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Abstract: Three-dimensional (3D) lane detection is widely used in image understanding, image
analysis, 3D scene reconstruction, and autonomous driving. Recently, various methods for 3D lane
detection from single two-dimensional (2D) images have been proposed to address inaccurate lane
layouts in scenarios (e.g., uphill, downhill, and bumps). Many previous studies struggled in solving
complex cases involving realistic datasets. In addition, these methods have low accuracy and high
computational resource requirements. To solve these problems, we put forward a high-quality
method to predict 3D lanes from a single 2D image captured by conventional cameras, which is also
cost effective. The proposed method comprises the following three stages. First, a MobileNet model
that requires low computational resources was employed to generate multiscale front-view features
from a single RGB image. Then, a perspective transformer calculated bird’s eye view (BEV) features
from the front-view features. Finally, two convolutional neural networks were used for predicting
the 2D and 3D coordinates and respective lane types. The results of the high-reliability experiments
verified that our method achieves fast convergence and provides high-quality 3D lanes from single
2D images. Moreover, the proposed method requires no exceptional computational resources, thereby
reducing its implementation costs.

Keywords: 3D lane detection software from 2D image; tool for autonomous driving; 3D scene
reconstruction software; deep learning software

MSC: 90-00; 68-00; 51-00

1. Introduction

Large corporations, such as Tesla, Google, Uber, and Nvidia, have been developing
autonomous vehicles. To explore different scenarios around these autonomous vehicles,
they often employ several sensors, such as cameras, radar, sonar, and LiDAR. However,
the main sensor, LiDAR, is quite expensive. Therefore, it is expected to be difficult to
apply these systems widely in practice in the near future [1–5]. In contrast, camera-based
autonomous driving systems are low-cost alternatives that use computer vision and deep
learning techniques [6–8].

Three-dimensional (3D) lane detection from two-dimensional (2D) images is an impor-
tant technique in camera-based autonomous driving applications. Additionally, 3D lane
detection is also widely used in other applications including image understanding, image
analysis, 3D scene reconstruction [6–9], and augmented reality applications of outdoor
environments [10,11]. The 3D lanes and 3D-based object detection, localization, and track-
ing are applied in the perception and sensing systems of autonomous driving vehicles [9].
Several studies have investigated 3D lane estimation from single or multiple 2D images.
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However, these methods have low accuracy and high computational resource requirements
(as discussed in Section 2).

MobileNets stands for efficient convolutional neural networks (CNN) for mobile vi-
sion applications [12]. This model is efficient for embedded and mobile vision applications.
MobileNets, which are based on an elegant architecture, use depth-wise separable con-
volutions to construct lightweight deep neural networks. The model contains two global
hyper-parameters that efficiently obtain a balance between latency and accuracy while
choosing the right-sized model for their application relying on the problem constraint.
Moreover, MobileNets require low computational resources, such as mobile devices, and
exhibit high performance across various applications, including fine-grained classification,
face attributes, object detection, and large-scale geolocalization.

Therefore, to overcome limitations such as low accuracy and high computational cost,
we present a 3D lane detection method, which is inspired by PersFormer [13], using both a
perspective transformer and MobileNets. The MobileNet-based spatial feature extraction
reduces the high computational cost, and the spatial feature transformation module in
the perspective transformer generates high-quality bird’s eye view (BEV) features from
multiscale front-view features. The main contributions of our research are as follows: (1)
a high-performance 3D lane detection method using medium hardware is proposed; and
(2) the proposed method achieves fast convergence to reduce training time.

The remainder of this study is arranged as follows. A survey of literature related
to 2D and 3D lane detection is discussed in Section 2. Section 3 details the proposed 3D
lane detection method. The results of the high-reliability experiments and evaluations are
presented in Section 4 consisting of both qualitative and quantitative measures. Finally, in
Section 5, we provide conclusions and several potential directions for future work.

