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Abstract: Convolutional neural networks (CNNs) offer significant advantages when used in various
image classification tasks and computer vision applications. CNNs are increasingly deployed in envi-
ronments from edge and Internet of Things (IoT) devices to high-end computational infrastructures,
such as supercomputers, cloud computing, and data centers. The growing amount of data and the
growth in their model size and computational complexity, however, introduce major computational
challenges. Such challenges present entry barriers for IoT and edge devices as well as increase the
operational expenses of large-scale computing systems. Thus, it has become essential to optimize
CNN algorithms. In this paper, we introduce the S-VELCRO compression algorithm, which exploits
value locality to trim filters in CNN models utilized for specialized tasks. S-VELCRO uses structured
compression, which can save costs and reduce overhead compared with unstructured compression.
The algorithm runs in two steps: a preprocessing step identifies the filters with a high degree of
value locality, and a compression step trims the selected filters. As a result, S-VELCRO reduces the
computational load of the channel activation function and avoids the convolution computation of
the corresponding trimmed filters. Compared with typical CNN compression algorithms that run
heavy back-propagation training computations, S-VELCRO has significantly fewer computational
requirements. Our experimental analysis shows that S-VELCRO achieves a compression-saving ratio
between 6% and 30%, with no degradation in accuracy for ResNet-18, MobileNet-V2, and GoogLeNet
when used for specialized tasks.

Keywords: machine learning; deep neural networks; convolutional neural network; structured
compression

MSC: 68T07

1. Introduction

The usage of convolution neural networks (CNNs) is continuously growing in com-
puter vision applications ranging from IoT and edge devices to supercomputers and cloud
infrastructures. Over the years, new CNNs have been introduced that can achieve remark-
able prediction accuracy for different classification tasks. The new models, however, are
increasingly complex and require more and more processing throughput for both model
inference and training. For example, the ResNet-101 model [1] introduced in 2015 used
101 layers and required nearly sevenfold greater computational throughput [2] than the
AlexNet model [3], which was introduced in 2012 and had eight layers. In conjunction
with the processing complexity, the growing number of model layers introduces a major
challenge for real-time computer vision applications due to the increasing inference latency.
These challenges have become major entry barriers for CNNs in IoT and edge devices
because they are limited in performance, memory footprint, cost, and energy. CNNs also
introduce a significant increase in power consumption and cost for high-end computer
systems because they require special accelerators such as graphics processing units (GPUs)
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or tensor processing units (TPUs) to handle their complex algorithms. Thus, the need to
optimize CNN algorithms without excessive performance loss has become essential to
enable them to fit within a system’s envelope of cost, performance, memory, and energy.
Different approaches, such as pruning [4–7] and quantization [8–11], have been introduced
to optimize CNN models. In many cases, the optimization of these techniques involves
model retraining and complex back-propagation processing. We discuss these approaches
and other techniques in detail in Section 2.

In this paper, we examine the applications of CNN models used for specialized tasks.
Whereas general-purpose CNNs are used for a broad range of classification tasks, special-
ized CNNs are optimized and tuned to handle a small set of specific tasks. Specialized
CNN applications are an emerging field in machine learning for computing systems that
range from edge devices to high-end large-scale systems [12–14], and several applications
have been reported recently [15–17]. In Ref. [13], a specialized CNN usage is presented for
offline video analytics that is performed in a hierarchical manner. A specialized lightweight
CNN model is used at the first level of the classification process, and only low-confidence
classifications are moved to the second-level general-purpose CNN.

Figure 1a illustrates such an application of a specialized CNN for vehicle detection on
highways. In this example, the real-time video analytic application employs a compressed
CNN model that is specialized in vehicle detection and is derived from a general-purpose
CNN. Similar hierarchical specialized CNN approaches have been used for image clas-
sification because image datasets are typically organized in hierarchical classes. In this
case, a different specialized CNN can be used for every hierarchy with the needed clas-
sification specialty. In Ref. [18], an ensemble of specialized expert models is presented,
where each model is an expert in a specific classification task. Figure 1b illustrates such
an ensemble of expert CNN models. The ensemble is governed by a gating network that
selects one or multiple expert CNNs based on the input image. The gating network assigns
a weight to every expert CNN selected, while unselected experts are assigned a weight
of 0. A similar approach called cascaded-CNN is presented in Ref. [19]. In that case, each
CNN is optimized for specialized tasks, and the classification of all models is combined
to produce a complete prediction map. Additional examples also exist in game-scrapping
applications [13].

In this paper, we extend our previous work [20] and introduce an enhanced novel
algorithm for the structured compression of CNNs that are employed for specialized
tasks. The new compression algorithm, S-VELCRO, is based on structured value-locality
compression. S-VELCRO exploits the property of value locality, which was introduced
in [20]. With this property, specialized task CNNs produce a proximal range of values
by activating functions in the inference process. Our prior work [20] introduced the
value-locality-based compression (VELCRO) algorithm, which exploits value locality for
unstructured model compression. VELCRO trims activation function elements without a
predetermined constraint related to the network structure. Such unstructured compression
methods, however, may involve overhead to compute addresses and indices of compressed
elements and store them in dedicated metadata storage elements. In particular, such
limitations become more taxing when the unstructured compression runs on GPUs and
TPUs. As illustrated in Figure 2, S-VELCRO overcomes the limitations of VELCRO by
performing structured compression and trimming model filters and their corresponding
activation kernels.

