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Abstract: Languages with a grammatical structure that have a free order for words, such as Arabic
dialects, are considered a challenge for neural machine translation (NMT) models because of the
attached suffixes, affixes, and out-of-vocabulary words. This paper presents a new reverse positional
encoding mechanism for a multi-head attention (MHA) neural machine translation (MT) model to
translate from right-to-left texts such as Arabic dialects (ADs) to modern standard Arabic (MSA). The
proposed model depends on an MHA mechanism that has been suggested recently. The utilization of
the new reverse positional encoding (RPE) mechanism and the use of sub-word units as an input
to the self-attention layer improve this sublayer for the proposed model’s encoder by capturing all
dependencies between the words in right-to-left texts, such as AD input sentences. Experiments were
conducted on Maghrebi Arabic to MSA, Levantine Arabic to MSA, Nile Basin Arabic to MSA, Gulf
Arabic to MSA, and Iraqi Arabic to MSA. Experimental analysis proved that the proposed reverse
positional encoding MHA NMT model was efficiently able to handle the open grammatical structure
issue of Arabic dialect sentences, and the proposed RPE MHA NMT model enhanced the translation
quality for right-to-left texts such as Arabic dialects.

Keywords: reverse positional encoding (RPE); multi-head attention; neural machine translation
(NMT); Arabic dialects; MSA

MSC: 68T07

1. Introduction

Neural encoder-decoder models have been successfully applied to different natural
language processing tasks, such as question answering, chatbots, and machine translation
(MT) [1]. For several years, machine translation MT researchers have attempted to provide
high-quality translations of common languages. Languages with limited resources, such as
Arabic dialects, which are spoken versions of MSA in all countries in the Arab world, have
been disregarded by the industrial sector and the scientific research community. Traditional
machine translation approaches that perform translation tasks from ADs to MSA generate
incompatible sentences. These traditional MT approaches perform translation twice for
parts of a source sentence and generate target sentences [2]. Furthermore, a linguistic con-
cept called diglossia occurs in the Arabic language, in which language speakers use local
Arabic dialects in informal settings and the standard Arabic language in formal settings.
For instance, local communities in Algeria use MSA and the Algerian dialects based on the
situation and context. The Algerian dialect reflects its history, identity, culture, and lived
experience. There are different types of Arabic dialects; they vary by region, such as Levan-
tine (Palestine, Syria, Jordan, Lebanon), Maghrebi (Algeria, Morocco, Tunisia, and Libya),
Iraqi, Nile Basin dialects (Sudan and Egypt), and Arabian Gulf dialects (Saudi Arabia,
Yemeni, UAE, Oman, Kuwait, Qatar, and Bahrain). Machine translation is divided into four
types: NMT, hybrid MT, rule-based MT, and statistical MT (SMT). Conventional translation
models, such as SMT, require powerful computing devices. Word order is considered one
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of the syntactic problems in Arabic dialects. To investigate the word order problem, we
must first determine where the verb, object, and subject are located in a sentence. As men-
tioned in the literature review, languages are classified as verb-object-subject such as Arabic,
subject-object-verb such as Korean, subject-verb-object such as English, and other language
support sentences with a free order of words such as Arabic dialect. The free-word order
feature in Arabic dialect sentences conveys information about the object, subject, and differ-
ent types of information. These variations present a difficulty for SMT approaches because
as Arabic dialects’ sentences grow longer, they will carry information about more than the
verb, subject, and object but also other different complicated contextual information. In
NMT approaches, the encoder adds the input sequence to a single vector representation, as
noted in the encoder-decoder structure, where the decoder uses this vector representation
to generate the output sequences. Moreover, one disadvantage of this structure is that
the input sequence data are lost and the translation performance decreases as the length
of the input sequence increases. In addition, the absence of structured orthographies for
ADs is considered one of the difficulties in building effective NMT approaches for these
dialects. This absence includes morphological dissimilarities for these dialects, which are
obvious in the usage of suffixes and affixes that do not exist in modern standard Arabic.
Moreover, to train NMT models, a large amount of training data is required, which is not
available in the case of Arabic dialects. The translation quality declines with a decrease in
the training data for AD. Rare-word translation in colloquial Arabic is an open issue. The
translation of Arabic dialect texts requires fewer word-level approaches. For example, in
NMT methods that operate on a word level, the translation of out-of-vocabulary words
has been studied using back-off to dictionary lookup [1,2]. In reality, these methods make
incorrect assumptions. For example, as a reason for the differences in the morphological
synthesis between MSA and colloquial Arabic, one-to-one translation between a source
word and a target word does not occur. In addition, NMT approaches that work at the
word level are considered inefficient for translating unseen words.

In recent years, intensive research has been conducted on NMT, from designing new
architectures such as the plain sequence-to-sequence model [3] to presenting the attention
mechanism approach [4] and models that use only self-attention instead of recurrent
neural networks (RNN) [5]. From these architectures, transformers have emerged as the
dominant NMT paradigm. The transformer model is a popular architecture that achieves
state-of-the-art performance for various learning tasks. It outperformed the convolutional
neural networks (CNN) and RNN models in different translation tasks. The former uses
the self-attention approach to measure the relationship between two different words in a
sentence. Furthermore, the transformer contributes significantly to increasing the quality of
the machine translation and different natural language processing (NLP) tasks. When the
transformer architecture is applied to direct text translation between different languages, it
emerges as the highest-performing option for several datasets. By using the self-attention
approach in every encoder and decoder, the transformer model attends to words that exist
in the same sentence, whether it is a target sentence or a source sentence. Furthermore,
the transformer model performs encoding of the positional information for every word,
such as the word order, as a positional encoding (PE) in which the RNN and CNN are not
utilized. The transformer architecture depends on MHA layers for managing sequences of
different lengths.

MHA layers provide little positional information. The values and keys in multi-head
attention are managed as sets without ordering, and re-ordering the queries simply results
in a re-ordered output. While the decoder might obtain certain positional information
from the left-to-right masking scheme, the encoder does not have access to any positional
information for right–to–left text, such as Arabic dialects. This problem can be solved by
reversing the positional encoding, such that the encoder can have access to any positional
information. One of these methods is to copy unidentified words into the target text,
as applied in [1,2]. This mechanism is considered applicable to names, but it requires
morphological changes and transliteration when characters are different.
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The methods and algorithms that deal with the translation of colloquial Arabic are
under investigation and research. To the best of our knowledge, no previous research has
investigated the impact of reversing positional encoding for right-to-left text translation,
such as ADs, in the multi-head attention-based NMT model. In summary, our contributions
are as follows:

• This research project presented a multi-head attention NMT model based on reversing
positional encoding for the translation of right-to-left texts. Moreover, this project
used an approach called word-piece to create a sub-word unit for ADs. The bilingual
evaluation understudy (BLEU) results of the practical experiments showed that re-
versing positional encoding for the multi-head attention NMT approach enhanced the
translation quality of ADs to MSA. The proposed NMT model, which employs reverse
positional encoding, achieved higher quality and efficiency for the translation of rare
words when compared with models that use a large vocabulary.

• Furthermore, the research introduced a new mechanism that shows the positive impact
of reversing positional encoding for right-to-left text, such as Arabic dialects, and
compares it with models that use ordinary absolute positional encoding for right-to-
left text. In addition, the project discussed the effect of employing sub-word units in
Arabic dialect translation.

• This study examined the effect of training the suggested model with various numbers
of decoders and encoders, as well as multiple attention heads (AH) in the decoders
and encoder’s MHA sub-layer. In addition, the proposed model was trained in various
dimensions for sub-word embedding.

The rest of the paper is organized as follows. The literature review is presented
in Section 2. Section 3 presents and discusses the proposed model in detail. Results,
experiments and analysis are presented in Section 4. Finally, we discuss the conclusion of
the research in Section 5.