2. Related Works

The conventional 2D lane-detection method includes three stages. First, the seman-
tic segmentation stage is employed to assign each pixel in a 2D image corresponding
to a label to verify whether it places on a lane. Second, a spatial transformation stage
projects the output of the image segmentation stage onto a plane surface. The third stage
extracts 2D lanes using a lane model fitting with strong assumptions. The model fitting
for quadratic curves is the most common model. Traditional 2D lane detection studies
are based on image processing techniques, such as filtering [14,15] and clustering [16].
With developments in deep learning, several CNN-based approaches have significantly
outperformed traditional methods. Many studies have considered 2D lane detection as a
semantic segmentation problem [17–21]. For example, Neven et al. [19] introduced a binary
segmentation method requiring a post-clustering process for lane instance discrimination.
In addition, Lee et al. [17], Pan et al. [18], and Hou et al. [20] presented multiclass pixel-wise
segmentation approaches that limit the maximum detection results in one frame but require
large computational resources. Several lightweight methods have been proposed to reduce
computational resources based on an effective grid [22–25] or anchor [26–30]. However,
these methods are of poor quality. For example, grid-based research that finds lanes row-
wise has a smaller resolution than that of the segmentation map. The model output is the
probability of each cell being in a lane, and a vertical post-clustering process generates lane
instances. In contrast, the anchor-based studies focus on the offsets optimization of the
predefined line anchors, which is based on classical object detection. However, a critical
problem which remains is defining these anchors. Chen et al. [26] selected vertical anchors,
unsuitable for curving lane prediction, for overcoming this problem. In [27,29,30], anchors
with slender tilt shapes were designed. In addition, the authors employed different anchors
to improve the detection accuracy (albeit at the cost of increased computational resources).

For 3D lane detection, two trends exist. In the first trend, Nedevschi et al., Benman-
sour et al., and Bai et al. [31–33] employed multimodal or multiview high-cost sensors,
such as a stereo camera or LiDAR, to obtain a 3D ground topology. The second involves
adopting computer vision and deep learning using images captured from 2D cameras to
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reduce the cost. Based on the second trend, we put forward a novel method for predicting
the 3D lanes.

The authors of [16,19,29] assumed that lanes in the BEV space are plane surfaces such
that the lane height is zero. However, this assumption is inaccurate in most autonomous
driving environmental scenarios that include uphill/downhill, bumps, and crush turns.
Recently, some monocular methods [34–37] have employed inverse perspective mapping
to predict lanes in 3D space from a single 2D image. For example, 3D-LaneNet [34] was a
pioneering study with a simple end-to-end neural network. It uses a spatial transformer
network [38] to create spatial feature projections but has moderate performance. Gen-
LaneNet [35] builds on 3D-LaneNet consisting of a two-stage network for dividing the
segmentation encoder and 3D lane generation. However, the Gen-LaneNet performance de-
pends significantly on the binary segmentation stage accuracy, which degrades in extreme
weather or night scenarios. 3D-LaneNet and Gen-LaneNet methods also exhibited low
performance in curving or crush-turn scenarios. In contrast, the PersFormer method [13]
provided better feature representation and optimized the anchor design to detect 2D and
3D lanes. PersFormer is an end-to-end monocular lane detector with a spatial-feature
transformation module, that creates BEV features by attending to connected front-view
local regions, using camera parameters as a reference. However, the PersFormer method
has high computational resource requirements and long convergence times. To overcome
the problems of PersFormer and maintain high performance, we propose a method that
combines the perspective transformer with MobileNet.

3. Proposed Methods
3.1. System Overview

From an input image I ∈ RH×W, the proposed method generates a set of 3D lanes
as follows:

L3D = {l1, l2, l3, . . . , lN}, (1)

where H ×W is the resolution of the input image in pixels and N is the total number of 3D
lanes in the predefined BEV range. Mathematically, each 3D lane li is represented by an
ordered set of 3D coordinates as follows:

li = [(x1, y1, z1), (x2, y2, z2), . . . , (xNi, yNi, zNi)], (2)

where i is the lane index and Ni is the total number of sample points in lane li.
The overall of the proposed framework is illustrated in Figure 1. The proposed

framework includes three stages: feature extraction, perspective transformation, and
lane detection postprocessing. The feature extraction stage uses single 2D images as
the input. The input image is passed through a preprocessing step before being fed to
the MobileNet model to obtain multiscale front-view features. In the second stage, the
perspective transformer module uses the front-view features from the first stage to generate
BEV features by attending to the local context and aggregating the surrounding features to
form a robust representation. In this module, inverse perspective mapping from the front
view to the BEV was performed. In the third stage, the lane detection module generates
the coordinates, and types of 2D and 3D lanes. 2D lane detection is inherited from the
LaneATT [30] model to increase the accuracy of 3D lane prediction. The 3D lane detection
is referred to as the 3D-LaneNet [34] model, and it is obtained by modifying the structure
and anchor design similar to PersFormer [13] method. After each iteration, the networks
are fine-tuned based on PersFormer and we trained the system until 2D and 3D predictions
are perfected. After training, the proposed system was used to retrieve high-quality 3D
lanes from single red-blue-green (RGB) images. The main steps of the proposed method
are detailed below.
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3.2. Feature Extraction

