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Abstract: Automatic vessel structure segmentation is essential for an automatic disease diagnosis
system. The task is challenging due to vessels’ different shapes and sizes across populations. This
paper proposes a multiscale network with dual attention to segment various retinal blood vessels.
The network injects a spatial attention module and channel attention module on a feature map, whose
size is one-eighth of the input size. The network also uses multiscale input to receive multi-level
information, and the network uses the multiscale output to gain more supervision. The proposed
method is tested on two publicly available datasets: DRIVE and CHASEDB1. The accuracy, AUC,
sensitivity, and specificity on the DRIVE dataset are 0.9615, 0.9866, 0.7709, and 0.9847, respectively.
On the CHASEDB1 dataset, the metrics are 0.9800, 0.9892, 0.8215, and 0.9877, respectively. The
ablative study further shows effectiveness for each part of the network. Multiscale and dual attention
mechanism both improve performance. The proposed architecture is simple and effective. The
inference time is 12 ms on a GPU and has potential for real-world applications. The code will be
made publicly available.

Keywords: vessel segmentation; Mmedical image analysis; deep learning

MSC: 68T01

1. Introduction

The segmentation of vasculature in retinal images is important in aiding the manage-
ment of many diseases, such as diabetic retinopathy (DR) and hypertensive retinopathy
(HR). DR is caused by high blood sugar levels and results in the swelling of the retinal
vessels [1]. HR is caused by high blood pressure and results in the narrowing of vessels
or increased vascular tortuosity [2]. The early diagnosis of pathological diseases often
helps patients receive timely treatment. However, manually labeling vessel structures is
time-consuming, tedious, and subject to human error. Automated segmentation of retinal
vessels is in high demand and can release the intense burden of skilled staff.

Automatic retinal vessel segmentation faces many challenges. The retinal blood vessel
structure is extremely complicated with high tortuosity and various shapes, such as angles,
branching patterns, length, and width [3]. The high anatomical variability and varying
vessel scales across populations increase the difficulty in segmentation. Furthermore,
the noise and poor contrast accompanied by the low resolutions limit the segmentation
performance. Traditional vessel segmentation methods often cannot robustly segment all
vessels of interest.

Deep learning methods show impressive performance on image segmentation. The
most widely used architecture is U-Net [4]. The coarse-to-fine feature representation learned
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by U-Net is suitable to gain satisfactory performance on a small dataset. The attention
U-Net can further improve the performance [5]. The attention module automatically learns
to focus on interest vessels with varying shapes while preserving computational efficiency.
DA-Net [6] proposes a spatial attention module and channel attention module for natural
scene parsing. The spatial attention module and the channel attention module utilize a self-
attention mechanism to capture feature dependencies in the spatial and channel dimensions,
respectively. The spatial attention module aggregates features at all positions with weighted
summation, and the channel attention module captures the channel dependencies between
any two channel maps. This paper designs a dual attention multiscale network for vessel
segmentation. The network collects different scale information from multiscale inputs and
gains extra supervision from additional outputs. Furthermore, the proposed network can
distinguish vessels from the background and select the feature map’s most informative
region and channels through a dual attention mechanism. In summary, the contributions
of the paper are listed as follows:

• The paper proposes a simple and effective multiscale fully convolutional network
for vessel segmentation including additional multiscale input paths and multiscale
output paths. The multiscale input helps to detect vessels with different shapes and
sizes, and the multiscale output provides the network with more supervision.

• The paper proposes a dual attention module on the multiscale architecture. The dual
attention module learns the relationship between positions and channels. The dual
attention module improves the discriminative power of the feature map.

• The paper conducts extensive experiments to verify the effectiveness of the proposed
network. Experiments show that the multiscale architecture with a dual attention
module is suitable for vessel segmentation.

2. Literature Review

In this section, we introduce the most commonly used fully convolutional neural net-
work for retinal vessel segmentation. Then, we introduce the popular attention mechanisms
and multiscale networks for vessel segmentation. Motivated by the existing successful
network architecture, this paper proposes a fully convolutional neural network based on
UNet [4]. The proposed network further incorporates multiscale and attention mechanisms
to boost the discriminative power of the feature map.

