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Abstract: This article is devoted to the problem of developing a kinetic model of a complex chemical
reaction using a parallel optimization method. The design of the kinetic model consists of finding the
kinetic parameters of the reaction, which cannot be calculated analytically, and since the chemical
reaction involves many stages, the optimization problem is multiextremal. As a chemical reaction,
the process of catalytic isomerization of the pentane-hexane fraction is considered, which is now
important due to the switch of the oil refining industry to the production of gasoline corresponding
to the Euro-5 standard. On the basis of known industrial data on the concentrations of reaction
components and the temperature at the outlet of the third reactor, the activation energies and pre-
exponential factors of each reaction stage were calculated. To solve the optimization problem, the
authors developed a parallel global search algorithm and a program based on Lipschitz optimization.
The kinetic parameters found made it possible to develop a mathematical model of the process, which
is in good agreement with industrial data. The developed mathematical model in future works will
make it possible to study the dynamics of the gas–liquid flow in the reactor unit, taking into account
diffusion and heat exchange processes through the catalyst layer.

Keywords: inverse problems of chemical kinetics; mathematical modeling; catalytic isomerisation;
Lipschitz optimization; black-box functions; parallel computing

MSC: 90C26; 65Y05

1. Introduction

Due to the transition of the domestic oil refining industry to the production of gasoline
conforming to the Euro-5 standard, reducing the content of aromatic hydrocarbons is an
urgent task, in particular benzene in motor fuel, while maintaining the octane value. In
connection with the transition of the oil refining industry to the production of motor gaso-
line conforming to Euro-5 and Euro-6 standards, the reduction of aromatic hydrocarbons
in motor fuel and, mainly, benzene, becomes an urgent task. At the same time, when
removing aromatic hydrocarbons, which are high-octane components, it is necessary to
preserve the octane number of gasoline. It is known that hydrocarbons with a branched
structure have a higher octane number than hydrocarbons with a linear structure. For
example, in n-pentane, the octane number according to the research method is 62 points
and in iso-pentane it is 93 points. On an industrial scale, catalytic isomerization units of
light paraffins have been introduced to produce hydrocarbons of an isomeric structure. The

Mathematics 2022, 10, 3665. https://doi.org/10.3390/math10193665 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193665
https://doi.org/10.3390/math10193665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5273-2471
https://orcid.org/0000-0001-6776-0096
https://orcid.org/0000-0002-8736-0652
https://orcid.org/0000-0001-6073-9585
https://orcid.org/0000-0003-4219-4870
https://doi.org/10.3390/math10193665
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193665?type=check_update&version=3


Mathematics 2022, 10, 3665 2 of 13

catalytic isomerization of light paraffins, in turn, makes it possible to obtain a high-octane
component of automobile gasoline with a minimum content of aromatic hydrocarbons. The
main advantage of this process is the production of high-octane gasoline, while aromatic
hydrocarbons are practically not formed. Straight-run gasoline fractions with boiling limits
of 62–70 °C containing mainly n-pentane and n-hexane, pentane-hexane fractions from
gas condensate or from gas fractionation plants, as well as catalytic reforming raffinates,
are used as feedstock for catalytic isomerization. Modern bifunctional catalysts are used
to carry out the process. In order to prevent coke deposition, the catalytic isomerization
process is carried out in a hydrogen-containing gas environment under pressure [1–3].

Computer information technologies are widely used in the modeling of production
processes and today it is difficult to imagine research activities without the use of modern
means of constructing and using models. Moreover, special attention is currently being
paid to the development of a detailed kinetic model of complex industrial processes [4–7].
Based on these models, it is possible to significantly increase the efficiency of the process
while utilizing minimal energy and material resources [8,9]. The main advantage of
such methods is the absence of additional costs for the construction of pilot plants. The
developed model should describe the process within a wide range of operating conditions,
have high flexibility and allow for changes and calculations of the composition of the
reaction mixture, etc.

The reactor unit of the catalytic isomerization unit of the pentane-hexane fraction is
the object of research in this work. The production process was carried out in a continuous
way. The reactor unit consisted of three consecutive reactors. The raw material was a
light gasoline fraction after hydrotreating. The catalyst of the process was a bifunctional
catalyst of the SI-2 brand. The total mass of the catalyst in the reactor unit was 27 tons
(9 tons in each reactor). The process was carried out at a constant pressure of 3.2 MPa.
For calculations, data for three days of operation of an industrial installation were taken.
Based on chromatographic analyses and mass flow rates for each day, the component
compositions of the reaction mixture were formed both at the entrance to the reactor unit
and at the exit from the reactor unit.

In [10] we already reviewed this process, but in order to simplify the model, the
scheme of chemical transformations, in particular hydrocracking reactions, have been
revised. Thus, the most probable hydrocracking reactions, based on the carbonium-ion
mechanism, were formed. The new transformation scheme implies the recalculation of the
kinetic parameters of the reaction, which form a mathematical model of the process.