2. Literature Review

The majority of MT scientific research focused decades ago on translation for high-
resource languages such as Spanish–English, German English, and French–English; the
parallel corpora for these high-resource languages are freely available. Research on low-
resource language translation has increased over the past four years. Research on translation
between written varieties has been applied to SMT models such as Slovenian, Serbian,
Croatian [6], colloquial Arabic [7], and Urdu and Hindi [8,9], compared the translation
of Catalan to Spanish by applying rule-based MT (RBMT), phrase-based MT, and NMT
models. In the evaluation of the in-domain test set, the NMT approach outperformed the
other models in terms of performance and quality. The results of practical experiments for
the out-of-domain test dataset revealed that the RB model from Spanish to Catalan and PB
approaches from Catalan to Spanish produced better translation quality [10], proposed a
neural MT model that was trained to perform translation between closely related languages.
The authors conducted practical experiments with European Portuguese and Brazilian
Portuguese languages as well as a corpus of subtitles for NMT training. The authors
obtained an extra 0.9 BLEU points for performing translation from European Portuguese
to Brazilian Portuguese when the authors did a comparison to the SMT model that had
been trained with the same data. Furthermore, the NMT model gained an extra 0.2 BLEU
points when the translation was performed in the reverse direction. These results prove
that the NMT model provides a more reliable translation quality than the SMT model using
the BLEU score and human evaluation metric. Most studies on Arabic dialect translation
have used SMT and rule-based approaches. For example, [11] presented a multidialectal
Arabic corpus (PADIC). The PADIC corpus contains MSA and various dialects such as
the Levantine dialects (Syria and Palestine) and Maghrebi dialects (Tunisia and Algeria).
Different practical experiments have been conducted for several SMT approaches for all
ADs and MSA pairs. By experimenting with different smoothing techniques, the authors
investigated the impact of the language model (LM) on machine translation by combining
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them with a significantly larger one. The most accurate translation results were obtained in
the Algerian dialect, which is expected given the lack of similarity between the Algerian
dialect and MSA. Consequently, the statistical MT model was unable to capture the semantic
and syntactic characteristics of the Algerian dialect. However, the SMT model achieved
high performance for the Syrian and Palestinian dialects. The most reliable machine
translation results were obtained from the Palestinian dialect and MSA.

All of the aforementioned approaches focused on RBMT and SMT models. To develop
an RBMT and SMT model, certain shortcomings must be addressed. For example, consider-
able time is required to design and develop this model. In addition, it is important to modify
the rules to increase the RB machine translation performance, which requires an excellent
level of linguistic comprehension. In the case of SMT models, powerful computing devices
are required, and SMT cannot deal with syntax problems in the Arabic dialect, which is the
word order. Few studies have investigated translation between closely related languages,
such as ADs and MSA, using the NMT approach [12], presented the first NMT model
that performs the translation from ADs to MSA. The authors introduced a multitasking-
based NMT model for the translation from ADs to MSA. The proposed model is based
on multi-task learning, where each source language has its encoder, and a single decoder
is shared by all language pairs. The results of actual experiments demonstrate that the
suggested multi-task-based NMT model can produce high-quality MSA phrases and learn
the predictive data of various targets at the same time by using a limited amount of training
data. Among many other approaches for translating colloquial Arabic, there is a need for
the incorporation of external knowledge, such as part-of-speech tags, into NMT models for
ADs [13], introducing a multi-task NMT model that shares an encoder for two different
tasks: translating ADs into MSA and POS at the segment level. The proposed model shares
two layers between translation tasks: the shared layer and the invariant layer. By allowing
the proposed model to perform alternative training among the POS and translation tasks,
the proposed model exploits the exceptional information and produces better translation
quality from AD to MSA. Experiments were conducted for the translation of Levantine to
MSA and from Maghrebi to MSA. A few publications have employed sub-word units in
machine translation for Arabic texts [14] and used the romanization approach to convert
Arabic text into sub-word units. The researchers discussed the influence of this approach on
NMT in different segmentation settings. In addition, the researchers measured the findings
to approach the trained MSA. Furthermore, the researchers made the romanized Arabic text
as an input for the Arabic-sourced NMT in comparison to well-known components such as
lemma, POS tags, and morph characters. The results of practical experiments conducted
on Arabic-Chinese translation demonstrated that recommended approaches handled the
unidentified word issue and increased the quality of translation for the Arabic-Chinese
task. Before conducting the practical experiments, the authors performed a preprocessing
phase for the text. Furthermore, Chinese-to-Arabic experiments were conducted using the
NMT model.

Among the several approaches for the translation of Arabic dialects, exploiting the
word-piece model to generate sub-word units and use them as input features for the
transformer model [15], presented the first transformer-based NMT model that uses sub-
word units to translate from AD to MSA. The researchers used sub-word units and the
shared vocabulary for the translation from AD to MSA to improve the behavior of the
self-attention sub-layers for the encoder by obtaining the general dependencies among
words of the AD input sentence. Practical experiments were conducted on five ADs: the
Levantine, Maghrebi, Iraqi, Nile, and Gulf dialects. Experimental results confirm that
the proposed model addresses the unknown word problem and improves translation
performance [5] presenting a transformer model that used absolute positional encoding
based on sinusoidal functions. The PE is summed with the input embedding at the bottom
of the decoder and encoder [16] presented an approach in which multi-head attention
was modified to effectively calculate the representation of relative positions or distances
among tokens. Information about the relative position is included by adding vectors
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that represent the pairwise relationships among the current positions and other positions.
Researchers have performed experiments based on this approach [17] and mentioned in
their research that absolute position encodings do not contain information to recognize
positional differences that lead to performance loss. To solve this problem, the researchers
performed a derivation different from that in [16] and tested their approach on a language
modeling task. Transformer models are Seq-to-Seq structures that are able to perform
mapping for the speech inputs to translations. This mechanism for modeling positions in
this model was tailored for text modeling, so it is less ideal for acoustic inputs [18], adapted
the relative position encoding to the speech transformer, where the key addition is the
relative distance between input states in the self-attention network. The model was able to
utilize the synthetic data better than the transformer and adopts better variable sentence
segmentation quality for speech translation.

3. The Proposed Reverse Positional Encoding Multi-Head Attention NMT Model

This study developed an MHA-based NMT model to execute the translation from
ADs to MSA. The proposed model is based on a new mechanism, which is the reversal
of absolute positional encoding. Furthermore, the proposed model uses ADs and MSA
sub-word units. The proposed model was developed based on a transformer model
recently introduced by [5]. As shown in Figure 1, the proposed model is a model with
an encoder and decoder, and this model has a remarkable structure depending on MHA,
reversed positional encodings, and sub-word units [19,20]. For the proposed model, as
depicted in Figure 1, the decoder and the encoder are made up of a bundle of various
layers. Each layer consists of two distinct sublayers: a multi-head attention sublayer and
a position-wise feed-forward sublayer (FNN). The decoder and encoder in the presented
framework used the self-attention sublayer and the feed-forward sublayer to generate
variable-length sequences without the need for CNN or RNN units. The proposed model
encodes Arabic dialect source sentences as an intermediate representation using MHA and
decodes them using the MHA and encoder-decoder attention. The encoder in the proposed
model converts the input sequence (x1, . . . . . . , xn) into a vector representation sequence,
Z = (z1, . . . , zn). Considering Z, the decoder in the proposed model generated an output
sequence (y1, . . . . . . ., yb). The embedding layer in the decoder and encoder transforms the
input tokens (source tokens in the encoder and target tokens in the decoder) into vectors of
dimension dmodel . As the information required for proximity among tokens is viewed in the
MHA sublayer, the information for the token’s position is embedded using a new reverse
positional encoding (RPE) mechanism. In particular, RPE provides a matrix representing
the position information of tokens in a right-to-left sentence, and the proposed model
adds RPE to the embedding matrix of the input tokens. Every component of the RPE is
calculated using sine and cosine functions of varying frequencies.