2.1. Fully Convolutional Neural Network

The most widely used architecture for vessel segmentation is UNet [4]. The encoder–
decoder structure of UNet combines low-level local features with high-level global features
to produce high-resolution prediction. Many researchers build retinal segmentation net-
works based on UNet. For example, Jin et al. [7] improve UNet by injecting a deformable
convolution block. The deformable convolution block adaptively adjusts the receptive
fields to capture vessels with variance shape and scale. Wang et al. [8] reduce information
loss caused by consecutive downsampling layers by introducing a feature refinement path.
The feature refinement path improves the detail vessel information and boosts the discrimi-
native power of the feature map. Our network is also built upon UNet to combine local
and global contexts.

2.2. Attention Network

Attention mechanism is very successful and has already been adopted for vessel
segmentation. Attention U-Net [5] captures a sufficiently large receptive field to collect
semantic contextual information and integrates attention gates to reduce false-positive
predictions for small objects that show large shape variability. Ni et al. [9] propose a global
channel attention module for vessel segmentation that emphasizes the inter-relationship of
the feature. CS-Net [10] integrates channel attention and spatial attention into U-Net for 2D
and 3D vessel segmentation. Hao et al. [11] exploit contextual frames of sequential images
in a sliding window centered at the current frame and equipped with a channel attention
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mechanism in the decoder stage. Li et al. [12] propose an attention gate to highlight
salient features that are passed through the skip connections. HANet [13] automatically
focuses the network’s attention on regions that are “hard” to segment. The vessel regions
which are “hard” or “easy” are based on the coarse segmentation probabilistic map. The
attention mechanism can let the network focus on the most informative region and discard
irrelevant information. Our network also incorporates the attention mechanism to boost
the discriminative power of the feature map.

2.3. Multiscale Network

Multiscale architecture can effectively detect vessels with various shapes and sizes.
Yue et al. [14] utilize different scale image patches as inputs to learn richer multiscale
information. Roberto et al. [15] propose a multiple-scale Hessian approach to enhance
the vessels followed by thresholding. Wu et al. [16] generate multiscale feature maps by
max-pooling layers and up-sampling layers. The first multiscale network converts an
image patch into a probabilistic retinal vessel map, and the following multiscale network
further refines the map. Yin et al. [17] proposed to utilize multiscale input to fuse multi-
level information. Our network injects multiscale information by introducing additional
multiscale input paths and multiscale output paths.

3. Materials and Methods

The architecture of the proposed method is shown in Figure 1. The network structure
consists of multiscale input, dual attention module and multiscale output. The dual
attention module contains the spatial positional attention module (PAM), and channel
attention module (CAM).
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Figure 1. The proposed vessel segmentation framework.

3.1. Multiscale Input

Multiscale information helps the network to discriminate vessels with different sizes.
The input image is downscaled to 1

2 , 1
4 , and 1

8 of the original size. Each image is sent to
the corresponding encoder path. The multiscale input can let the network gather different
levels of information and improve the ability to detect multiscale vessels.

3.2. U-Shape Architecture

Our network is constructed based on U-Net, and the input of the encoder path is
an image pyramid. Two 3 × 3 convolution layers are applied to the input image for
each encoder path, followed by a 2 × 2 max-pooling operation with the element-wise
rectified linear unit (ReLU) activation function to generate encoder feature maps. The top
encoder feature map is then down-sampled and connected to the feature map of the bottom
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encoder path with a smaller scale input image. The channel number of the feature maps is
also doubled after down-sampling, enabling the architecture to learn complex structures
efficiently. Like the encoder path, the decoder path produces a decoder feature map using
two 3× 3 convolution layers. The input of the decoder path is the combination of the up-
sampled feature from the bottom decoder path and the feature map of the corresponding
encoder path using skip connections. The channel number of the up-sampled feature
map through a 2× 2 up-sampling layer is also halved to preserve symmetry. Finally, the
high-dimensional feature representation of the output of the last decoder layer is fed to the
dual attention module to learn the relationship between position and channel. The feature
representation with more discriminative power is sent to the multiscale output layer for
final prediction.

3.3. Dual Attention Mechanism

The dual attention mechanism contains a spatial attention module and a channel
attention module as shown in Figure 2.
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Figure 2. The proposed dual attention module.

