5.7784 x 107® 57782 x 10~°
0.4 5.7814 x 10~° 57792 x 107°  5.7792 x 10~°

0.2 5.7791 x 10~ 57772 x 107° 57792 x 10~°

50,000 0.3 5.7802 x 10~ 57801 x 107®  5.7798 x 10~°
0.4 5.7773 x 107° 5.7774 x 107°  5.7840 x 10~°

Table 6. The average actual error for OMP to recover the coefficients of the three types of sparse

polynomials, s = 10.

Actual Error

" P Preconditioned Legendre Chebyshev Trigonometric
0.2 5.7782 x 10~° 5.7756 x 107° 57753 x 107°

20,000 0.3 5.7681 x 107° 5.7793 x 107® 57703 x 10~°
0.4 5.7734 x 107° 5.7900 x 107®  5.7753 x 10~°

0.2 5.7788 x 10~° 5.7762 x 107°  5.7760 x 10~°

40,000 0.3 5.7771 x 10~° 5.7810 x 107®  5.7816 x 10~°
0.4 5.7781 x 10~° 5.7659 x 107° 57760 x 10~°

0.2 5.7765 x 107° 5.7721 x 107®  5.7711 x 107°

50,000 0.3 5.7734 x 107° 5.7763 x 107®  5.7856 x 10~°
0.4 5.7765 x 10~° 5.7808 x 107° 57711 x 10~°

The first column of Tables 5 and 6 indicates the number of basis functions, the second
column indicates the value of parameter p, and the remaining columns indicate the average
actual error when OMP succeeds. From Tables 5 and 6, it is easy to see that when OMP
succeeds, the actual error of its recovery is smaller than the error bound ¢, which indicates
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the accuracy of OMP in recovering the noisy coefficient vector, and also shows the noise
resistance of OMP.

5. Conclusions

The main work of this paper is to give the sufficient conditions for OMP to reconstruct
sparse polynomials generated by uniformly bounded orthonormal systems in both cases of
sampled data with and without noise, and give the recovered error for the sparse coefficient
vectors when the sampled data contain noise. The work in this paper can be regarded as a
generalization of the study of OMP to reconstruct sparse trigonometric polynomials in [21].

For the structured random matrix generated by a uniformly bounded orthonormal
system and random sampling points, a more accurate estimation for the upper bound of the
mutual coherence of this matrix is given firstly in this paper. Then, for both cases of sampled
data with and without noise, when the measurement matrix is a structured random matrix,
more relaxed sufficient conditions for OMP to recover sparse coefficient vectors with high
probability are given by the mutual coherence of the measurement matrix, which further
relax the condition u(®) < 1/(2s — 1) given in [9,19]. Meanwhile, the requirement on
the sparse coefficient vector for OMP to exactly find the positions of nonzero elements is
given when the sampled data contain noise. Finally, combining the results of the above
two parts, it is proved that regardless of whether the sampled data contain noise or not,
when the number of sampling points satisfies m ~ s> Inn, OMP can reconstruct general
sparse polynomials with probability at least 1 — n~7 in both cases. Furthermore, with a
simple calculation, the fact that reconstruction error between the original and recovered
coefficient vector can be controlled by the noise bound is also illustrated in this paper.
In addition, the research methods and conclusions of this paper can be extended to the
study of multivariate sparse polynomial reconstruction problems.

However, it is easy to see from the experiments in Section 4.2 that the actual success
probability of OMP is higher than the theoretical success probability, which indicates that
the recovery guarantee given in this paper is not optimal. Perhaps some more advanced
probability tools can be used to give a more accurate upper bound estimation for the mutual
coherence of the measurement matrix, which in turn can further optimize the recovery
guarantee and the success probability for OMP.
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