To do so, S-VELCRO runs in two steps: a preprocessing stage identifies the filters with
a high degree of value locality, and a compression step trims the selected filters. Unlike
common CNN compression algorithms, S-VELCRO does not require any back-propagation
training and thus has significantly fewer computational requirements. Our experimental
environment examines S-VELCRO’s capabilities on three CNN models—ResNet-18 [2],
MobileNet V2 [21], and GoogLeNet [22]—using the ILSVRC-2012 (ImageNet) [23] dataset.
In addition, we implement S-VELCRO on a hardware platform to measure its computational
and energy savings.
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Figure 1. Illustrative examples of specialized CNNs: (a) specialized CNN for highway vehicle
detection and (b) a mixture of expert CNNs.
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The contributions of this paper are summarized as follows:

1. We present a novel algorithm, S-VELCRO, that exploits value locality to trim filters in
CNN models utilized for specialized tasks. S-VELCRO offers structured compression
that can save costs and overhead over unstructured compression: (i) addressing
overhead [24] for computing addresses and indices of compressed elements and (ii)
storing them in dedicated metadata.

2. S-VELCRO presents a fast compression process that solely uses statistics gathering
through the inference process and avoids the heavy computations required for the
back-propagation training used by traditional compression approaches, such as prun-
ing.

3. The results of our experiments indicate that S-VELCRO produces a compression-
saving ratio of computations in the range of 24.60–27.84% for ResNet-18, 6.07–11.27%
for GoogLeNet, and 13.35–17.33% for MobileNet V2, with no impact on model ac-
curacy. In addition, our experimental analysis indicates that S-VELCRO can save
37.32–44.92% of the filter memory footprint for ResNet-18, 15.59–22.37% for MobileNet
V2, and 10.01–15.94% for GoogLeNet.

4. We demonstrate the energy savings of S-VELCRO by implementing the compression
algorithm on a hardware platform using a field-programmable gate array (FPGA) for
ResNet-18. Our experimental results indicate a 24–27% reduction in energy consump-
tion with S-VELCRO.

The remainder of this paper is organized as follows: Section 2 reviews previous
work. Section 3 introduces the proposed method and algorithm. Section 4 presents the
experimental results. Finally, Section 5 summarizes this study’s conclusions.

2. Prior Work

CNN models typically require large amounts of storage and have high computational
costs. Therefore, numerous model compression and acceleration methods have been
proposed in recent years [25,26]. Approaches seek to optimize CNN computations by
reducing redundancy, computational complexity, and memory storage. Such savings
are critical for some real-time applications and in the deployment of CNN models on
portable devices. In this section, we describe several related methods: model pruning and
quantization, deep compression (a combination of pruning, quantization, and Huffman
coding), knowledge distillation, CNN design for specialized inference tasks, and filter
compression methods.

2.1. Pruning

Model pruning [4–6] is an effective approach to reducing model complexity and
addressing the over-fitting problem. Taking inspiration from neuroscience studies, pruning
tries to eliminate unimportant or redundant CNN parameters that are not sensitive to the
performance of the model. Pruning techniques have been extensively studied [4,27–31], and
the core idea is to remove redundant weights, neurons, kernels, or filters with minimum
accuracy loss at the inference stage of a trained network. Therefore, the use of pruning
can result in a smaller network and fewer computations. Traditional pruning algorithms
consist of training a large model, pruning, and then fine-tuning the pruned model, which
may incur high computational complexity [32].

CNN pruning techniques can be classified as unstructured or structured. In uncon-
structed pruning, elements such as weights and neurons are removed without consideration
of the network structure. Typically, less important weights or activations are replaced by ze-
ros independently. In structured pruning [24], the pruning process is restricted by sparsity
constraints and removes structured parts (e.g., filters or layers). Unstructured pruning may
fully exploit redundancy in the network, but it may require a special format to represent
the pruned elements, and speedup may require a particular software/hardware accelera-
tor for sparse matrix multiplications. Structured pruning may limit the redundancy that
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can be exploited in the network, but the speedup is typically well-supported by various
off-the-shelf libraries.

Pruning redundant, noninformative elements is usually done in accordance with
their importance and contribution to the network’s accuracy. The process of pruning
is based on ranking the network elements according to various metrics—e.g., the L1
or L2 norms [5,33–36] of weights, activations, and filters or the saliency of two weight
sets [37]. Dynamic mechanisms are required to prune activations because their importance
may depend on the model’s input. Reinforcement learning is used to prune channels in
Ref. [38], and spatial correlations of CNN output feature maps (OFMs) are used to predict
and prune zero-valued activations in [39,40]. Model size reduction and inference time
speed-up have also been demonstrated by various pruning techniques based on weight
magnitudes [27,41,42].

Gradual pruning methods [43] attempt to arrive at an accurate model given a resource-
constrained environment (e.g., a model’s memory footprint). In Ref. [44], the authors
propose neuron importance score propagation (NISP) to jointly prune neurons in the entire
network based on a unified goal. In Ref. [45], the authors prune neurons randomly, and ran-
dom grouping of connection weights into hash buckets was proposed in Ref. [46]. Ref [47]
proposed a new iterative pruning scheme based on Taylor expansion while focusing on
transfer learning. Their results indicate that CNNs can be pruned by iteratively remov-
ing the least important OFMs and that a Taylor expansion-based criterion demonstrates
improvement over other criteria such as weight pruning, using l2 norm, and activation
pruning, using mean, variance, and mutual information. In that study, large trained CNNs
were adapted to efficient smaller networks for specialized tasks (specialized in a subset of
classes). The authors observed that every layer has both high-and low-degree important
OFMs and that the median importance of OFMs tends to decrease with later depth [47]. In
Ref. [48], the authors proposed the CURL method (compression using residual connections
and limited data), which consists of compression of residual blocks and a label refinement
strategy for small datasets.