Spatial Attention Module: The spatial attention module models rich contextual de-
pendencies over feature maps by learning a spatial attention matrix, which represents the
spatial relationships between the features of any two pixels. Different from DA-Net [6],
we put the attention module in the branch with the feature map size equal to 1

8 of the
original image rather than directly resampling the attention map as the output. The design
retains global context information without adding many parameters. Furthermore, the
vessel segmentation requires skip-connection operations to fuse low-level information and
recover the spatial information loss caused by down-sampling operations. The spatial at-
tention module encourages the network to focus on vessel structure information to prevent
spatial information loss. The input feature representation S ∈ RC×H×W is fed into three
convolution layers to generate three feature maps A, B, and C, where A, B, C ∈ RC×H×W .
The three feature maps are reshaped into C × N, where N = H ×W is the total pixel
number. After that, the transpose of A and B is multiplied and followed by a softmax layer
to form the spatial attention SA ∈ RN×N :

SAij =
exp(Ai · Bj)

∑N
i=1 exp(Ai · Bj)

. (1)
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The spatial attention module SA represents the impact of position i on position j. A
similar feature representation will have a greater correlation. The transposition of SA is
multiplied by C to form a feature representation and reshaped to RC×H×W . The result is
multiplied by a scale parameter α and followed by an element-wise summation with input
feature S to generate the final spatial attention feature map SAO:

SAOi = α
N

∑
j=1

(SAijCj) + Si. (2)

Here, α is a learnable parameter, and it is initialized to 0. The spatial attention module
calculates the weighted sum across all positions of the feature map. The relationship
between vessel pixels at different locations will be fully learned. The similar vessel pixels
promote each other, and the spatial attention module improves the semantic consistency.
SAOi is a linear combination of SAij, Cj, and Si. The deviation of SAij can be written as:

∂SAij

∂exp(Ai · Bj)
=

(exp(Ai · Bj)
′)(∑N

i=1 exp(Ai · Bj))− (∑N
i=1 exp(Ai · Bj))

′(exp(Ai · Bj))

(∑N
i=1 exp(Ai · Bj))2

. (3)

Let emij = exp(Ai · Bj) represent the impact of position i of A on the position j of B.
The deviation can be written as:

∂SAij

∂emij
=

(emij)′(∑N
i=1 emij)− (∑N

i=1 emij)′(emij)

(∑N
i=1 emij)2

. (4)

Since

(
N

∑
i=1

emij)′ =
∂

∂mij
(

N

∑
i=1

emij) = emij . (5)

Then

∂SAij

∂emij
=

(emij)(∑N
i=1 emij)− (emij emij)

(∑N
i=1 emij)2

=
emij

∑N
i=1 emij

− (
emij

∑N
i=1 emij

)2 = emij(1− emij). (6)

Equation (1) is derivable, and the derivation can be written as:

∂SAij

∂exp(Ai · Bj)
= exp(Ai · Bj)(1− exp(Ai · Bj)). (7)

The network with the spatial attention module can be trained end-to-end.
Channel Attention Module: The relationship between different feature map channels

of high-level features can be learned by the channel attention module. The long-range
contextual information in the channel dimension helps to improve the vessel segmentation
performance since different vessel responses are associated with each other. The original
feature representation S ∈ RC×H×W is reshaped to A′ ∈ RC×N , where N = H ×W is the
total pixel number. A′ and the transpose of A′ is multiplied and followed by a softmax
layer to form the channel-wise attention map:

CAij =
exp(A′i · A′j)

∑C
i=1 exp(A′i · A′j)

. (8)

The channel attention map CA calculates the impact of channel i on channel j. The
transpose of CA and the input feature map S are multiplied, and the result is reshaped to
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RC×H×W . The reshaped result is scaled by the parameter β and element-wise sum with S
to form the final channel attention CAO ∈ RC×H×W :

CAOi = β
C

∑
j=1

(CAij A′j) + A′i. (9)

Similar to the spatial attention module, the deviation of CAij can be written as:

∂CAij

∂exp(A′i · A′j)
= exp(A′i · A′j)(1− exp(A′i · A′j)). (10)

Different from other attention modules, we concatenate the spatial attention map,
the channel attention map, and the summation of the two maps together to form a more
capable feature representation.

3.4. Multiscale Output

Multiscale outputs provide more supervision in network training. There are M side-
output layers in the network, and each side-output layer can be considered as a classifier to
generate a matching local output map for the earlier layers. Here are the loss functions of
all the side-output layers:

Lside-output =
1
M

M

∑
m=1

Lcross-entropy(y, y′), (11)

Lcross-entropy is the cross entropy loss for each side-output layer:

Lcross-entropy = −∑
i
(y′i log(yi)), (12)

yi is the predicted probability value for class i, and y′i is the true probability for that class.
We compute 4 side-output maps and an average layer to combine them all while the

final optimization function is the sum of these 5 side-output losses. The side-output layer
alleviates the gradient vanishing problem by back-propagating the side-output loss to the
early layer in the decoder path, which is helpful for the training of the early layer. We use
multiscale fusion because it has been proven to achieve high performance. The side-output
layer also adds more supervision for each scale to improve the performance. The final layer
which is considered a classifier treats the vessel segmentation as a pixel-wise classification
to produce the probability map of each pixel.