The target of the feature extraction stage is similar to that of the backbone module
in other methods [13,34,35]. However, we focus on a lightweight model with low compu-
tational resource requirements to maintain the front-view feature quality. Therefore, we
designed the feature extraction stage differently from previous models by scaling up the
input image size before feeding it to the MobileNet that serves as the backbone network.
After moving through several convolution layers, the feature extraction stage generates
four different scaled front-view feature maps with pixel resolutions of 180 × 240, 90 × 120,
45 × 60, and 22 × 30 pixels. Next, all front-view feature maps are transformed into the
corresponding BEV-space feature maps using a perspective transformer.

3.3. Three-Dimensional Lane Detection

Most previous studies have focused on 2D and 3D lane detection separately. However,
they are not mutually exclusive. Hence, we used 2D lane prediction to support 3D lane
detection using the loss function. Based on PersFormer, the proposed method designs
anchors to optimize feature sharing across 2D and 3D domains. In BEV space, a point (x, y)
casts the corresponding point (u, v) in front view space through intermediate state (x0, y0).
By learning offsets, the network learns target-reference points mapping from BEV space to
front-view space. We employed seven groups of anchors sampled with different inclination
angles in the BEV space and projected them onto the front view. The inclination angles
consist of π/2, arctan (±0.5), arctan (±1), and arctan (±2), respectively.

3.4. Loss Function

We summarize the overall loss to fine-tune the networks in the proposed method.
From the 2D input image and ground-truth labels, we computed the sum of losses of all
of the anchors. The total loss LTotal is a combination of the 3D lane detection L3D, 2D
lane detection L2D and intermediate segmentation Lseg with different factors α, β, and γ,
respectively, as shown in Equation (3). Since this study focuses on 3D lane prediction, α
was the highest, followed by β and γ.

LTotal = αL3D + βL2D + γLseg (3)
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L3D and L2D comprises classification loss, regression loss, and visibility loss, as shown
in Equations (4) and (5), respectively. ck

3D and ck
2D are the predicted lane categories in the

3D and 2D domains, respectively. Each loss type had a corresponding factor, f1, f2, and
f3 for 3D loss, and g1, g2, and g3 for 2D loss. The classification loss is the cross-entropy
loss LCE. The regression loss is the L1 loss, and the visibility loss is a binary cross-entropy
loss LBCE.

L3D = ∑
k

f1LCE

(
ck

3Dpre
, ck

3DGT

)
+ f2LL1

( (
xk, zk

)
pre

,
(

xk, zk
)

GT

)
+ f3LBCE

(
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GT

)
(4)

L2D = ∑
k

g1LCE
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2Dpre
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)
+ g2LL1

((
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)

pre
,
(

uk
)

GT

)
+g3LBCE

(
v2Dk

pre, v2Dk
GT

)
(5)

The segmentation loss is also a binary cross-entropy loss between the prediction Spre
and ground-truth SGT segmentation maps, respectively, as follows:

Lseg = ∑
k
LBCE

(
Spre, SGT

)
(6)

4. Experiments

To verify the high reliability of the proposed 3D lanes detection method both qualita-
tively and quantitatively, we conducted several experiments. In addition, the performance
of our 3D lanes detection method was compared with that of several ultra-modern studies.

OpenLane dataset [13] is the first real-world 3D lane dataset and currently the largest
scale compared with the existing benchmarks. We used OpenLane for both qualitative and
quantitative experiments. The OpenLane was constructed on top of the influential Waymo
Open dataset [39] by following the same data format. It comprises 200,000 frames and over
880,000 high-accuracy annotated lanes with 14 category labels, including single white dash,
double yellow solid, and left/right curbside. In addition, the OpenLane dataset contains
six sub-datasets: curve case, up and down case, night case, extreme weather case, merge
and split case, and intersection case.