While pruning techniques attempt to eliminate redundant network parameters, quan-
tization approaches, which are described in the next subsection, attempt to employ an
efficient data representation for the model parameters.

2.2. Quantization

Quantization methods compress the network by reducing the number of bits used
to represent each weight, filter, and feature map. Typically, CNNs apply 32-bit floating-
point precision. Several works [8–11] introduced fixed-point and vector quantization
methods with a trade-off between accuracy and compression. In Ref. [8], Vanhouchke et al.
demonstrated that 8-bit quantization of the parameters can result in significant compression
without significant loss of accuracy. However, quantization methods that use fewer than 8
bits tend to significantly decrease the model accuracy.

Quantization schemes for weights and activations during training [49–51] try to reduce
quantization errors under low precision while achieving accuracy comparable to full
precision networks. This approach may be limited by a lack of data or computational
resources. Aggressive quantization generally causes a significant loss of accuracy. Post-
training quantization methods [52–55] circumvent this limitation. For example, the authors
in Ref. [53] proposed a minimum square error problem for weights, and sparsity-aware
quantization was introduced in Ref. [55].

2.3. Advanced Compression Methods

While pruning and quantization attempt to remove redundancy in the network struc-
ture and its data representation, advanced compression methods have been proposed to fur-
ther optimize CNNs by adopting different approaches that are described in this subsection.
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Deep compression, a combination of pruning, trained quantization, and Huffman
coding, was proposed in Ref. [28]. This method includes pruning that removes redundant
units or channels while weight and activation quantization occurs simultaneously.

Knowledge distillation [56–58] effectively trains a small (student) model from a large
(teacher) model without a significant loss of accuracy. The student model should mimic the
teacher model, and the problem is determining how to distill the knowledge from a larger
CNN into a small network. Knowledge distillation systems consist of three main elements:
knowledge, an algorithm for knowledge distillation, and a teacher-student architecture. A
comprehensive survey of knowledge distillation is available in Ref. [58].

Training one large network and specializing it without additional training for efficient
deployment was proposed in Ref. [59]. That work introduced the once-for-all (OFA)
approach that supports diverse architectural constraints (e.g., power, cost, latency, and
performance). A progressive shrinking algorithm reduces the model size by operating
across four dimensions (image resolution, depth, width, and kernel size). Many specialized
subnetworks can be easily obtained from the OFA network with accuracy similar to training
them independently [47].

FoldedCNN [14] is another approach to CNN design for specialized inference tasks.
FoldedCNN increases inference throughput and hardware utilization of specialized CNNs
beyond increased batch size. This approach does not compress CNN models but rather
increases arithmetic intensity, which boosts utilization and throughput when it runs on
certain accelerators.

2.4. CNN Insights

Several CNN insight explorations have extended the understanding of CNNs’ internal
mechanisms and their relation to feature extraction. In Ref. [60], a visualization technique
has been introduced that provides insight into the internal mechanisms of CNNs and can
be used to select effective architectures. An additional simpler visualization method to
estimate the receptive fields of units in each layer has also been suggested by Ref. [61]. Their
results reveal that OFMs have interpretable patterns and extract features at several levels
of abstraction (edges, textures, shapes, concepts, etc.). Another study [62] used ablation
analysis and the addition of noise to quantify the contribution of OFM units and their role
in the network’s output. Their experiments suggest that highly class-selective elements
may degrade network performance, so their removal may not impact overall performance.

Further study of the importance of individual units in CNNs found that, while re-
moval of individual OFMs may not significantly decrease the overall model accuracy, it
can significantly impact the accuracy of specific classes [63]. Thus, the ablation exper-
iments in Ref. [63] demonstrated that individual units specialize in subsets of classes,
and different methods were proposed to measure the contribution of individual OFMs to
classification accuracy.

CNN filter compression techniques attempt to remove kernels and filters that corre-
spond to unimportant weights. In Ref. [64], the authors proposed removing filters based on
their importance. The coupling factors between consecutive layers are computed and used
to remove unimportant pathways in the networks. These factors are used to maximize the
variance of feature maps and to preserve the most relevant filters. Another study on CNN
filter compression [65] showed that information richness and sparsity can be used to deter-
mine the importance of feature maps. The relationship between input feature maps and 2D
kernels was examined, and the kernel sparsity and entropy (KSE) indicator was proposed
for measuring the feature map importance. The authors proposed compressing CNNs by
reducing the number of kernels based on the KSE indicator [65]. A common thread is the
observation that feature maps may contribute differently to the accuracy. Hence, being able
to quantify their importance is helpful for network compression. Additionally, the first
model layers extract simple features such as edges, corners, and simple textures, and the
last layers have higher representations (e.g., recognize objects).
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The recent studies presented in Refs. [60–65] have provided the motivation for the
VELCRO algorithm for neural networks [20]. The core idea is that we can remove unimpor-
tant computations when using the CNN mode for specialized tasks. Thus, compression
and speedup are achieved with minimal accuracy degradation. VELCRO identifies output
elements of the activation function with a high degree of value locality and replaces these
elements with their corresponding average arithmetic values. Thus, it reduces computa-
tional load and performs unstructured compression of the network while avoiding a highly
complex training process.