4. Results
4.1. Data Preperation

We conduct experiments on two datasets: DRIVE and CHASEDB1.
DRIVE: The Digital Retinal Images for Vessel Extraction (DRIVE) [18] is a dataset for

retinal vessel segmentation, which consists of 40 color fundus images of size 768× 584
pixels, including 7 abnormal cases. It was equally divided into 20 images for training and
20 images for testing along with 2 manual segmentations of the vessels. The first segmen-
tation was accepted as the ground truth for performance evaluation, while the second
segmentation was accepted as a human observer reference for performance comparison.
The images were captured in digital form from a Canon CR5 non-mydriatic 3CCD camera
at 45◦ field of view (FOV).

CHASEDB1: The CHASEDB1 dataset [19] for retinal vessel segmentation which
consists of 28 color retina images of size 960× 999 pixels were collected from both left and
right eyes of 14 school children. These images were captured by a handheld Nidek NM-200-
D fundus camera at 30◦ field of view, and each image was annotated by two independent
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human experts. We selected the first 20 images for training and the remaining 8 images for
testing [20].

4.2. Evaluation Metrics

The vessel segmentation process is a pixel-based classification, with each pixel being
classified as a vessel or surrounding tissue. We employed four indicators: Spe (Specificity),
Sen (Sensitivity), Acc (Accuracy), and AUC (Area Under ROC) to measure model perfor-
mance. Acc was measured by the ratio of the total number of correctly classified pixels (the
sum of true positives and true negatives) to the number of pixels in the image FOV (field of
view). Sen represents the ability to correctly detect real vessel pixels. Spe is the ability to
detect non-vessel pixels. Acc, Sen, and Spe can be denoted as:

Acc =
TP + TN

TP + FN + TN + FP
, (13)

Sen =
TP

TP + FN
, (14)

Spe =
TN

TN + FP
, (15)

here TP (true positive) is where a pixel is identified as the vessel in both the segmented
image and ground truth; TN (true negative) is where a non-vessel pixel of the ground truth
is correctly classified in the segmented image. FP (false positive) is the false positive where
the non-vessels are incorrectly predicted as vessels. FN (false negative) is the false negative
that the model wrongly predicts the negative class.

4.3. Implementation Details

We set the learning rate at 0.001 decayed by a factor of 10 every 50 epochs. The network
was trained for 300 epochs from scratch on an NVIDIA GeForce RTX 3090 Ti GPU. The
input images of the neural network were resized to 512× 512. In order to improve the
generalization ability of the network, we also used several data enhancement techniques,
including random horizontal flip with a probability of 0.5, random rotation in [−20◦, 20◦],
and gamma contrast enhancement in [0.5, 2].