RPE (pos, 2i) = sin
(

pos/10, 000 2i/dmodel
)

,

RPE (pos, 2i + 1) = cos
(

pos/10, 000 2i/dmodel
)

,

where pos denotes the position of every input token, i represents the dimension of ev-
ery element, and dmodel denotes the embedding dimensions of the input tokens. The
embedding matrix with RPE is the input to the first layer of the encoder or decoder.
The encoder layer is divided into two sublayers: a self-attention sublayer and a wise,
fully connected feed-forward network sublayer (FFN). The decoder layer is divided into
three sublayers: masked MHA, encoder-decoder MHA, and FNN. The residual connec-
tion suggested in [21] was implemented in the sublayers, followed by layer normaliza-
tion [22]. The output for each sublayer is LayerNorm(x + Sublayer(x)), where Sublayer(x)
is the output of the original sublayer. The encoder decoder uses the MHA mechanism.
The MHA calculates h dot-product attention after mapping three input vectors linearly,
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q, k, v ∈ Rdmodel×dk (i = 1, . . . , h), where dmodel denotes the dimension of the input vectors
and dk=dmodel/h. Every dot-product attention is referred to as the head (Hi (i = 1, . . . , h))

Hi = Attention
(
q′, k′, v′

)
, (1)

Attention(q′, k′, v′) = Softmax

(
q′k′T√

dk

)
v′, (2)

q′ = qWQ
i , k′ = kWK

i , v′ = vWV
i . (3)
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Therefore, the MHA linearly performs mapping to the concatenated heads with a
parameter matrix, Wo ∈ Rdmodel×dk

MultiHead(q, k, v) = Concat(H1, . . . , Hh)W
O. (4)

Equation (4) is computed using the encoders’ MHA by substituting the encoder’s
intermediate states, x1, . . . ., xn, for q, k, v. Particularly, every head calculates the weighted
sum below.

zi = ∑n
j=1 αijxjWV, (5)

where z1, . . . , zn denote the outputs of the MHA. Every coefficient αij, was calculated
using softmax:

αij =
exp

(
eij
)

∑n
k=1 exp(eik)

, (6)
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where eij is computed as follows:

eij =

(
xiWQ

)(
xjWK

)
T

√
dz

(7)

where dz denotes the dimensions of zi. The decoder’s MHA calculates Equation (4) by
adding the decoder’s intermediate states q, k, v. It is unlikely that the decoder will acquire
knowledge about the words that will be formed later when forecasting a word during the
inference phase; only the intermediate state of the sub-sequence that was created can be
used for the MHA. Thus, the masked MHA is presented to the decoder’s MHA to avoid
calculating the MHA between the forecasted word and the next words. The masked MHA
is calculated by modifying Equation (7) as follows:

eij =

{
(xiWQ)(xjWK) T

√
dz
−∞

(i ≥ j),

(otherwise).

(8)

The coefficient indicating the strength of the connection of both a specific word and
the word positioned behind it (i < j) is zero, and it can be controlled such that the relation
is not considered. Consequently, Equation (6) was modified.

αij =

{
exp(eij)

∑n
k=1 exp(eik)

0

(i ≥ j),

(otherwise).

(9)

For the encoder-decoder attention, the intermediate state of the encoder was utilized
for q, and the outputs of the encoder were utilized for k, v. The FNN for input x is calculated
as follows:

FNN(x) = max(0, xW1 + b1)W2 + b2, (10)

where W1 ∈ Rdmodel×d f f , W2 ∈ Rd f f×dmodel are parameter matrices, and b1 , b2 are biases.

3.1. Reverse Positional Encoding (RPE)

The essential building blocks of any language are word positioning and order. If
the words are re-ordered, the meaning of the whole sentence is changed. To implement
natural language processing answers, the built-in function in the RNN can handle the
order of sequences. The sentence is parsed sequentially, word by word. This mechanism
combines the order of words with the backbone of RNNs. Nonetheless, the transformer
model does not utilize the RNN or CNN in preference for self-attention and manages
each data point independently. The removal of the RNNs layer will accelerate the training
time, and long dependencies in the sentence will be captured. For each word in a sentence
concurrently passing through the encoder/decoder of the transformer architecture, the
model has no idea of the location or order of the words. Accordingly, there is still a need for
a mechanism to include the order of the words in the model; one solution is to provide the
model with some insight into order by adding a piece of information to each word about
its location in the sentence. We name this “piece of information” the reverse positional
encoding (RPE). RPE is a method through which information regarding the order of objects
in a sequence is maintained. The RPE represents the location of an entity in a sequence
such that each position is given a unique representation. Our proposed MHA-based NMT
model introduces a new mechanism in which reverse positional encoding is used to encode
order dependencies between words in an AD sentence, as shown in Figure 2. Arabic dialect
text is considered a right-to-left text, in which the first word starts on the right side of the
sentence and the last word ends on the left side of the sentence. Given the embedding
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sequence of the AD source sentence with length J, X =
{

x1, . . . , xJ
}

, where x1 represents
the embedding of the last word in the AD sentence, and xJ represents the first word in
the AD source sentence. The reverse optional embedding is calculated depending on the
position of each word using Equation (11).

Rpe (j, 2i) = sin
(

j/100002i/dmodel
)

,Rpe (j, 2i + 1) = cos
(

j/100002i/dmodel
)

, (11)

where j stands for the position index of the word in the sentence and i stands for the
dimension number for the position index. Thus, a reverse positional embedding sequence
(RPE) exists.

RPE =
{

Rpej, . . . , Rpe1

}
. (12)
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Each Rpej is summed to the corresponding word embedding xj as united embedding vj:

vj = xj + Rpej, (13)

Finally, a sequence of embeddings
{

v1, . . . , vJ
}

is sentence representation that will
be initialized H0. Later, H0 will be fed into the self-attention sublayer to learn the rep-
resentation of the sentence. For humans to translate a sentence, they rearrange word
orders depending on the original sentence’s overall semantics and context to obtain a
single synonymous sentence that is easier to understand and translate. Note that reverse
positional encoding in the proposed model needs to consider the information for the target
language and source language, and it is applied to both the encoder and decoder. A detailed
description of RPE mechanism is shown in Figure 3.
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3.2. Segmentation of Arabic Dialect Words

Segmenting Arabic dialect words into sub-word units is considered the best method
among several methods for solving translation challenges from Arabic dialects to MSA.
This study used the word-piece model (WPM) implementation. This model ensures that all
Arabic dialect sentences are segmented using a standardized method. The process begins
by dividing the words into word-pieces using a trained WPM model. Before training the
word-piece model, word boundary marks were added to ensure that the original word
sequence was extracted without the vagueness of the word-piece sequence. This model
produces a word-piece sequence, which is then re-shaped to an identical word sequence
in the decoding stage. The following example depicts the word and equal word-piece
sequence for a sentence in the Iraqi Arabic dialect.

Sentence: “ �
�Ê¿ ú




	
æK


	
XA

�
K ú




�
GYªÓð èXðQ�. K. �k@”

Sentence Translation: “I feel cold and my stomach hurts so much “
Word-pieces: “ �

�Ê¿_ø



_ 	áK

	
XA

�
K_ø



_ �

HYªÓð_ è_XðQ�. K._ �k@”

As demonstrated in the preceding example, the Iraqi Arabic word “ú



�
GYªÓð” “my stom-

ach” is broken down into two-word chunks “ �
HYªÓð” a noun-derived particle from“ú




�
GYªÓð”

and “ø



” a suffix-derived particle from “ú



�
GYªÓð”. The word “ èXðQ�. K.” “cold” is broken down

into two-word chunks “XðQ�. K.”a noun-derived particle from “ èXðQ�. K.” and “ è” a suffix-derived

particle from “ èXðQ�. K.”. The Iraqi word “ú



	
æK


	
XA

�
K” “hurts me” is broken down into two-word

chunks “ 	áK

	
XA

�
K” a noun-derived particle from “ú




	
æK


	
XA

�
K” and “ø



” a suffix-derived particle

from “ú



	
æK


	
XA

�
K”. The remaining words were saved as single-word chunks. The word-piece

strategy is accomplished using a data-driven technique that maximizes the language model
likelihood for training data and provides a word depiction. Given a set of tokens S and a
training corpus, the optimization is completed by assigning S-word chunks in a manner in
which the final corpus includes the fewest word chunks when segmented by the word-piece
mechanism. Instead of two ends, a token was added at the beginning of the words. De-
pending on the data, the number of primary characters was reduced to a variable number.
In addition, the remaining characters were assigned to a specific anonymous alphabet to
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avoid joining the word-piece vocabulary with separate characters. An outstanding BLEU
score result will be obtained along with a rapid decoding phase for all language pairs
that have been assessed when utilizing a vocabulary between 24,000 and 100,000-word
chunks. In translation, it is effective to directly copy infrequent terms or digits from the
source language to the target language. To facilitate this type of direct copying, we utilized
a shared word-piece strategy for AD and MSA. By employing this mechanism, the exact
string is segmented in the same manner in the source and target sentences, making it
easier for the model to copy these tokens. Word chunks achieve a balance between the
efficiency of words and the adjustability of alphabets. This inspiration can be summarized
in two ways. The first fact demonstrates that processing the AD and MSA is achieved
by employing a shared vocabulary procedure. The vocabulary was shared between the
encoder and decoder of the proposed RPE MHA-based NMT model. By exploiting the
shared vocabulary procedure between both the decoder and encoder, the RPE MHA-based
NMT model replaces the terms in the input source sentence with the translation terms in the
target sentence. The second fact states that the shared vocabulary improves the alignment
of the embedding vectors. The RPE MHA-based NMT model gained outstanding BLEU
results utilizing word chunks, which is due to the suggested model’s capability to handle
unlimited vocabulary without depending on characters.