3. Method and Algorithm

The S-VELCRO compression algorithm introduced in this study leverages the property
of value locality, which was introduced in Ref. [20]. That study showed that when CNNs
are used for specialized tasks, the output values of the activation tensor are in the proximity
of the inferred inputs. In addition, the authors used the variances tensor to quantify value
locality, which is illustrated in Figure 3 and Equation (1). Figure 3 shows the activation
function output tensors in a layer k and channel c for the CNN model. The set of elements
A(m)[k][c][i][j] in the activation tensor represent the values calculated by the CNN model
using the specialize set of images m = 0, 1, . . . , N−1. The variance tensor V[k] for layer k is
defined for each element V[k][c][i][j] as

V[k][c][i][j] = Var(A[k][c][i][j]) = E(A[k][c][i][j]2)− E(A[k][c][i][j])2

= 1
N ∑N−1

m=0 A(m)[k][c][i][j]2 − ( 1
N ∑N−1

m=0 A(m)[k][c][i][j])
2
,

(1)

where c is the channel index and i and j are the element coordinates.
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The variance tensor is a fundamental metric used by the S-VELCRO algorithm to
leverage value locality through the structured compression process of specialized task
CNNs. The S-VELCRO algorithm trims convolution filters that produce activation kernels
with a high degree of value locality in CNN models for specialized tasks and thereby
eliminates the need to compute the kernel that corresponds to the trimmed filter. The
S-VELCRO is run in two stages:

1. Preprocessing stage: The S-VELCRO algorithm applies the uncompressed CNN
model to calculate inference for a small group of images from the specialized task
preprocessing dataset. Note that the dataset used for the preprocessing stage is distinct
from the validation dataset. The variance tensor is calculated using Equation (1) for
each convolution layer. Because the preprocessing stage relies only on inference,
it requires significantly smaller computational overhead than common approaches,
which employ a lengthy back-propagation training step [66].

2. Compression stage: The compression stage is provided with a hyperparameter tuple
T = {T0, T1, T2, . . . }, where each element in the tuple corresponds to the number of
channels to be compressed in the corresponding convolution layer. For example, Tk
represents the number of channels that will be compressed in convolution layer k. The
compression stage processes every convolution layer separately. First, it calculates
the rank of every channel by summing all variance elements in the variance tensor
with indices that correspond to the channel indices. Next, it selects the Tk channels
with the smallest rank to be compressed in convolution layer k. All compressed
channels in the activation output function are replaced by the arithmetic average
constant of the elements located at the same corresponding coordinates. All other
activation elements remain unchanged. This channel compression process avoids both
the channel activation function computation and the convolution of the corresponding
trimmed filters. The hyperparameter tuple, T, determines the compression savings of
each layer as well as the overall compression-saving ratio C for the model:

C = 1− Compressed model computations
Original model computations

= ∑K−1
k=0 Tk × Fk ×wk × hk, (2)

where the tuple T = {T0, T1, . . . , TK} represents the number of channels to be compressed, Fk
is the filter size in layer k, and wk and hk are the channel width and height of the activation
function output tensor for convolution layer k, respectively.

The complete and formal definition of the algorithm is given in Algorithm 1. An
example of the compression algorithm is depicted in Figure 4. Figure 4a illustrates the
calculation of the variance tensor in the preprocessing stage for N = 3 images, and the
dimensions of the activation tensor are ck = 3, wk = 3, and hk = 3, where ck represents the
number of channels in layer k. The S-VELCRO preprocessing stage performs inference
on the preprocessing dataset to create a variance tensor V[k]. Figure 4b illustrates the
compression stage. The hyperparameter Tk for layer k is defined in this example as Tk = 1,
which means that only one channel will be compressed. As illustrated in Figure 4b, the
ranks r[0], r[1], and r[2] are calculated for every channel, and the channel with the smallest
rank is compressed. In the illustrated example, channel 2 has the lowest rank, and its
activation function outputs are replaced with their arithmetic average. The remaining
elements remain unchanged with their original model activation function. The outcome of
the S-VELCRO compression stage is given by the compressed activation-function output
tensor Ã[k], where the computation of channel 2 (highlighted in green) is replaced by the
arithmetic averages.
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Algorithm 1: S-VELCRO algorithm for specialized CNNs.

Input: A CNN model M with K activation-function outputs (each in a different convolution
layer), N preprocessing images, and a channel trimming hyperparameter tuple T = {T0, T1, . . . ,
TK}, where ∀ 0 ≤ k < N 0 ≤ Tk < ck and ck is the number of channels in convolution layer k.

Output: A compressed CNN model MC.
Preprocessing stage (variance tensor calculation):
Step 1: Let A(k) be the activation-function output tensor in convolution layer k, and let

A(m)(k) be the corresponding activation-tensor values at the inference of image m, 0 ≤ m < N,
where the tensors A[k] and A(m)[k] have the same dimensions and ck, wk, and hk are the number
of channels, the width, and the height of the tensors at convolution layer k, respectively, for
0 ≤ k < K.