We run the experiments on a medium server with four NVIDIA TitanX GPUs with
the Ubuntu 16.04 operating system and Cuda 10.2 version. Moreover, we employed
PyTorch 1.8.0 as a deep learning library. The Adam optimizer was used along with a batch
size of 2. We scale up the input image size by 1.5 times before feeding to the MobileNet.
Base on experiments, α, β and γ were set to 10, 4 and 1, respectively. Other parameters are
based on the model in [13]. The training time for the OpenLane dataset was approximately
3 days with 10 epochs.

4.1. Qualitative Results

Figures 2–4 show the 2D and 3D results of the six sub-datasets. In all six cases, the
results were predicted accurately from the corresponding RGB images. Columns (a) and (c)
show 2D results, and columns (b) and (d) show the 3D results compared with the ground
truth of the 3D lanes. The resulting 3D lanes show that the proposed method has the ability
to predict 3D lanes close to the ground-truth data. In some special cases, when the lanes are
covered by vehicles or the lanes are not clear, the proposed method has some missing lanes.
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Figures 5–9 show qualitative comparisons between our method and ultra-modern
PersFormer, 3D-LaneNet, and Gen-LaneNet methods for the six sub-datasets of OpenLane.
In all cases, the proposed method performed significantly better than Gen-LaneNet and
3D-LaneNet. Besides, the proposed method can provide lane-type and subtle curbside
information, which is missing in Gen-LaneNet and 3D-LaneNet. Moreover, the proposed
method shows better qualitative performance than PersFormer which is the best current
ultra-modern model. Under a straight-road scenario, PersFormer and the proposed method
provided similar quality. Nevertheless, the proposed method shows improved performance
for difficult cases, such as the up and down, curve, extreme weather, and merge and
split cases.
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4.2. Quantitative Results

To evaluate the 3D lane quality, we compared predicted data with ground-truth 3D
lanes by calculating both accuracy and error values. We employed eight commonly used
performance measures: F-score, recall, precision, category accuracy, error near/far of x
and z, respectively. The F-score demonstrates the relationship between true positives, false
positives, and false negatives. Relying on PersFormer, the match between the prediction
and ground truth was built based on the edit distance. A generated lane is considered true
positive only if more than 75% of the lane’s wrapped y-positions have a point-wise distance
smaller than the maximum distance limit. In the experiments, the max-allowed distance
was set to 1.5 m. Recall (Equation (7)) and precision (Equation (8)) were investigated by
relying on the percentage of matched ground-truth and predicted 3D lanes. Using recall
and precision, we calculate F-score (Equation (9)), which is the most important value for
evaluating performance measures. Thus, the F-score illustrates the regression performance
of deep learning models based on recall and precision values. In addition, the OpenLane
dataset has category information per lane. Hence, we evaluated the accuracy of the matched
lanes, referred as category accuracy, to show classification performance. Finally, the x and z
error near are used to calculate the start and estimated end point errors of the predicted
3D lanes.

Precision =
TruePositive

TruePositive + FalsePositive
, (7)

Recall =
TruePositive

TruePositive + FalseNegative
, (8)

F− score = 2× Precision × Recall
Precision + Recall

. (9)

Table 1 lists results of eight quantitative measures of the proposed method. The best
F-score is obtained for the curved case (53.6%), followed by recall (54.2%) and category
accuracy (93.2%). The merge and split case has the best precision (54.7%), x error far (0.733
m), and z error far (0.62 m). In contrast, the extreme weather case achieved the best x
error near (0.275 m) and z error near (0.141 m). The intersection case has the worst F-score,
recall, precision, category accuracy, x error near, and z error near measures considering
the difficulty in predicting the 3D lanes. Among all of the measures, the up and down
case obtained the two worst measures (x and z error far) due to the large height difference
between the start and end points in one lane.

Table 1. Results of eight quantitative measures of the proposed method.