4. Experiments

Different practical experiments have been conducted to assess the suggested MHA-
based NMT model that utilizes the reverse positional encoding mechanism for various
translation tasks. The proposed reverse-positional encoding-based MHA NMT model was
evaluated to measure its translation performance from ADs to MSA. Practical experiments
were applied to five different ADs: Maghrebi, Levantine, Gulf, Nile Basin, and Iraqi. The
Maghrebi dialect is widely used in Algeria, Morocco, Tunisia, and Libya. The Levantine
dialect is commonly used in Jordan, Lebanon, Syria, and Palestine. The Nile Basin Arabic
is widely used in Egypt, South Sudan, and Sudan. Gulf Arabic is widely used in United
Arab Emirates, Saudi Arabia, Kuwait, Oman, Qatar, Bahrain, and Yemen. Iraqi Arabic is
popular in Iraq.

4.1. The Data

Regarding the translation tasks, this study used the same dataset applied by Baniata
et al. [15]. This dataset has five parallel corpora: the PMM-LEV corpus for Levantine
Arabic-MSA, PMM-MAG corpus for Maghrebi Arabic-MSA, MADAR_Nile dataset for Nile
Basin Arabic-MSA, MADAR-Gulf dataset for Gulf Arabic-MSA, and MADAR-Iraqi corpus
for Iraqi Arabic MSA. The multi-head attention-based NMT model that uses the RPE mech-
anism was trained on 54,736 sentence pairs for the Maghrebi dialect, 36,850 sentence pairs
for the Levantine dialect, 18,000 sentence pairs for the Nile Basin dialect, 18,000 sentence
pairs for the Gulf dialect, and 5000 sentence pairs for the Iraqi dialect. Corpora content has
been collected from different sources, such as social media, movies, and dramas. For the test
dataset, the proposed RPE MHA-based NMT model was tested on 3000 sentence pairs for
the Levantine dialect, 3000 sentence pairs for the Maghrebi dialect, 2000 sentence pairs for
the Nile Basin dialect, 2000 sentence pairs for the Gulf dialect, and 1000 sentence pairs for
the Iraqi dialect. Furthermore, the proposed model was trained with 17,736 sentence pairs
for the Maghrebi dialect and 13,805 sentence pairs for the Levantine dialect on different
dataset used by Baniata et al. [13]. The proposed model was tested on 2000 sentence pairs
for the Maghrebi dialect and 2000 sentence pairs for the Levantine dialect on the dataset
used by Baniata et al. [13]. The corpus for each AD was split into two sets: 80% for the
training dataset, and 20% for the test dataset. In addition, every AD test dataset was
obtained from a familiar domain. The datasets used in this project consisted of unprocessed
information, which might affect the quality of the suggested model. Further all ADs and
MSA sentences were pre-processed. In addition, English alphabets, punctuation, hashtags,
and diacritics were eliminated in all ADs and MSA texts. The orthographic normalization
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process was applied to all AD and MSA texts. MSA sentences are shorter than AD sentences,
and MSA sentences have more diverse tokens than AD sentences. To calculate the expected
success rate of a predictor, three mechanisms can be utilized: cross-validation, independent
dataset test, and jackknife test. In this study, the K-fold cross-validation approach was used,
where K was set to 2 to create a train/test split to assess the RPE MHA NMT model. To
prevent model overfitting, we applied an early stopping option with a patience parameter
set to three epochs, and the model checkpoint was utilized to save the best weights when
evaluating the suggested RPE MHA NMT model.

4.2. The Suggested Model Setup

The suggested RPE multi-head attention NMT model was built using TensorFlow
and Keras libraries. The practical experiments for all Arabic dialect translation tasks were
executed using cutting-edge configurations, where the sub-word embedding dimension
had six values: 1024, 520, 512, 564, 530, and 400. The hidden state has two values, 1024 and
512, and the attention heads have two values, 8 and 4. The position-wise FNN had a
filter with 1024 and 564 dimensions. The proposed model was trained on Maghrebi-
MSA, Levantine-MSA, Gulf-MSA, Nile-MSA, and Iraqi-MSA tasks. The introduced model
consists of an encoder subnetwork with 12, 8, and 4-layers and it consists of a decoder
subnetwork with 12, 8, and 4-layers.

4.3. Training and Inference of the Suggested Model

The proposed RPE multi-head attention NMT model was trained for 13,000 iterations
where the batch size was 2024 and the maximum length of the sequence was 70-sub-
word tokens for the MAG-MSA task. In addition, the suggested model was trained for
13,000 iterations where the batch size was 1164 and the maximum length of the sequence
was 70 for the LEV-MSA task. The suggested model was trained such that the batch size
was 700, and the maximum length of the sequence was 70 for the Nile-MSA task. In the case
of the GULF-MSA translation task, the suggested model was trained such that the batch
size was 700, and the maximum length of the sequence was 70. Regarding the IRQ-MSA
task, the suggested model was trained such that the batch size was 400, and the maximum
length of the sequence was 65. In this research project, the Adam optimizer [23] was applied
with

(
β1 = 0.9, β2 = 0.98, ε = 1× 10−9). Additionally, in accordance with the study by

So et al. [1], a single cosine cycle with warm-up was used as the learning rate schedule
algorithm. A beam search was used to produce target sentences during the inference stage.
A beam size of 6 and a length penalty of 1.1 are applied for the translation tasks: Maghrebi-
MSA, Levantine-MSA, Nile_Basin-MSA, Gulf-MSA, Iraqi-MSA, Levantine-MSA (Baniata
et al. [13] dataset), and Maghrebi-MSA (Baniata et al. [13] dataset). Furthermore, shared
vocabulary for the source and target languages was applied in the proposed model. This
research project used 21,000 sub-word vocabularies for the Levantine-MSA, Maghrebi-MSA,
NB-MSA, and Gulf-MSA translation tasks. A total of 9235 sub-words were used for the IRQ-
MSA translation task. The dataset utilized by Baniata et al. [13] for the Levantine-MSA and
Maghrebi-MSA translation tasks contained 29,500 sub-word vocabularies. The suggested
model is trained, where the attention dropout and the ReLU dropout values are set to 0.1.
The proposed RPE multi-head attention NMT model is fast, requiring 557 s per epoch for
the MAG-MSA translation task, 134 s per epoch for the Nile_Basin-MSA task, 134 s per
epoch for the GULF-MSA task, 399 s per epoch for the LEV-MSA task, 304 s per epoch for
the IRQ-MSA task, 256 s per epoch for the MAG-MSA task (Baniata et al. [13]) and 253 s
per epoch for the LEV-MSA task (Baniata et al. [13]). The suggested model was trained to
minimize the cross-entropy loss for each translation task. In addition, the proposed model
was tested on the Maghrebi-MSA and Levantine-MSA datasets used by Baniata et al. [13].