In [10], a genetic algorithm was used to calculate kinetic parameters, and the cal-
culation time of kinetic parameters was about 10 h. Therefore, in order to develop a
mathematical model of a new transformation scheme, the question of choosing a more
effective optimization method arises.

In the complex problems of chemical kinetics, kinetic constants of reactions cannot be
found analytically; they can only be found using numerical methods (see, for example, [11]).
In this case, the quality criterion (objective function) is set in the form of a certain algorithm,
which includes the stage of numerical modeling, which, in turn, makes it computationally
intensive. Furthermore, in the inverse problems of chemical kinetics, the objective function
can be substantially multiextremal, i.e., having many local extremes along the global one.
Gradient-based optimization methods will not provide a good result for such problems.
On the one hand, such methods converge only to a local solution. On the other hand, in the
considered problem, the gradient of the objective function is not known analytically and its
numerical estimate will be a time-consuming operation.

Computational algorithms for solving such multiextremal problems (global optimiza-
tion methods) differ vastly from local optimization techniques since they require the study
of the entire search domain (see, for example, [12,13]). These methods can be divided into
two classes: metaheuristic and deterministic. Metaheuristic algorithms are usually based
on simulations of processes occurring in the wild. Examples of metaheuristic algorithms
are simulated annealing and evolutionary computing, etc. (see, for example, [14,15]). These
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algorithms are included in many software libraries for solving global optimization prob-
lems (for example, MATLAB Global Optimization Toolbox, Scipy.Optimize, etc.). Due to
the operation speed and low requirements for computing resources (in particular, mem-
ory), metaheuristic algorithms have become widespread for solving practical problems.
However, the solution to the problem found by such an algorithm is, in general, local, and
can be located far from the global optimum [16].

It is also possible to construct deterministic methods of global search, which are differ-
ent from brute force algorithms and metaheuristic algorithms. Such methods are associated
with the presence and consideration of a priori assumptions about the problem properties.
One of the natural assumptions about the problem is that changing the values of an ob-
jective function is limited by changes of its argument. In this case, the function satisfies
the Lipschitz condition, and the problem itself is called the Lipschitz global optimization
problem. The central direction of the development of modern methods of Lipschitz opti-
mization is the development of parallel algorithms. It is assumed that the values of the
objective function are determined as a result of solving some other task and require a
costly computational experiment. On many benchmarks, Lipschitz global optimization
methods outperform metaheuristic algorithms in terms of the number of correctly solved
problems [17,18].

This paper reflects the results of applying parallel methods of Lipschitz optimization
developed in [19–21] to the solution of inverse problems of chemical kinetics. The main
part of the paper is structured as follows.

Section 2 provides a description of the mathematical model of the chemical reaction
under study. Section 3 discusses the standard formulation of the Lipschitz global optimiza-
tion problem and the algorithm for solving it. Section 4 outlines the issues related to the
technical aspects of the implementation of the parallel algorithm. The physico-chemical in-
terpretation of the results of numerical calculations using the developed parallel algorithm
is presented in Section 5.

2. Mathematical Model

Let us consider the mechanism of chemical transformations of the isomerization of the
pentane-hexane fraction. The reaction consists of 48 reaction stages, which are presented
in Table 1. The following abbreviations were adopted: 2-MP is 2-methylpentane; 3-MP is
3-methylpentane; 2,2-DMB is 2,2-dimethylbutane; 2,3-DMB is 2,3-dimethylbutane; CH* is
cyclohexane; MCP is methyl cyclopentane; B is benzene; CP is cyclopentane.

The mathematical model of the chemical process is a non-linear system of differential
equations [10,22]:

dxi
dτ

=
J

∑
j=1

νijwj, i = 1, . . . , I, (1)

wj = k j

I

∏
i=1

( xi
F

)
, (2)

k j = k0
j exp

(
−

Ej

RT

)
, (3)

with initial values at τ = 0, xi(0) = x0
i , where νij are stoichiometric coefficients of stages of

the chemical reaction; J is the number of stages (J = 48), xi is the molar flow rate of the i-th
component of reaction, kmol/h; I is the number of components (I = 17); wj is the rate of
the j-th stage of reaction, kmol/(h·kg cat.), Ej is the activation energy of the reaction stage,
J/mol; R is the universal gas constant (R = 8.31 J/(mol·K), T is the temperature, K; k j are
pre-exponential factors, kmol/(h·kg cat.); τ is conditioned contact time, (kg cat.); F is the
total molar flow rate, kmol/h.
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The mathematical model involves parameters such as the raw material flow rate F in
the reactor and temperature T, but these two parameters also depend on τ; therefore it is
necessary to write equations on them because the technological process is non-isothermal:

dT
dτ

=
∑I

i=1

(
dxi
dτ
· ∆Hi

f ,T

)
∑J

i

(
xiCT

pi

) , (4)

dF
dτ

=
I

∑
i=1

xi
dτ

, (5)

with initial condition: at τ = 0, T(0) = T0, where T is the temperature, K, ∆Hi
f ,T is the

enthalpy of the i-th component formation at temperature T, J/mol, CT
pi

is the specific heat
capacity of the i-th component at temperature T, (J/mol·K), F is the mole discharge of the
flow, kmol/h.