Measure Up and
Down Curve Extreme

Weather Night Intersection Merge and
Split

Accuracy
(higher is

better)

F-score (%) 42.8 53.6 49.8 45.0 37.6 45.4
Recall (%) 45.5 54.2 46.6 40.2 38.2 38.8

Precision (%) 40.5 53.0 53.5 51.2 37.0 54.7
Category accuracy (%) 86.6 93.2 89.6 85.1 85.0 87.0

Error
(lower is

better)

x error near (m) 0.299 0.315 0.275 0.303 0.446 0.408
z error near (m) 0.161 0.172 0.141 0.210 0.336 0.307
x error far (m) 1.094 0.851 0.805 0.742 0.828 0.733
z error far (m) 1.010 0.695 0.723 0.660 0.742 0.620

To verify the high reliability of the proposed method, we checked the quantitative
performance of the proposed method against other ultra-modern methods on the OpenLane
dataset. Tables 2 and 3 illustrate the comparison results for the entire validation and six
scenario sets, respectively. The scenario sets comprising the curve, up and down, night,
extreme weather, merge and split, and intersection cases were selected from the validation
set based on the scene tags of each frame.
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Table 2. The comparison results in both accuracy and error values.

Method

Accuracy Measures
(Higher is Better)

Error Measures
(Lower is Better)

F-Score Category
Accuracy

X Error
Near

Z Error
Near

X Error
Far

Z Error
Far

3D-LaneNet [34] 40.2 - 0.278 0.159 0.823 0.714
Gen-LaneNet [35] 29.7 - 0.309 0.160 0.877 0.750
PersFormer [13] 47.8 92.3 0.322 0.213 0.778 0.681

Proposed method 47.9 89.1 0.341 0.224 0.789 0.694

Table 3. The comparison results in accuracy measure. Proposed method achieves the best F-score on
4/6 scenario sets. The best scores are marked in bold.

Method
F-Score

Up and
Down Curve Extreme

Weather Night Intersection Merge and
Split

3D-LaneNet [34] 37.7 43.2 43.0 39.3 29.3 36.5
Gen-LaneNet [35] 24.2 31.1 26.4 17.5 19.7 27.4
PersFormer [13] 42.4 52.8 48.7 46.0 37.9 44.6

Proposed method 42.8 53.6 49.8 45.0 37.6 45.4

The proposed method outperforms the Gen-LaneNet, 3D-LaneNet, and PersFormer
methods in F-score by 18.2%, 7.7%, and 0.1%, respectively (Table 2). However, the proposed
method overlooks the near and far error metrics on the x- and z-axis since it is more suitable
for fitting the main body of a lane rather than the start and end points. Moreover, the
proposed method also obtains the best F-score on 4/6 scenario sets, except for the night
and intersection cases (Table 3).

3D-LaneNet and Gen-LaneNet failed to support category classification. Therefore,
we only report the category accuracy of the proposed method and PersFormer. When
we run with significantly lower computational resources than PersFormer, the category
accuracy of our method is quite lower than that of PersFormer, as in Table 4. However, the
category accuracy of our method was similar to that of PersFormer when using similar
resources. In addition, the proposed method converged faster than the PersFormer, and
the training time was 10 times shorter than that of PersFormer under similar conditions.
Overall, the proposed method achieves the best performance in 3D lane detection compared
with other researches.

Table 4. Computational resources of proposed method and PersFormer.

Method Number of
GPUs GPU Type CUDA Cores Tensor Cores Memory

PersFormer [13] 8 Nvidia TeslaV100 5120 640 32 GB
Proposed method 4 Nvidia TitanX 3584 0 12 GB

5. Conclusions

We propose an approach to extract 3D lanes from a single 2D RGB image of an outdoor
scene for applications, such as autonomous vehicles. To solve both the limitations of low
accuracy and high computational cost, we implemented a three-stage PersFormer-based
method using perspective transformation and MobileNets to generate 3D lanes. The results
of the experiments verify that the proposed 3D lanes detection method has ability to create
high-quality 3D data from a single 2D image. The efficiency of our method is evaluated
on a common server with four TitanX GPUs. Compared with the ultra-modern 3D lane
detection approaches, the proposed method obtains the best performance in quantitative
analyses and visual assessment. Moreover, the proposed method limits the need for high
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computational resources, such as high-end GPUs. In some special cases, when the lanes
are covered by vehicles or the lanes are not clear, the proposed method has some missing
lanes. In the future, we will enhance the feature extraction stage to get higher category
accuracy and expand the proposed model to build accumulated 3D lanes from multiple
frames. Additionally, we will compare our method with more relevant works to verify the
performance in both qualitative and quantitative terms.
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