4.4. Results by Automatic Metric

Several experiments have been conducted for the suggested model using reverse
positional encoding, a shared vocabulary, and sub-word units for Arabic dialects. The
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proposed RPE MHA-based NMT model was trained with various numbers of attention
heads in the multi-head attention sublayer and with various numbers of decoders and
encoders to find the most efficient configuration for the proposed model. In addition, RPE
MHA-based NMT model was trained using different sub-word-embedding dimensions.
The translation performance of the proposed model is assessed using the sacreBLEU
automatic metric. This section discusses the assessment of the presented RPE MHA NMT
model on five AD translation tasks. The results of the practical experiments for the LEV-
MSA and MAG-MSA translation tasks are shown in Tables 1 and 2. The findings of the
Gulf-MSA, IRQ-MSA, and Nile-MSA translation tasks are summarized in Tables 3–5. Table 1
shows the results of the proposed RPE MHA NMT model with various parameters on the
test dataset for the Levantine-MSA translation task. As seen in Table 1, the RPE MHA-based
NMT model obtained an excellent 65.77 BLEU score, where the number of attention heads
was eight, the number of encoder and decoder layers was 12, and the sub-word embedding
dimension was 512. This high BLEU score was achieved as a result of the positive impact
of applying the reverse positional encoding mechanism for the right-to-left text and the
proximity between the Levantine dialect and MSA. Furthermore, these excellent results
were obtained because Levantine Arabic and MSA share many terms and words. It can
be noticed from Tables 1, 6, 7 and 8 that the proposed RPE MHA-based NMT model with
reverse positional encoding outperformed the transformer-based model with absolute
positional encoding, as suggested by Baniata et al. [15], by +2.06 BLEU score points. As
illustrated in Table 1, practical experiments with low dimensions of sub-word embedding
obtained better BLEU results when compared to experiments with high dimensions of
sub-word embedding.

Table 2 presents the results of the proposed RPE MHA-based NMT model on the test
dataset for the MAG-MSA translation task. As shown in Table 2, the proposed RPE MHA-
based NMT model can correctly translate Maghrebi Arabic sentences to MSA with a BLEU
score of 66.71. Maghrebi Arabic contains vocabularies from many different languages,
such as Turkish, Old Arabic vocabulary, Amazigh language, and certain new vocabularies
borrowed from French, Italian, and Spanish. Thus, the proposed RPE MHA-based NMT
model captures the semantics and syntactic features of the Maghrebi Arabic dialect. The
proposed model enhanced the translation quality of the MAG-MSA translation, although
there is no proximity between MSA and the Maghrebi Arabic dialect in terms of expressions.
Traditional NMT models [12,13] cannot generate fluent MSA sentences for the Maghrebi
Arabic dialect because Maghrebi Arabic has many vocabularies from many other languages.
By utilizing the RPE mechanism and using sub-word units as an input to the encoder, there
will be information sharing between sub-word units and word units, and the proposed
model will generate fluent MSA sentences. Tables 2 and 8 show that for the MAG-MSA
translation task, the proposed model outperformed the transformer sub-word model
proposed by Baniata et al. [15] by +1.05 BLEU score points. This is because of the reverse
position encoding mechanism for right-to-left text, such as Arabic dialects in the proposed
model. Table 3 presents the results of the proposed RPE MHA-based NMT model with
different configurations on the test dataset for the Gulf-MSA translation task. As illustrated
in Table 3, the proposed model obtained a BLEU score of 47.77 and the proposed model
translated the Gulf Arabic sentences to MSA efficiently. Tables 4 and 5 show the results
of the Iraqi-MSA and Nile MSA translation tasks. The proposed RPE MHA-based NMT
model generated an outstanding translation quality for Iraqi Arabic sentences with a
BLEU score of 58.53 and 49.87 on the Nile-MSA translation tasks. As noted in Tables 3–8,
the proposed RPE MHA-based NMT model outperforms the transformer-based NMT
model with absolute positional encoding proposed by Baniata et al. [15] for the Gulf-MSA,
Iraqi-MSA, and Nile-MSA translation tasks. This led to the conclusion that the reverse
positional encoding mechanism introduced in this model is powerful and improves the
translation quality for right-to-left texts, such as Arabic dialects. Further, the proposed
RPE MHA-based NMT model was applied to the Levantine-MSA and Maghrebi-MSA
corpora utilized by Baniata et al. [13]. As shown in Tables 6 and 7, the proposed RPE
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MHA-based NMT model obtained BLEU scores of 61.94 and 66.87 on Levantine-MSA and
Maghrebi-MSA translation tasks, respectively. Therefore, it can be concluded, as seen in
Tables 6, 7 and 9, that the proposed RPE MHA-based NMT model outperforms the multi-
task NMT with part of speech (POS) tags model that was proposed by Baniata et al. [13]
and the transformer-based NMT model with an absolute positional encoding mode that
was proposed by Baniata et al. [15] on the Levantine-MSA and Maghrebi-MSA corpora
utilized by Baniata et al. [13]. The results show the efficiency and power of applying the
reverse positional encoding (RPE) mechanism and the impact of exploiting the sub-word
units and shared vocabulary between AD and MSA in the proposed RPE MHA-based
NMT model. Using sub-word units of AD as an input feature to the self-attention sub-layer
(multi-head attention) in the proposed model is useful for solving the word order issue
and for assisting in producing fluent MSA sentences. Moreover, the proposed model could
solve grammatical issues and capture semantic and syntactic features from the AD source
language. This is a result of applying the RPE mechanism, using sub-word units as an input
feature to the MHA sublayer, and using the vocabulary shared between AD and MSA.

Table 1. Results for RPE MHA NMT model on Baniata et al. [15] Corpus for the Levantine-MSA
translation task, where SWED is the sub-word embedding dimension, F is the filter size, E is the
encoder layer, D is the decoder layer, and AH is the number of attention heads.

SWED F E D AH BLEU

520 1024 4 4 8 63.99
520 1024 4 4 4 62.57
512 1024 8 8 4 64.35
564 564 4 4 4 61.20

1024 1024 4 4 8 60.39
512 1024 12 12 8 65.77

Table 2. Results for RPE MHA NMT model on Baniata et al. [15] Corpus for the Maghrebi-MSA
translation task, where SWED is the sub-word embedding dimension, F is the filter size, E is the
encoder layer, D is the decoder layer, and AH is the number of attention heads.

SWED F E D AH BLEU

520 1024 4 4 8 61.07
520 1024 4 4 4 60.23
520 1024 8 8 4 64.99
564 564 4 4 4 58.56

1024 1024 4 4 8 62.06
512 1024 12 12 8 66.71

Table 3. Results for RPE MHA NMT model on Baniata et al. [15] Corpus for the Gulf-MSA translation
task, where SWED is the sub-word embedding dimension, F is the filter size, E is the encoder layer,
D is the decoder layer, and AH is the attention heads number.

SWED F E D AH BLEU

520 1024 4 4 8 47.21
520 1024 4 4 4 47.49
400 1024 8 8 4 47.77
564 564 4 4 4 47.16

1024 1024 4 4 8 43.88
400 1024 12 12 8 46.42
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Table 4. Results for RPE MHA NMT model on Baniata et al. [15] Corpus for the Iraqi-MSA translation
task, where SWED is the sub-word embedding dimension, F is the filter size, E is the encoder layer,
D is the decoder layer, and AH is the attention heads number.

SWED F E D AH BLEU

512 1024 4 4 8 58.53
512 1024 4 4 4 53.00
512 1024 8 8 4 52.75
564 564 4 4 4 53.09

1024 1024 4 4 8 37.83
512 1024 12 12 8 19.09

Table 5. Results for RPE MHA NMT model on Baniata et al. [15] Corpus for the Nile-MSA translation
task where SWED is the sub-word embedding dimension, F is the filter size, E is the encoder layer,
D is the decoder layer, and AH is the number of attention heads.

SWED F E D AH BLEU

520 1024 4 4 8 47.15
520 1024 4 4 4 48.56
400 1024 8 8 4 49.87
564 564 4 4 4 44.61

1024 1024 4 4 8 43.31
400 1024 12 12 8 47.51

Table 6. Results for RPE MHA NMT model on Corpus used by Baniata et al. [13] for Levantine-MSA
translation task, where SWED is the sub-word embedding dimension, F is the filter size, E is the
encoder layer, D is the decider layer, and AH is the attention heads number.

SW-E-D F E D AH BLEU

520 1024 4 4 8 60.79
520 1024 4 4 4 55.70
400 1024 8 8 4 57.25
564 564 4 4 4 59.19

1024 1024 4 4 8 39.51
400 1024 12 12 8 61.94

Table 7. Results for RPE MHA Neural-MT model on Corpus used by Baniata et al. [13] for the
Maghrebi-MSA translation task, SWED is the sub-word embedding dimension, F is the filter size, E is
the encoder layer, D is the decider layer, and AH is the attention heads number.