Step 2: Let model M perform inference for each image m such that 0 ≤ m < N, and let V[k]
be the variance tensor and S[k] be the average tensor of convolution layer k (0 ≤ k < K) such that
each element in the tensors V is defined as described in Equation (1), and S is defined as

S[k][c][i][j] =
1
N

N−1

∑
m=0

A(m)[k][c][i][j]

V[k][c][i][j] =
1
N

N−1

∑
m=0

(A(m)[k][c][i][j])2 −
(

1
N

N−1

∑
m=0

A(m)[k][c][i][j]

)2

for each 0 ≤ c < ck, 0 ≤ i < wk and 0 ≤ j < hk.
Compression stage (filter trimming):
Step 3: For each convolution layer 0 ≤ k < K and for each 0 ≤ c < ck, let r[c]k be the rank

of channel c in convolution layer k:

r[c]k =
wk

∑
i=0

hk

∑
j=0

V[k][c][i][j].

Let rk be the rank tuple of convolution layer k:
rk = {r[0]k , r[1]k, . . . , r[c− 1]k} for 0 ≤ k < K.

Let̃rk be the sorted tuple of rk in a monotone increasing order:
r̃k = {r̃[0]k , r̃[1]k, . . . , r̃[c− 1]k} for 0 ≤ k < K such that

r̃[0]k ≤ r̃[1] ≤, . . . ,≤ r̃[c− 1].

Let rk =

{
{r̃[0]k, r̃[1]k, . . . , r̃[Tk − 1]k}, Tk > 0

∅ , Tk = 0
for 0 ≤ k < K such that rk ⊆ r̃k.

Let Ik =

{
{I[0]k, I[1]k, . . . , I[Tk − 1]k}, Tk > 0

∅ , Tk = 0
for 0 ≤ k < K

where I[l]k is the corresponding index of r̃[l]k in the tuple
rk = {r[0]k , r[1]k, . . . , r[c− 1]k} for 0 ≤ k < K and 0 ≤ l < Tk.
That is, r[I[l]k] = r̃[l]k.

Let the tensor Ã[k] be

Ã[k][c][i][j] =
{

A[k][c][i][j] c /∈ Ik
S[k][c][i][j] c ∈ Ik

for each 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk.
Step 4: Let the compressed CNN model MC be such that every activation function output

tensor A[k] is replaced with Ã[k] for every convolution layer 0 ≤ k < K.
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During the compression phase, the threshold values of the tuples T that produce
the optimal compression saving ratio need to be found. As part of this study, we also
introduce a novel automatic hyperparameters tuning process that avoids complex manual
tuning. The user provides a target prediction accuracy, and the hyperparameter tuning
algorithm searches for the optimal T that meets the target accuracy. Our hyperparameter
tuning approach incrementally modifies each element in the tuple T as long as it does
not decrease the overall prediction accuracy of the CNN model. This process is repeated
for every element in every tuple. After reaching the last element in the tuple, the entire
tuning process is repeated, beginning with the first element in the tuple, until the target
prediction accuracy has been achieved. If the target prediction accuracy cannot be achieved,
the hyperparameter tuning process terminates with the achievable prediction accuracy
closest to the target.
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In the last part of this section, we summarize the fundamental differences between
VELCRO and S-VELCRO:

1. While VELCRO employs unstructured compression, which can potentially compress
any activation output element, S-VELSCRO performs structured compression of filters
and their corresponding kernels.

2. VELCRO and S-VELCRO use different hyperparameter mechanisms for the compres-
sion process. While VELCRO employs a hyperparameter tuple that represents the
percentile of elements in the variance tensor to be compressed in every convolution
layer, S-VELCRO uses a hyperparameter tuple that denotes the number of filters to be
trimmed in every layer.

3. VELCRO and S-VELCRO use fundamentally different approaches for the compression
process. VELCRO compresses all elements in the activation tensor with a variance
within the percentile threshold and replaces them with the arithmetic average. S-
VELCRO compresses kernels and their corresponding filter using the channel rank
such that all compressed channels in the activation output are replaced by the arith-
metic average kernel.

4. Experimental Results and Discussion

Our experimental analysis examines the S-VELCRO algorithm using various CNN
models and different specialized tasks. The first subsection describes the experimental
environment. Next, we present the compression ratios S-VELCRO achieved for different
prediction accuracy targets, the distribution of filters removed in each model layer, and
the overall saving in filter memory footprint size. Lastly, we show the energy saving for
S-VELCRO by demonstrating a hardware implementation on an FPGA board.

4.1. Experimental Environment

The experimental environment used for our study is based on PyTorch [67]; the
ResNet-18, MobileNet V2, and GoogLeNet CNN models [21,22,60] (with their PyTorch
pre-trained models); and the ILSVRC-2012 dataset (also known as ImageNet) [23,65]. The
S-VELCRO algorithm has been fully implemented in the PyTorch environment. Table 1
lists the three groups of specialized tasks used for our experiments: cats, dogs, and cars.
Each group includes four classes of images from the ILSVRC-2012 dataset. Throughout the
experimental analysis, we do not modify the first layer of the model, which is a common
practice used in other studies [51].

Table 1. Specialized task summary.