4.4. Performance Evaluation

In this section, we compare our method with other state-of-the-art methods on
DRIVE and CHASEDB1 datasets. The methods include U-Net [4], Zhang et al. [21],
Liskowski et al. [22], DRIU [23], Yan et al. [24], CE-Net [25], LadderNet [26], DU-Net [27],
Bo Liu et al. [28], VesselNet [29], Yue et al. [14], DA-Net [6] and Yin et al. [17]. Table 1 shows
the performance on the DRIVE dataset. Figure 3 shows the prediction of the proposed
method on the DRIVE dataset. DRIU [23] extracts side feature maps and designs specialized
layers to perform blood vessel segmentation. DRIU does not take advantage of multiscale
information. Liskowski et al. [22] design a convolutional neural network that contains
three convolutional layers, one pooling layer, and two fully connected layers. Liskowski
et al. train the network on image patches, and the improvement is mainly due to the
elaborately designed image pre-processing method such as global contrast normalization
and zero-phase whitening. Our network improves the result mainly due to the effective
network architecture. Yan et al. [24] improve the performance by jointly adopting both
the segment-level and the pixel-wise losses. LadderNet [26] has multiple pairs of encoder–
decoder branches and can be viewed as a chain of multiple U-Nets. Our method further
adds an attention mechanism to discard irrelevant information. DU-Net [27] contains two
encoders: a spatial path with a large kernel to preserve the spatial information and a con-
text path with a multiscale convolution block to capture more semantic information. Our
method incorporates multiscale information by sending multiscale input to each encoder
and adopting an attention mechanism to capture important information. VesselNet [29]
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proposes a lightweight deep learning model by injecting the inception residual convolu-
tional block inside a U-like encoder–decoder architecture for vessel segmentation. The
method adopts multi-path supervision just like our network; however, VesselNet lacks
multiscale information, and our network further utilizes an attention mechanism to high-
light important regions. Sine-Net [30] applies up-sampling and then down-sampling to
catch thin and thick vessel features. Guo et al. [31] propose a channel attention double
residual block to enhance the discriminative ability of the network by considering the
interdependence between feature maps. Guo et al. learn channel maps by 1D convolutions.
Our network performs self-attention to learn channel maps. Gao et al. [32] utilize shuffle
attention [33] multiple times to explore the feature dependencies in both spatial and channel
dimensions. The authors also adopt ECA-Net [34] to reduce the model complexity while
maintaining performance. Our method also utilizes spatial and channel attention to explore
inter-relationship between locations and channels. The attention map of our method is
calculated from the global image ,and Gao et al. extract attention from the local patch. Our
method further adopts multiscale input to encode multiscale information and multiple
side-outputs to receive more supervision. Jiang et al. [35] propose using conditional deep
convolutional generative adversarial networks to segment the retinal vessels. Jiang et al.
introduce residual modules to the generator for better representation learning ability. Li
et al. [36] propose an attention module built on U-Net to capture global information and
to enhance features by placing it in the process of feature fusion. The attention module
proposed by Li et al. only considers the spatial locations; our network takes both channel
and spatial information into consideration.

Table 1. Segmentation performance for DRIVE inside FOV.

Method Year Acc AUC Sen Spe

Human Observer - 0.9578 N.A 0.8288 0.9701

U-Net [4] 2015 0.9531 0.9755 0.7537 0.9820
Zhang et al. [21] 2016 0.9476 0.9636 0.7743 0.9725

Liskowski et al. [22] 2016 0.9542 0.9752 0.7653 0.9818
DRIU [23] 2016 0.9541 0.9801 0.8280 0.9728

Yan et al. [24] 2018 0.9542 0.9752 0.7653 0.9818
Wu et al. [16] 2018 0.9578 0.9821 0.8038 0.9802
CE-Net [25] 2019 0.9545 0.9779 0.8309 -

LadderNet [26] 2019 0.9561 0.9793 0.7856 0.9810
DU-Net [27] 2019 0.9567 0.9772 0.7940 0.9816

Bo Liu et al. [28] 2019 0.9559 0.9779 0.8072 0.9780
VesselNet [29] 2019 0.9578 0.9821 0.8038 0.9802
Yue et al. [14] 2019 0.9561 0.9796 0.8199 0.9762
DA-Net [6] 2019 0.9615 0.9808 0.8075 0.9841

Yin et al. [17] 2020 0.9604 0.9846 0.7614 0.9837
Jiang et al [35] 2021 0.9795 - 0.8258 0.9896

Li et al. [36] 2021 0.9568 0.9806 0.7921 0.9810
Sine-Net [30] 2021 0.9689 0.9851 0.7987 0.9854
Guo et al. [31] 2021 0.9699 0.9852 0.8135 0.9849
Gao et al. [32] 2022 0.9795 - 0.8258 0.9896

Ours - 0.9615 0.9866 0.7709 0.9847
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DRIVE

Ground Truth Prediction Ground Truth Prediction

Figure 3. The segmentation example of the proposed method on the DRIVE dataset.

Our proposed method achieves the highest AUC compared to other methods. The
proposed attention module gathers global context information from the feature map with
one-eighth of the original image size, while the input image size of the proposed network
is 512× 512. DA-Net directly up-samples the attention map as the output and does not
consider adopting skip-connections to recover the spatial information loss caused by down-
sampling layers. The attention module used in our method is also different from DA-Net.
We concatenate the spatial attention map, the channel attention map, and the sum of
these two maps together to form a more discriminate feature representation. Yue et al.
also aggregate multiscale context information. Our method not only takes advantage of
multiscale context, but also provides the network with multiscale supervision through
multiple side-outputs. Our method performs much better than Yue et al.