SWED F E D AH BLEU

520 1024 4 4 8 66.13
520 1024 4 4 4 65.51
400 1024 8 8 4 66.87
564 564 4 4 4 63.36

1024 1024 4 4 8 55.64
400 1024 12 12 8 66.65
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Table 8. Results of the transformer-based NMT model that was suggested by Baniata et al. [15] for
different translation tasks, where SWED is the sub-word embedding dimension, F is the filter size,
E is the encoder layer, D is the decider layer and AH is the number of attention heads.

Pairs SWED F E D AH BLEU

LEV-MSA 512 1024 12 12 4 63.71
MAG-MSA 512 1024 12 12 4 65.66
NILE-MSA 512 1024 8 8 4 48.19
GULF-MSA 512 564 4 4 4 47.26
IRQ-MSA 512 1024 4 4 4 56.50

Table 9. Results of the multi-task NMT model with part-of-speech (POS) tags that was suggested by
Baniata et al. [13] and the results of the transformer-based NMT model that was suggested by Baniata
et al. [15] for the dataset used by Baniata et al. [13] for the Levantine-MSA and Maghrebi-MSA
translation tasks.

Model Pairs BLEU

NMT+POS-LEV [13] LEV-MSA 43.00
NMT+POS-MAG [13] MAG-MSA 34.00

Transformer-NMT-Sub-word [15] LEV-MSA 57.92
Transformer-NMT-Sub-word [15] MAG-MSA 57.85

4.5. Results by Human Evaluation

Human assessment experiments proved the findings obtained through an automatic
metric assessment. In this research project, pilot rating experiments (PRE) [15] were
conducted. The participants assessed translations from 1 to 7 on a Likert scale. The
performance of translation was evaluated for the MAG-MSA, LEV-MSA, Gulf-MSA, IRQ-
MSA, and Nile-MSA translation tasks. We requested seven speakers who understood MSA
and every AD to rate the sentences that were produced from the suggested RPE MHA NMT
model. Several texts in AD, such as LEV, Gulf, IRQ, Nile, MAG, and one translation in MSA
for each AD were given to the speakers. We chose 100 texts randomly and separated them
into five subsets of 20 texts. We offered every annotator a subset and requested them to
assess the interpretations on a Likert scale of 1 to 7, taking fluency into account. The results
generated by the three different models applying PRE are shown in Tables 10 and 11. The
average results showed that the seven native speakers had a real view of the translations
produced by the proposed RPE MHA-based NMT model. As listed in Table 10, the average
scores for the LEV-MSA, MAG-MSA, Gulf-MSA, Nile-MSA, and IRQ-MSA translation tasks
obtained by the proposed RPE MHA-based NMT model were 6.46, 6.40, 5.95, 5.90, and
6.39, respectively. As seen in Table 11, the average score on the LEV-MSA and MAG-MSA
translation tasks (Baniata et al. [13] dataset) obtained by the multi-task NMT POS model
suggested by Baniata et al. [13] was 5.9 and 4.4, respectively. The average score for the
LEV-MSA and MAG-MSA translation tasks (Baniata et al. [13] dataset) obtained by the
transformer –NMT sub-word model was 6.0 and 6.2, respectively. The average score on
the LEV-MSA and MAG-MSA translation tasks ((Baniata et al. [13] dataset) obtained by
the proposed RPE MHA-based NMT model was 6.2 and 6.5, respectively. Furthermore, as
shown in Table 10, the average scores for the LEV-MSA, MAG-MSA, Gulf-MSA, Nile-MSA,
and IRQ-MSA translation tasks obtained by the transformer-NMT sub-word model were
6.35, 6.3, 5.85, 5.8, and 6.10, respectively. The results of PRE prove that the suggested
RPE MHA NMT model produces translation performance significantly better than the
transformer-NMT sub-word model, and better than the multi-task NMT with POS model
for all translation tasks.
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Table 10. Human Evaluation Score: PRE.

Model Pairs Average Score

Transformer-NMT-Sub-word [15] LEV-MSA 6.35
Transformer-NMT-Sub-word [15] MAG-MSA 6.30
Transformer-NMT-Sub-word [15] Gulf-MSA 5.85
Transformer-NMT-Sub-word [15] Nile-MSA 5.80
Transformer-NMT-Sub-word [15] IRQ-MSA 6.10

Proposed REP-MHA-NMT LEV-MSA 6.46
Proposed REP-MHA-NMT MAG-MSA 6.40
Proposed REP-MHA-NMT Gulf-MSA 5.95
Proposed REP-MHA-NMT Nile-MSA 5.90
Proposed REP-MHA-NMT IRQ-MSA 6.39

Table 11. Human Evaluation Score: PRE. LEV-MSA and MAG-MSA.

Model Pairs Average Score

Transformer-NMT-sub-word [15] LEV-MSA 6.0
Transformer-NMT-sub-word [15] MAG-MSA 6.2

MTL-NMT [13] LEV-MSA 1.4
MTL-NMT [13] MAG-MSA 1.3

MTL-NMT + POS [13] LEV-MSA 5.9
MTL-NMT + POS [13] MAG-MSA 4.4

Proposed REP-MHA-NMT LEV-MSA 6.2
Proposed REP-MHA-NMT MAG-MSA 6.5

4.6. Discussion and Analysis

This section shows the positive impact of using reverse positional encoding in the
Arabic dialect on MSA translation tasks. Table 12 presents a sample of translations from
the proposed RPE MHA NMT model for MAG-MSA, Gulf-MSA, LEV-MSA, Nile MSA,
and IRQ-MSA. Because AD lacks standardization, traditional NMT models do not perform
translation for certain parts of the AD input source sentences correctly. In addition, clitics
and affixes in AD text cannot be captured without using reverse positional encoding or
exploiting sub-word units. As shown in Table 12, the suggested RPE MHA NMT model
successfully translated the Maghrebi Arabic sentences to MSA. For instance, the suggested
model aligned the MAG AD words “Q


K@ 	Qm.

Ì'@
�

�ëQº
	
J
�
JÓ A

	
K @” “I don’t hate Algeria” to the MSA

words “Q

K@ 	Qm.

Ì'@ èQ» @ B A
	
K @” accurately. For LEV Arabic sentences, the suggested RPE MHA

NMT model properly translated the source sentence without any mistakes. Furthermore,
the proposed RPE MHA NMT model generated the best translation performance for the
Gulf Arabic and Iraqi Arabic sentences. For Nile Basin Arabic, the proposed RPE MHA
NMT model translated 99% of the Nile-Basin AD sentence fluently with the same meaning
even adding the term “ÈðA

	
J
�
K” “eating” to the generated sentence which is absent in the

reference MSA sentence. In addition, the proposed RPE MHA-based NMT model improved
the translation quality and performance when compared to the transformer-based NMT
sub-word model suggested by (Baniata et al. [15]) and experimented on the same dataset,
as shown in Table 12. As noted in Table 12, the suggested RPE MHA NMT model showed
outstanding translation quality for the Levantine and Maghrebi dialects to MSA. The
positive impact of applying reverse positional encoding, the shared vocabulary between
MSA and AD, and the exploitation of sub-word units are obvious. The proposed RPE MHA
NMT model is suitable for dealing with right-to-left text and free word order text, such as
Arabic dialect, and to generate fluent MSA sentences, as shown in Tables 11 and 12. The
suggested RPE MHA NMT model was tested on the same dataset that Baniata et al. [15]
experimented with, for Levantine AD, Maghrebi AD, Gulf AD, Nile-Basin AD, and Iraqi
AD. As shown in Figure 4, compared to the transformer-based NMT model that has
been trained on the same parallel corpora, the suggested RPE MHA NMT model scored
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66.71 BLEU results for performing translation from Maghrebi to MSA, 65.77 results for
performing translation from Levantine to MSA, 49.87 for translation from Nile Arabic to
MSA, 47.77 for translation gulf Arabic to MSA, and 58.53 for translation from Iraqi Arabic
to MSA. The results illustrate that the suggested RPE MHA NMT model generates better
translation performance than the transformer NMT model by assessing the models using
the BLEU score and pilot rating experiment. The proposed RPE MHA-based NMT model
was assessed on the same dataset that was experimented by Baniata et al. [13] for the
Levantine-MSA and Maghrebi-MSA translation tasks. The proposed RPE MHA-based
NMT model obtained outstanding BLEU scores when compared to different NMT models,
as shown in Figures 5 and 6. The proposed RPE MHA NMT model can generate correct
MSA sentences carrying information about verbs, subjects, and objects in Arabic dialects.
This section provides a practical analysis to demonstrate the influence of reverse positional
encoding on the suggested MHA NMT model. This analysis includes (1) the effect of using
various numbers of encoder layers on the translation performance, (2) the influence of using
different source lengths on the translation quality, (3) the impact of using varying beam
sizes on translation quality, (4) the influence of MHA of the encoder, and (5) quantitative
analysis of RPE MHA NMT. This analysis was conducted on MAG-MSA tasks owing to the
size of the dataset and the number of layers that were utilized to train the proposed model.