Specialized Tasks ILSVRC-2012 Classes

Dogs

English springer
English setter

Scottish deerhound
Siberian husky

Cats

Cougar
Tiger cat

Persian cat
Egyptian cat

Cars

Cab
Beach wagon

Minivan
Convertible
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4.2. Compression Algorithm Performance

In this section, we present our experimental results for the compression-saving ratio
achieved by S-VELCRO on the three groups of specialized tasks (see Table 1). For the
preprocessing step, we used a small subset (<2%) of images from the preprocessing dataset.
The validation step used the remaining images. It should be noted that the validation
process was performed using images not used by the model in the compression step.
This is essential to performing an unbiased evaluation of the model performance and
preserving the generalization property of the model. Figure 5 presents the compression-
saving ratios versus top-1 prediction accuracy of the three CNN models for cars, dogs, and
cats, respectively. P0 denotes the prediction accuracy achieved by the compressed model
with no degradation relative to the uncompressed model. P0 is summarized in Table 2 for
every CNN and specialized task. P0-n% represents a degradation of n% relative to P0.

Table 2. Prediction accuracy (P0) achieved by the compressed model with no degradation relative to
the uncompressed model.

CNN Specialized Tasks P0 (%)

ResNet-18
Dogs 80.5
Cats 74.5
Cars 62.0

MobileNet V2
Dogs 84.5
Cats 78.5
Cars 69.5

GoogleNet
Dogs 82.0
Cats 72.5
Cars 61.5

We examined the compression-saving ratios for five top-1 prediction accuracy targets:
P0, P0-1%, P0-2%, P0-3%, and P0-4%. For each target, we examined different thresholds
via trial and error and chose those that produce the highest compression-saving ratio. The
compression-saving ratios S-VELCRO achieved for ResNet-18, with no degradation in
the prediction accuracy compared with the uncompressed model, were 24.60%, 27.84%,
and 26.48% for cars, dogs, and cats, respectively. For MobileNet V2, S-VELCRO achieved
13.35%, 17.33%, and 14.45% for cars, dogs, and cats, respectively, for P0 target prediction
accuracy. Lastly, for GoogleNet, S-VELCRO achieved 11.64%, 6.07%, and 11.27% for cars,
dogs, and cats, respectively. Note that when compromising the top-1 prediction accuracy
in the range of 1–4%, the compression-saving ratio increases up to approximately 3%, 2.5%,
and 4% for ResNet-18, MobileNet V2, and GoogLeNet, respectively.

Table 3 compares the S-VELCRO algorithm with other pruning and compression
approaches for both specialized and general-purpose CNNs. First, it can be observed
that S-VELCRO outperformed VELCRO for ResNet-18, achieved similar computation ac-
celerations for MobileNet V2, and underperformed VELCRO for GoogLeNet. However,
when comparing S-VELCRO to VELCRO, we should keep in mind that since VELCRO
employs unstructured compression, it incurs overhead to compute addresses and indices
of compressed elements and store them in dedicated metadata storage elements. Such
limitations, which are out of the scope of this study, become more evident when the unstruc-
tured compression method runs on GPUs and TPUs. When comparing S-VELCRO to the
pruning methods described in Table 3, it should be noted that although S-VELCRO achieves
smaller computational savings, it requires significantly fewer computational resources than
common pruning techniques [66] because it avoids back-propagation training.
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Table 3. Comparison of S-VELCRO with prior compression techniques.

Compression Method Network Specialized
Task

Training
Required

Computation
Acceleration Accuracy Loss

Taylor criterion [47] AlexNet Yes Yes 1.9× 0.3%

CURL [48]
MobileNet V2 Yes Yes 3× Up to 4%

ResNet-50 Yes Yes 4× Up to 2%

Deep compression [28] Various CNN
models No Yes 3× None

Weights and
connection

learning [27]
AlexNet No Yes 3× None

KSE [64] ResNet-50 No Yes 3.8–4.7× 0.84–0.64%

VELCRO [20]
ResNet-18

Yes No
1.25–1.38× None

GoogleNet 1.38–1.42× None
MobileNet V2 1.15–1.24× None

S-VELCRO
ResNet-18

Yes No
1.33–1.39× None

GoogleNet 1.06–1.14× None
MobileNet V2 1.12–1.21× None

4.3. Filter Memory Footprint Size

Our next experimental analysis examines the savings in filter memory footprint
size. The results summarized in Table 4 indicate that the savings vary from 37.32 to
44.92% for ResNet-18, whereas the savings achieved for MobileNet V2 and GoogLeNet are
15.59–22.37% and 10.01–19.41%, respectively.

Table 4. Filter Memory Footprint Saving.

CNN Specialized Tasks Filter Memory Footprint Saving (%)

ResNet-18
Dogs 37.32
Cats 44.92
Cars 38.30

MobileNet V2
Dogs 22.37
Cats 15.59
Cars 19.31

GoogleNet
Dogs 10.01
Cats 19.41
Cars 15.94

Figure 6 presents histograms of the percentages of the filters removed by S-VELCRO
for every layer in the CNNs. For ResNet-18, the first layers 1 and 3 and the deep layers 13,
15, and 16 of the model have the highest percentages of removed filters. For MobileNet V2,
the overall filter memory footprint saving is significantly smaller than for ResNet-18. These
observations reflect the highly compact nature of the MobileNet V2 network with respect
to ResNet-18 and GoogLeNet. Figure 6c illustrates the percentages of removed filters
in every convolution stage located through all model layers (convolution and inception)
in GoogLeNet. Our results indicate that for the majority of the convolution stages, the
trimmed filter percentages are lower than 10%. At the same time, several convolution
stages exhibit a high percentage of trimmed filters. For example, in convolution stage 53
for cars and cats, nearly 100% of the filters are trimmed. These observations also support
the low compression-saving ratio measurements presented by GoogLeNet.
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Figure 6. Percentages of filters removed by S-VELCRO in every mode layer for (a) ResNet-18, (b)
MobileNet V2, and (c) GoogLeNet.