Table 2 shows the performance evaluation on the CHASEDB1 dataset. Figure 4 shows
the corresponding prediction. Our method surpasses all the other methods. Yin et al. [17]
provide the network with more edge information through a guided filter module. Our
multiscale network adopts dual attention to aggregate the relationship between pixels and
channels. Our network is built on U-Net and can detect vessels in various shapes and sizes.
Our method improves Yin et al. for all the metrics.

Table 2. Segmentation performance of CHASEDB1 inside FOV.

Method Year Acc AUC Sen Spe

Human
Observer - 0.9545 N.A 0.8105 0.9711

U-Net [4] 2015 0.9578 0.9772 0.8288 0.9701
DRIU [23] 2016 0.9657 0.9746 0.7651 0.9822
Liskowski
et al. [22] 2016 0.9535 0.9823 0.7816 0.9836

Yan et al. [24] 2018 0.9610 0.9781 0.7633 0.9809
LadderNet [26] 2019 0.9656 0.9839 0.7978 0.9818
DU-Net [27] 2019 0.9661 0.9812 0.8074 0.9821

VesselNet [29] 2019 0.9661 0.9860 0.8132 0.9814
Yin et al. [17] 2020 0.9783 0.9869 0.7993 0.9868
Li et al. [36] 2021 0.9635 0.9819 0.7818 0.9819

Sine-Net [30] 2021 0.9678 0.9833 0.8011 0.9815

Ours - 0.9800 0.9892 0.8215 0.9877
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CHASEDB1

Ground Truth Prediction Ground Truth Prediction

Figure 4. The segmentation example of the proposed method on the CHASEDB1 dataset.

4.5. Ablative Studies

This section evaluates the performance of each part of the network. Tables 3 and 4
show the performance of the proposed network using different modules on the DRIVE
dataset and the CHASEDB1 dataset, respectively. The evaluation metrics include the
mean IOU (mean intersection over union) commonly used in semantic segmentation. The
multiscale architecture significantly improves the performance compared to our UNet
backbone, and the attention mechanism further improves the performance. All the results
are obtained on the testing set for fair comparison to other methods.

Table 3. The performance for each part of the DRIVE dataset inside FOV.

Method Acc AUC Sen Spe MIOU

BackBone 0.9469 ± 0.0059 0.9604 ± 0.0083 0.6289 ± 0.1006 0.9823 ± 0.0082 0.5553 ± 0.0603

Multiscale Network 0.9614 ± 0.0044 0.9863 ± 0.0036 0.7668 ± 0.0528 0.9847 ± 0.0039 0.6790 ± 0.0310

Multiscale Network+Attention
Module 0.9615 ± 0.0043 0.9866 ± 0.0034 0.7709 ± 0.0521 0.9847 ± 0.0039 0.6807 ± 0.0307

Table 4. The performance for each part of the CHASEDB1 dataset inside FOV.

Method Acc AUC Sen Spe MIOU

BackBone 0.9693 ± 0.0055 0.9472 ± 0.0159 0.4892 ± 0.0066 0.9823 ± 0.0035 0.4230 ± 0.0480

Multiscale Network 0.9798 ± 0.0046 0.9880 ± 0.0031 0.8208 ± 0.0422 0.9875 ± 0.0044 0.6506 ± 0.0673

Multiscale Network+Attention
Module 0.9800 ± 0.0043 0.9892 ± 0.0024 0.8215 ± 0.0381 0.9877 ± 0.0041 0.6548 ± 0.0661

For the DRIVE dataset, we first perform Shapiro–Wilk test to verify distribution
normality. For our UNet backbone, the p for ACC, AUC, SPE, SEN, and MIOU are 0.56,
0.19, 0.36, 0.92, and 0.23, respectively. For the proposed network, the p for ACC, AUC, Spe,
Sen, and MIOU are 0.98, 0.16, 0.67, 0.41, and 0.48, respectively. The result of the multiscale
structure also satisfies the distribution normality. The p for ACC, AUC, Spe, Sen, and MIOU
are 0.77, 0.15, 0.72, 0.74, and 0.78, respectively. We also conduct a paired sample T-Test
and calculate Cohen’s d to evaluate the significance of the performance improvement. The
entire network significantly improves our UNet backbone in terms of Acc, AUC, Sen, Spe,
and MIOU by 0.0146 (p < 0.01), 0.0262 (p < 0.01), 0.1420 (p < 0.01), 0.0024 (p < 0.01), and
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0.0031 (p < 0.01), respectively. The effect size for Acc, AUC, Sen, Spe, and MIOU are 2.69,
3.99, 1.72, 0.4, and 2.55 respectively. The multiscale structure improves the performance
of our UNet backbone in terms of Acc, AUC, Sen, Spe, and MIOU by 0.0145 (p < 0.01),
0.0259 (p < 0.01), 0.1379 (p < 0.01), 0.0024 (p < 0.01), and 0.1237 (p < 0.01), respectively.
The corresponding effect size for Acc, AUC, Sen, Spe, and MIOU are 2.67, 3.90, 1.71, 0.32,
and 2.52 respectively. The attention module further improves the performance compared
to the multiscale architecture in terms AUC, Sen, and MIOU by 0.0003 (p < 0.05), 0.0041
(p < 0.05) and 0.0017 (p < 0.05) with effect size 0.3, 1.3, and 0.8, respectively. The attention
module slightly improves ACC and SPE compared to the multiscale architecture.