Table 12. Samples of translations generated by the proposed RPE MHA-based NMT model.

Source Language: MAG (Maghrebi) AîD

	
¯

	á�
» ú


Í XA�

	
®Ë @ èQº

	
J
�
K 	áºËð Q


K@ 	Qm.

Ì'@
�

�ëQº
	
J
�
JÓ A

	
K @

English Translation (MAG) I don’t hate Algeria but I hate the corruption that is inside it
Target Language: MSA AëCÖß
 ø




	
YË@ XA�

	
®Ë @ èQ» @ 	áºËð Q


K@ 	Qm.

Ì'@ èQ» @ B A
	
K @

RPE MHA-NMT Model AëCÖß
 ø



	
YË@ XA�

	
®Ë @ èQ» @ 	áºËð Q


K@ 	Qm.

Ì'@ èQ» @ B A
	
K @

English translation for the output of the RPE MHA-NMT Model I don’t hate Algeria but I hate the corruption that fills it
Source Language: LEV (Levantine) ½��

	
m�

�
' ÈAm.

× ú



	
¯ É

	
ª

�
� ú




�
¯C

�
K ½

	
K @

�
�Y

�
®
�
J«@ AÓ ��. Èñ

�
®

	
K AÓ ø



	P

English Translation (LEV) As we say but I don’t think you gonna find a job in your major
area

Target Language: MSA ½��
	
m�

�
' ÈAm.

× ú



	
¯ CÔ« 	áK
Yj.

�
J� ½

	
K@ Y

�
®
�
J«@ B 	áºË Èñ

�
®

	
K AÒ»

RPE MHA-NMT Model ½��
	
m�

�
' ÈAm.

× ú



	
¯ CÔ« 	áK
Yj.

�
J� ½

	
K@ Y

�
®
�
J«@ B 	áºË Èñ

�
®

	
K AÒ»

English translation for the output of the RPE MHA-NMT Model As we say, I do not think that you will find a job in your field of
specialization

Source Language: GULF ? ZA
	

�«B@
�

�k
	

�J

	
®

	
m�

�
' �

éJ.�
	
� ¼Y

	
J«

English Translation (GULF) Do you have discounts for members?
Target Language: MSA ?

	á�
»PA
�

�ÖÏ @ Z A
	

�«CË
�
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�J
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�
' �

éÖ
�
ß Éë

RPE MHA-NMT Model ?
	á�
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�
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�
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�
' �

éÖ
�
ß Éë

English translation for the output of the RPE MHA-NMT Model Are there discounts for participating members?
Source Language: Nile (Egypt, Sudan) ú



ÍA¢�
B@ É¿ B@ É

	
�

	
¯ AK.

English Translation (Nile) I like Italian food
Target Language: MSA ú



ÍA¢�
B@ ÐAª¢Ë@ É

	
�

	
¯@

RPE MHA-NMT Model ú


ÍA¢�
B@ ÐAª¢Ë@ ÈðA

	
J
�
K É

	
�

	
¯@

English translation for the output of the RPE MHA-NMT Model I like eating Italian food
Source Language: IRQ (Iraq) �

�Ê¿ ú



	
æK


	
XAK
 ø



PY�ð

�
�J


	
��. �k@

English Translation (IRQ) I feel tightness and my chest is hurting me a lot
Target Language: MSA PY�Ë@ ú




	
¯ YK
Y

�
� ÕË @ð

�
�J


	
��. Qª

�
�@

RPE MHA-NMT Model PY�Ë@ ú



	
¯ YK
Y

�
� ÕË @ð

�
�J


	
��. Qª

�
�@

English translation for the output of the RPE MHA-NMT Model I feel tightness and severe pain in the chest
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4.7. Impact of Encoding Layers V

As observed in Tables 1–7, the effectiveness of the suggested NMT model with reverse
positional encoding across different source representations captured from different encod-
ing layers improved the effectiveness of the proposed model for all Arabic dialects, where
V is the number of layers in the encoder in the RPE MHA NMT model. The proposed
model was trained using three different values of n: 4, 8, and 12. When V is set to 12, it
denotes a large model configuration, V = 8 denotes a medium-sized model configuration,
and V = 4 denotes a small-size model setup. As illustrated in Table 1, in the LEV-MSA
translation task, there was a noticeable change in the BLEU results as V varied.

4.8. Length of Source Sentence

Capturing long-distance dependencies and contextual information among the tokens
in the source sentence improves the translation effectiveness of long sentences. Sentences
with the same lengths (in terms of source tokens) have been categorized together, as
by Luong et al. [24]. The MAG-MSA translation task was selected for investigating the
translation performance for long sentences because of the large size of the Maghrebi Arabic
MSA dataset. The evaluation in this section was based on the following lengths: >50,
40–50, 30–40, 20–30, 10–20, and <10. The BLEU score metric was computed for the output
of the suggested RPE MHA NMT model. As illustrated in Table 13, the effectiveness
of the suggested RPE MHA-based NMT model increases as the input sentence length
increases, especially for lengths between 30 and 40 sub-word tokens, lengths between 40 and
50 sub-word tokens, and lengths larger than 50 sub-word tokens with BLEU scores of 65.73,
65.95, and 66.71, respectively. By applying reverse position encoding to a new mechanism,
exploiting sub-word units as an input feature to the self-attention sub-layer, and the use of
shared vocabulary, the proposed model captures contextually relevant information and
dependencies within tokens regardless of their position in the AD sentence input. The
effectiveness of the proposed model decreased for short sentences with lengths ranging
from 10 to 20 sub-word tokens and lengths less than 10 sub-word tokens. Furthermore, the
effectiveness of the proposed model was poor for sentences with fewer than 10 sub-word
tokens and obtained a low BLEU score of 24.49. For this reason, short AD sentences have
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sub-word tokens, which are morphemes, suffixes, and affixes. These types of sub-word
tokens are not easily aligned with the corresponding words in the target language. The
outstanding effectiveness of the suggested RPE MHA NMT model obtained for various
sentence lengths shows that employing reverse positional encoding and utilizing the sub-
word units as an input feature enhances the encoder’s MHA sub-layer performance in
obtaining word relationships in the AD input phrase.

Table 13. BLEU score on MAG-MSA test dataset with different Sentences’ Lengths

Sentence Length BLEU

<10 24.49
(10–20) 42.89
(20–30) 61.69
(30–40) 65.73
(40–50) 65.95

>50 66.71

4.9. Beam Size Evaluation

The effectiveness of the RPE MHA NMT model was evaluated by varying the beam
size. Practical experiments were conducted using the proposed model for all Arabic dialects.
We used the word-piece model for sub-word tokenization. Beam size has a positive effect
on the decoding speed and translation quality in BLEU [25]. According to Table 14, the
outcomes of the experiments on the MAG-MSA translation problem demonstrate that the
RPE MHA NMT model has the best performance when the beam size is 7.