4.4. Hardware Implementation

We demonstrated S-VELCRO energy savings on a Xilinx Alveo U280 Data Center
accelerator FPGA card [68] (Figure 7). When implementing the ResNet-18 CNN model on
the FPGA acceleration card, we measured the energy consumption of the original model
and the model compressed by S-VELCRO. Our hardware implementation was designed in
Verilog and implemented using the Xilinx Vivado [69] design suite.
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Figure 7. Xilinx Alveo U280 accelerator card.

Our energy consumption measurements are illustrated in Figure 8 for a single inference
operation. When the model was compressed with no degradation in the prediction accuracy
(P0), the energy consumption was reduced by approximately 24–27%. When the model
was further compressed, although the prediction accuracy was compromised in the range
of 1–4%, the additional energy saving was negligible.
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Figure 8. S-VELCRO energy consumption using a Xilinx Alveo U280 accelerator card.

5. Conclusions

This study presents S-VELCRO, a new compression algorithm that exploits value
locality to perform structured compression on CNN models used for specialized tasks.
S-VELCRO eliminates the overhead of unstructured compression by computing address
indices and managing the metadata associated with the compressed elements. In addition,
S-VELCRO offers a fast compression process because it avoids back-propagation training,
which involves a heavy computational load. Our experimental analysis indicates that
S-VELCRO produces a compression-saving ratio of up to 27.84%, 11.27%, and 17.33% for
ResNet-18, GoogLeNet, and MobileNet V2, respectively. In addition, S-VELCRO can save
up to 44.92%, 22.37%, and 19.41% of the filter memory footprint for ResNet-18, MobileNet
v2, and GoogLeNet, respectively. Lastly, we demonstrated S-VELCRO energy savings using
an FPGA board, showing that it can save up to 27% of the hardware energy consumption.
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Among the important advantages offered by this study, S-VELCRO has several limitations:

1. S-VELCRO cannot perform unstructured compression, and thereby, the potential
compression saving ratio is smaller than unstructured compression techniques.

2. Other CNN compression techniques, such as pruning, may potentially reduce the
degree of value locality and, as a result, may also affect the efficiency of S-VELCRO.

3. S-VELCRO is aimed at compression-specialized CNNs. When the number of tasks
increases, a CNN model becomes more general-purpose, and thereby, the compression
saving ratio achieved by S-VELCRO in this case may be limited.

Future studies are highly encouraged to explore further enhancements of specialized
CNN compression and energy saving. Some of the suggested directions are:

1. Combining S-VELCRO with various quantization techniques.
2. Applying adaptive data representation ([55]), which can exploit sparsity in conjunction

with S-VELCRO.
3. Further enhancing S-VELCRO to exploit value locality relations in between adjacent

network layers.

Such directions can potentially simplify CNN computations and introduce additional
energy savings.

Author Contributions: Conceptualization, F.G.; methodology, F.G. and G.S.; software, G.S. and F.G.;
validation, F.G., B.S. and G.S.; formal analysis, F.G., B.S. and G.S.; investigation, F.G., B.S. and G.S.;
resources, F.G. and G.S.; data curation, F.G. and G.S.; writing—original draft preparation, F.G., B.S.
and G.S.; writing—review and editing, F.G., B.S. and G.S.; visualization, F.G. and G.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was not supported by external funding.

Data Availability Statement: The ImageNet datasets used in our experiments are publicly available
at https://image-net.org (accessed on 11 March 2021).

Conflicts of Interest: The authors declare no conflict of interest. The author’s (Gil Shomron) contri-
butions to this paper were made outside of and unrelated to employment at NVIDIA.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
2. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.

IEEE Access 2018, 6, 64270–64277. [CrossRef]
3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
4. Reed, R. Pruning algorithms–A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef]
5. LeCun, Y.; Denker, J.S.; Solla, S.; Howard, R.E.; Jackel, L.D. Optimal brain damage. In Advances in Neural Information Processing

Systems (NIPS 1989); Touretzky, D., Ed.; Morgan Kaufmann: Denver, CO, USA, 1990; Volume 2.
6. Hassibi, B.; Stork, D.G.; Wolff, G.J. Optimal Brain Surgeon and general network pruning. In Proceedings of the IEEE International

Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 1, pp. 293–299.
7. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding Deep Learning Requires Rethinking Generalization. arXiv

2016, arXiv:1611.03530. [CrossRef]
8. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Deep Learning and Unsupervised Feature

Learning Workshop; NIPS: Granada, Spain, 2011.
9. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,

arXiv:1412.6115.
10. Courbariaux, M.; Bengio, Y.; David, J.-P. BinaryConnect: Training Deep Neural Networks with binary weights during prop-

agations. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Bali, Indonesia,
8–12 December 2015.

11. Lin, Z.; Courbariaux, M.; Memisevic, R.; Bengio, Y. Neural networks with few multiplications. arXiv 2015, arXiv:1510.03009.
12. Shen, H.; Han, S.; Philipose, M.; Krishnamurthy, A. Fast Video Classification via Adaptive Cascading of Deep Models. In Proceed-

ings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
13. Kang, D.; Emmons, J.; Abuzaid, F.; Bailis, P.; Zaharia, M. NoScope: Optimizing Neural Network Queries over Video at Scale. Proc.