For the CHASEDB1 dataset, we also perform Shapiro–Wilk test to verify distribution
normality. For our UNet backbone, the p for ACC, AUC, Spe, Sen, and MIOU are 0.18,
0.72, 0.75, 0.40, and 0.70, respectively. For the proposed network, the p for ACC, AUC, Spe,
Sen, and MIOU are 0.36, 0.70, 0.31, 0.71, and 0.43, respectively. The result of the multiscale
structure also satisfies the distribution normality. The p for ACC, AUC, Spe, Sen, and MIOU
are 0.84, 0.64, 0.76, 0.84, and 0.49, respectively. We also conduct a paired sample T-Test
and calculate Cohen’s d to evaluate the significance of the performance improvement. The
entire network significantly improves the our UNet backbone in terms of Acc, AUC, Sen,
Spe, and MIOU by 0.0107 (p < 0.01), 0.0420 (p < 0.01), 0.3323 (p < 0.01), 0.0054 (p < 0.01),
and 0.2318 (p < 0.01), respectively. The effect size for Acc, AUC, Sen, and Spe are 2.01,
3.44, 5.71, 1.1, and 3.74, respectively. The multiscale input improves the performance of
baseline U-Net in terms of Acc, AUC, Sen, Spe, and MIOU by 0.0105 (p < 0.01), 0.0408
(p < 0.01), 0.3316 (p < 0.01), 0.0054 (p < 0.01), and 0.2276 (p < 0.01), respectively. The
corresponding effect size for Acc, AUC, Sen, Spe, and MIOU are 2.09, 3.35, 5.56, 1.30, and
3.74, respectively. The attention module significantly improves the performance compared
to the multiscale architecture in terms of AUC, Sen, and MIOU by 0.0012 (p < 0.05), 0.007
(p < 0.05) ,and 0.0042 (p < 0.05) with effect size 0.5, 0.3, and 1.8, respectively. The attention
module slightly improves ACC and Spe compared to the multiscale architecture.

Tables 5 and 6 show the performance of the proposed method for each sample. For the
DRIVE dataset, the best case ACC, AUC, Sen, and Spe are 0.9719, 0.9930, 0.8809, and 0.9914,
respectively, and the worst case measures are 0.9533, 0.9809, 0.6972, and 0.9778, respectively.
For the CHASEDB1 dataset, the best case ACC, AUC, Sen, and Spe are 0.9861, 0.9930, 0.884,
and 0.9932, respectively, and the worst case measures are 0.9735, 0.9856, 0.7665, and 0.9805,
respectively. The AUC of our method is the highest for two datasets compared to other
methods, The multiscale architecture lets the network learn a vessel feature from a different
scale, and the attention module further lets the network discard irregular region and focus
on the most discriminative region.

Table 5. The performance for each case of the DRIVE dataset inside FOV.

Image ID Acc AUC Sen Spe

01 0.9613 0.9899 0.8201 0.9788
02 0.9619 0.9897 0.7767 0.9893
03 0.9533 0.9851 0.7151 0.9865
04 0.9614 0.9826 0.7496 0.9914
05 0.9570 0.9827 0.7224 0.9893
06 0.9549 0.9809 0.7058 0.9886
07 0.9590 0.9835 0.6972 0.9907
08 0.9579 0.9834 0.7034 0.9870
09 0.9632 0.9844 0.7522 0.9862
10 0.9606 0.9839 0.7752 0.9814
11 0.9608 0.9840 0.7603 0.9840
12 0.9643 0.9886 0.7990 0.9828
13 0.9571 0.9837 0.7297 0.9860
14 0.9647 0.9889 0.7897 0.9831
15 0.9683 0.9901 0.8465 0.9809
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Table 5. Cont.