Table 14. BLEU score on MAG-MSA test dataset with different Beam sizes

Beam Size BLEU

1 55.69
2 60.87
3 62.67
4 63.18
5 63.88
6 64.99
7 65.10
8 63.93
9 64.64
10 64.59

4.10. The Impact of the Encoder Self-Attention

The performance of the encoder layers is determined by the ability of the heads in the
MHA sublayer inside every layer to obtain contextual information. Attention heads capture
contextual information to different degrees. Some heads in the MHA sublayer maintain
long-distance relationships between the input tokens. In addition, there are other heads in
the MHA sublayer that maintain a short-distance relationship between the input tokens as
pointed out by Raganato et al. [26] and Vig et al. [27]. Therefore, the proposed RPE MHA-
based NMT model captures the semantic and syntactic characteristics of Arabic dialect
source sentences [26]. The utilization of the new reverse positional encoding mechanism
affects how information in the source language is managed by encoder layers. According
to Vig et al. [27], the RPE mechanism is evaluated by calculating the attention entropy
and computing the attention distance spanned through different attention heads with

each MHA sublayer. The mean distance Dl
h which is spanned by the attention head h for
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encoding layer l is calculated as the weighted average distance within pairs of every
sentence of a given corpus X. Therefore,

Dl
h =

∑x∈X ∑
|x|
i=1 ∑i

y=1 wh
i,j.(i− j)

∑x∈X ∑
|x|
i=1 ∑i

y=1 wh
i,j

(14)

where wh
i,j is the attention weight from input token xi to xj for the attention head h.i and

j signify the tokens’ places xi and xj in the source sentences. By computing aggregation

for the attention distance for every head, the mean attention distance spanned Dl
h with

reference to the encoding layer l is calculated as follows:

Dl
h =

1
Nh

.
Nh

∑
h=1

Dl
h (15)

where Nh represents the number of AHs used within the layer. The mean attention distance
does not reveal anything about how the attention weight is distributed across input tokens
for a specific attention head. An AH with a greater mean attention distance may focus
on separated sequences of the same tokens [27,28].To estimate the concentration pattern
for the attention head h inside layer l for the input token xi, the entropy of attention
distribution [28], El

h(xi), for attention head h is calculated as

El
h(xi) = −

i

∑
j=1

wh
i,jlogwh

i,j (16)

The mean entropy of the attention distribution for encoding layer l is computed similar
to the attention distance spanned, as follows:

El(xi) =
1

Nh

Nh

∑
h=1

El
h(xi) (17)

Attention heads with more increased entropy have a more distributed attention pattern,
whereas those with lower entropy have a more concentrated attention weight distribution.
Attention distance and attention entropy are computed depending on the attention weights
generated for arbitrary 2000 sentences from the LEV-MSA task’s test split (Baniata et al. [15]
dataset). Figure 6 shows the mean attention distance span and the mean entropy of attention
distribution for each attention head (AH) for the encoding layer of the proposed RPE MHA
MT model for ADs. As illustrated, some focus on short-distance relations between input
tokens, whereas other MHA heads capture long-distance relations among input tokens.
Furthermore, the entropy of the attention distribution varies across the layers. Additionally,
the entropy of the attention distribution varies for AH in the same layer. As reported in
Figure 7, for the proposed model, the majority of the AHs that have an increased mean
attention span and much more stable values of attention distribution are located in Layer 4.
Nonetheless, a large mean attention distance does not mean stable attention distribution.
The preceding layers have multiple AHs with a large distance span, but a significantly less
consistent attention weight distribution. For instance, in Layer 3, AH five had the largest
mean attention span (4.11) but the lowest mean entropy score (0.38). AHs with an increased
mean attention distance span concentrate their attention on a word in duplicated sentences
that appear at various spots in the source sentence as demonstrated by Vig et al. [27].
This assists in describing the lower entropy of the weight distribution over the sentence
of the input tokens. AH that have stable or less stable weight distribution and a short
attention distance span particularly focus on nearby tokens. The AH with variable mean
attention distance and variable entropy permits the proposed model for ADs to efficiently
learn variable structure information across its layers. For the proposed model, the reverse
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positional encoding mechanism has a positive impact on the MHA sublayer in the encoder
layer. Figure 8 represents the mean average attention distance and entropy for all heads in
the MHA through the encoder layers. As illustrated in Figures 7 and 8, revealing the encoder
layers to the decoder network permits the encoder to understand the source knowledge
more reliably. Figure 8 shows the variation in the average mean attention distance span and
entropy of the attention weight distribution for various (AH) over various encoder layers.
As illustrated in Figure 8, the proposed RPE MHA NMT model concentrated on the (AH)
with a shorter span over layer 2≤ L ≤ These layers are used to learn the way to manage
contextual and local knowledge in the nearby area of the input source tokens. Layers 1 and
4 were responsible for learning the long-distance interaction between input source tokens.
Commonly, applying the RPE describes how the source information of AD is acquired over
several attention heads and layers in the encoder, as demonstrated by the entropy of the
attention weight distribution and attention distance. This enriches the effectiveness of the
proposed RPE MHA NMT model in comprehending the source information required to
enhance the quality of translation. This reveals the superiority of the proposed RPE MHA
NMT model over sequence-to-sequence architectures, such as the transformer-NMT model
for AD [15].
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4.11. Attention Analysis

The suggested RPE MHA NMT model presents a strategy for analyzing the align-
ment of terms in the resulting translation with terms in the source sentence. This strat-
egy is illustrated in Figure 9 by visualizing the annotation weights [29,30]. Every row
of the matrix displays the weights associated with annotations, with the x-axis repre-
senting the AD sentence and the y-axis representing the resulting sentence in the MSA.
This explains which parts of the source text were prioritized when the target text was
created. As illustrated in Figure 9, the alignment of terms between LEV Arabic and
MSA is homogeneous. Strong weights were observed in the diagonals of each matrix.
In addition, nonmonotonic and nontrivial alignments were observed. Usually, adjec-
tives, verbs, and nouns are ordered in different ways in Levantine Arabic and MSA, as
shown in the lower-right section of Figure 9. We can notice that the suggested model flu-
ently translates a Levantine Arabic phrase ( �

IjÖÞ� @
	
X @ é£@Q

	
¯ 	áK
PBðX ú



Í ©k. Pð 	áK
Qå

�
�« ù



ë)

“This is twenty and give me an exchange of two dollars please” into MSA sentence
(½Ê

	
�

	
¯ 	áÓ 	áK
PBðX

�
éº

	
¯ ú




	
æJ
¢«@ð PBðX 	áK
Qå

�
�« ¼Aë) “Here’s twenty dollars and give me two

dollars change please”. The suggested RPE MHA-based Neural MT model aligned the term
( 	áK
Qå

�
�« ù



ë) “This is twenty” with (PBðX 	áK
Qå

�
�« ¼Aë) “Here’s twenty dollars”. The suggested

model captured hidden semantics in a context such as (PBðX) “dollar” from the Levantine
AD source sentence and added it to the translated MSA sentence correctly. Furthermore,
the proposed RPE MHA NMT model handled and managed source and target phrases of
different lengths.
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5. Conclusions

This research project presented a reverse positional encoding multi-head attention
NMT model to translate AD sentences into MSA. The performance and efficiency of
the proposed model were optimized by learning it on machine translation tasks from
various ADs to the MSA. Exploiting the benefits of the new reverse-positional encoding
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mechanism improves the quality of the proposed neural MT model. The practical results of
this project prove important features for the RPE MHA NMT model, which exploits the
new RPE mechanism and optimizes the BLEU results for the LEV-MSA, MAG-MSA, Nile
Basin MSA, Gulf-MSA, and IRQ-MSA translation tasks. The use of the RPE mechanism
and sub-word units as an input features to the self-attention layer showed that these
two methods are important for low-resource language translation, such as Arabic dialects.
Furthermore, training the suggested approach with various settings, such as using multiple
heads in the multi-head attention layer, and experimenting with multiple encoders and
decoders, improved the translation efficiency of the proposed model. The results of practical
experiments on the LEV-MSA, MAG-MSA, Nile Basin MSA, Gulf-MSA, and IRQ-MSA
tasks illustrated that the proposed model enhanced the BLEU results compared with
other Arabic dialects NMT models. The analysis of experiments and results showed that
performance relied on the use of the RPE mechanism and the dimension of sub-word
embedding. Experimental analysis clarified that using the RPE method is beneficial in
that the global and local semantic information in the context is acquired using the MHA
sub-layer in every encoder layer. Furthermore, the proposed RPE MHA-based NMT model
can handle the issue of training data rarity. In addition, the suggested model addressed
the ADs syntactic issue, which is the free structure of the AD sentence. The suggested RPE
MHA-based NMT model, with the RPE mechanism and sub-word units as input features
to the self-attention layer, was able to deliver a high-quality translation for Arabic dialects.
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