VLDB Endow. 2017, 10, 1586–1597. [CrossRef]

https://image-net.org
http://doi.org/10.1109/ACCESS.2018.2877890
http://doi.org/10.1145/3065386
http://doi.org/10.1109/72.248452
http://doi.org/10.1145/3446776
http://doi.org/10.14778/3137628.3137664


Mathematics 2022, 10, 3679 18 of 19

14. Kosaian, J.; Phanishayee, A.; Philipose, M.; Dey, D.; Vinayek, R. Boosting the Throughput and Accelerator Utilization of
Specialized CNN Inference Beyond Increasing Batch Size. In Proceedings of the 38th International Conference on Machine
Learning, PMLR 139, Long Beach, CA, USA, 18–24 July 2021.

15. Wu, Y.; Guo, H.; Chakraborty, C.; Khosravi, M.; Berretti, S.; Wan, S. Edge Computing Driven Low-Light Image Dynamic
Enhancement for Object Detection. IEEE Trans. Netw. Sci. Eng. 2022. [CrossRef]

16. Bai, Y.; Liu, J.; Lou, Y.; Wang, C.; Duan, L.-Y. Disentangled Feature Learning Network and a Comprehensive Benchmark for
Vehicle Re-Identification. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 6854–6871. [CrossRef]

17. Chen, C.; Jiang, J.; Zhou, Y.; Lv, N.; Liang, X.; Wan, S. An edge intelligence empowered flooding process prediction using Internet
of things in smart city. J. Parallel Distrib. Comput. 2022, 165, 66–78. [CrossRef]

18. Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.V.; Hinton, G.E.; Dean, J. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv 2017, arXiv:1701.06538.

19. Violaand, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001;
Volume 1, pp. I-511–I-518.

20. Gabbay, F.; Shomron, G. Compression of Neural Networks for Specialized Tasks via Value Locality. Mathematics 2021, 9, 2612.
[CrossRef]

21. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

23. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 22–24 June 2009.

24. Anwar, S.; Hwang, K.; Sung, W. Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst.
2017, 13, 1–18. [CrossRef]

25. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A Survey of Model Compression and Acceleration for Deep Neural Networks. arXiv
2020, arXiv:1710.09282.

26. Alqahtani, A.; Xie, X.; Jones, M.W. Literature Review of Deep Network Compression. Informatics 2021, 8, 77. [CrossRef]
27. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. arXiv 2015,

arXiv:1506.02626.
28. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

Huffman coding. arXiv 2015, arXiv:1510.00149.
29. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural.

Netw. 1997, 8, 519–531. [CrossRef]
30. Collins, M.D.; Kohli, P. Memory bounded deep convolutional networks. arXiv 2014, arXiv:1412.1442.
31. Stepniewski, S.W.; Keane, A.J. Pruning backpropagation neural networks using modern stochastic optimisation techniques.

Neural Comput. Appl. 1997, 5, 76–98. [CrossRef]
32. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv 2018, arXiv:1810.05270.
33. Lebedev, V.; Lempitsky, V. Fast ConvNets using group-wise brain damage. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.
34. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is more: Towards compact CNNs. In Computer Vision—ECCV 2016; Springer International

Publishing: Cham, Switzerland, 2016; pp. 662–677. ISBN 9783319464923.
35. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in Deep Neural Networks. Adv. Neural Inf. Process. Syst.

2016, 29, 2074–2082.
36. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2016, arXiv:1608.08710.
37. Srinivas, S.; Babu, R.V. Data-Free Parameter Pruning for Deep Neural Networks. In Proceedings of the British Machine Vision

Conference 2015, Swansea, UK, 7–10 September 2015; British Machine Vision Association, 2015.
38. Rao, Y.; Lu, J.; Lin, J.; Zhou, J. Runtime Neural Pruning. In Proceedings of the Advances in Neural Information Processing

Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2181–2191.
39. Shomron, G.; Weiser, U. Spatial Correlation and Value Prediction in Convolutional Neural Networks. IEEE Comput. Arch. Lett.

2019, 18, 10–13. [CrossRef]
40. Shomron, G.; Banner, R.; Shkolnik, M.; Weiser, U. Thanks for Nothing: Predicting Zero-Valued Activations with Lightweight

Convolutional Neural Networks. In Computer Vision—ECCV 2020; Springer International Publishing: Cham, Switzerland, 2020;
pp. 234–250.

41. See, A.; Luong, M.-T.; Manning, C.D. Compression of Neural Machine Translation Models via Pruning. arXiv 2016,
arXiv:1606.09274.

42. Narang, S.; Elsen, E.; Diamos, G.; Sengupta, S. Exploring Sparsity in Recurrent Neural Networks. arXiv 2017, arXiv:1704.05119.
43. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017,

arXiv:1710.01878.

http://doi.org/10.1109/TNSE.2022.3151502
http://doi.org/10.1109/TPAMI.2021.3099253
http://doi.org/10.1016/j.jpdc.2022.03.010
http://doi.org/10.3390/math9202612
http://doi.org/10.1145/3005348
http://doi.org/10.3390/informatics8040077
http://doi.org/10.1109/72.572092
http://doi.org/10.1007/BF01501173
http://doi.org/10.1109/LCA.2018.2890236


Mathematics 2022, 10, 3679 19 of 19

44. Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.-Y.; Davis, L.S. NISP: Pruning Networks Using Neuron
Importance Score Propagation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018.
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