Image ID Acc AUC Sen Spe

16 0.9616 0.9905 0.7714 0.9863
17 0.9587 0.9863 0.7421 0.9833
18 0.9652 0.9906 0.8338 0.9790
19 0.9719 0.9930 0.8809 0.9822
20 0.9666 0.9907 0.8473 0.9778

average 0.9615 0.9866 0.7709 0.9847

Table 6. The performance for each case of the CHASEDB1 dataset inside FOV.

Image ID Acc AUC Sen Spe

11R 0.9861 0.9930 0.8843 0.9904
11L 0.9825 0.9914 0.7695 0.9910
12L 0.9735 0.9868 0.8348 0.9820
12R 0.9805 0.9892 0.8043 0.9891
13L 0.9830 0.9892 0.8637 0.9892
13R 0.9754 0.9871 0.7665 0.9869
14L 0.9840 0.9918 0.8236 0.9932
14R 0.9756 0.9856 0.8261 0.9805

average 0.9800 0.9892 0.8215 0.9877

5. Discussion

The dual attention network combines spatial attention and channel attention with a
multiscale network. In this section, we analyze the time efficiency and the parameters of
the proposed model.

Time Efficiency: The inference time for AM-Net is 12 ms on a 3090Ti Nvidia GPU
for one image with a size of 512× 512. The simple and effective architecture can be easily
applied to smart AI applications.

Image Distortions: Our method resizes the input image to 512x512, which distorts the
image contents. We conducted an experiment to analyze such distortions. The performance
evaluations are shown in Tables 7 and 8. We randomly cropped the original image to patch
with size 512× 512 and trained the network with these patches. The performance decreased
for the two datasets, especially for the CHASEDB1 dataset. The global context is more
important for vessel segmentation. The image resolution of 512× 512 contains enough
small vessel information. Removing the distortions of small vessels is not the main reason
for performance improvement. Everyone’s blood vessels are different in detail but similar
from a global perspective. For the DRIVE dataset, using the original image increases the
performance. For the CHASEDB1 dataset, the original image was too large to fit into our
GPU memory.

Table 7. The performance of different settings in the DRIVE dataset.

Method Acc AUC Sen Spe

Scale to 512× 512 0.9615 0.9866 0.7693 0.9851
Origin Image 0.9626 0.9869 0.7911 0.9842
Random Crop

512× 512 0.9508 0.8510 0.7166 0.9854

Table 8. The performance of different settings in the CHASEDB1 dataset.

Method Acc AUC Sen Spe

Scale to 512× 512 0.9797 0.9895 0.8432 0.9863
Random Crop

512× 512 0.9439 0.9385 0.6932 0.8963
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Model Parameters: We compared our method with other methods built on UNet as
shown in Table 9, including Yan et al. [24], jiang et al. [35], and Ma et al. [37]. The proposed
network has 9.95 M parameters and 75.438 G flops. The multiscale backbone needs 9.415
M parameter and 73.163 G flops. The multiscale input and side-outputs improve the
performance without additional parameters. The dual-attention module also improves the
performance with 0.54 M parameters. Our network improves the performance mainly by
the multiscale architecture without many parameters compared to other networks.

Table 9. The network parameters comparison of the proposed method with other methods based on
U-Net.

Method Year Parameters

Yan et al. [24] 2018 30.96 M
jiang et al. [35] 2018 58.31 M
Ma et al. [37] 2021 13.39 M

Ours - 9.95 M

The proposed network can perform fast inference and does not have many param-
eters. The simple and effective multiscale dual attention network can effectively detect
vessel structures.

6. Conclusions

Vessel segmentation is a vital and challenging problem. The variance of vessel size
and the low contrast vessels often harm the performance. This paper proposes a dual
attention multiscale network to solve the problem. The network contains multiscale input,
multiscale output, and a dual attention module. The multiscale architecture helps to detect
the vessels with different sizes, and the dual attention module helps the network focus on
the discriminative area. The dual attention module contains spatial attention and channel
attention. The spatial attention gathers information from different positions, and the
channel attention module models the relationship between different channels. Extensive
experiments verify the effectiveness of the multiscale structure for vessel segmentation.
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Spe Specificity
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AUC Area Under ROC
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