Table 1. Chemical transformations of the catalytic isomerization of the pentane-hexane fraction.

Reaction Stages Reaction Stages

(1) n-C5H12→iso-C5H12 (25) n-C6H14→CH* + H2
(2) iso-C5H12→n-C5H12 (26) CH* + H2→n-C6H14

(3) n-C6H14→2-MP (27) 2-MP→MCP+ H2
(4) 2-MP→n-C6H14 (28) MCP + H2→2-MP
(5) n-C6H14→3-MP (29) 3-MP→MCP + H2
(6) 3-MP→n-C6H14 (30) MCP + H2→3-MP

(7) 2-MP→3-MP (31) 2,2-DMB→MCP + H2
(8) 3-MP→2-MP (32) MCP + H2→2,2-DMB

(9) 2-MP→2,2-DMB (33) 2,3-DMB→MCP + H2
(10) 2,2-DMB→2-MP (34) MCP + H2→2,3-DMB
(11) 2-MP→2,3-DMB (35) CP + H2→n-C5H12
(12) 2,3-DMB→2-MP (36) n-C5H12→CP + H2
(13) 3-MP→2,2-DMB (37) n-C4H10→iso-C4H10
(14) 2,2-DMB→3-MP (38) iso-C4H10→n-C4H10
(15) 3-MP→2,3-DMB (39) n-C5H12 + H2→C3H8 + C2H6
(16) 2,3-DMB→3-MP (40) n-C5H12 + H2→n-C4H10 + CH4

(17) 2,2-DMB→2,3-DMB (41) iso-C5H12 + H2→iso-C4H10 + CH4
(18) 2,3-DMB→2,2-DMB (42) n-C6H14 + H2→2C3H8

(19) B + 3H2→CH* (43) n-C6H14 + H2→n-C5H12 + CH4
(20) CH*→B + 3H2 (44) n-C6H14 + H2→n-C4H10 + C2H6
(21) B + 3H2→MCP (45) 2-MP + H2→iso-C4H10 + C2H6
(22) MCP→B + 3H2 (46) 3-MP + H2→iso-C5H12 + CH4

(23) CH*→MCP (47) 2,2-DMB + H2→iso-C5H12 + CH4
(24) MCP→CH* (48) 2,3-DMB + H2→iso-C5H12 + CH4

Thus, when solving the inverse kinetic problem, the direct problem is repeatedly
solved, which includes the numerical integration of Equations (1), (4) and (5). After finding
the numerical values of the molar flow rate xi, temperature T and total molar flow rate F,
these values are compared with the corresponding industrial data obtained during the three
days of operation of the catalytic isomerization unit [10], which is a minimization task:

FF =

∑I
i=1

∣∣∣∣∣y
exp
i − ycalc

i

yexp
i

∣∣∣∣∣
I

→ min, (6)

where I is the number of observed parameters (I = 19, of which 17 parameters are xi, one
parameter is T and one parameter is F), yexp

i are the industrial data, ycalc
i are the numerical

values of concentrations of reaction substances obtained by solving a direct kinetic problem.
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As a result of solving the inverse problem, the kinetic parameters k0
j and Ej included in

the Arrhenius Equation (2) will be obtained. Since the number of reaction stages is 48, the
kinetic model will contain 96 kinetic parameters (activation energy Ej and pre-exponential
multiplier k0

j for each stage); however, the authors decided to fix some of the parameters as
already known for chemical reasons, so the number of optimized parameters was reduced
to 24.

3. Parallel Algorithm for Solving Global Optimization Problems
3.1. Statement of the Global Optimization Problem

As stated above, from a mathematical point of view, the inverse problem of chemical
kinetics can be considered a Lipschitz global optimization problem. This fact has has
the following justification. We solve the ODE system (1)–(5) to compute the value of the
objective function (6). The right-hand side of the ODE system is continuous functions with
bounded derivatives. Thus, the system solution will also be continuous and bounded at
the bounded period of time. Therefore, the objective function (6) will satisfy the Lipschitz
condition, but the Lipschitz constant will be a priori unknown.

In general, the problem of the specified class can be formulated as follows:

φ∗ = φ(y∗) = min {φ(y) : y ∈ D}, (7)

D =
{

y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N
}

, (8)

where a, b ∈ RN are boundaries of the search domain, and the objective function φ(y)
satisfies the Lipschitz condition,

|φ(y1)− φ(y2)| ≤ L‖y1 − y2‖, y1, y2 ∈ D. (9)

The criterion φ(y) is assumed to be multiextremal and is given in the form of some
computational algorithm. This assumption is typical for many applied optimization prob-
lems (see, e.g., [23,24]). The input of this algorithm is supplied with a parameter vector,
and the output is the corresponding function value. Such functions are often referred to
as “black-box” functions. It is also assumed that each calculation of the function value at
the search domain point (hereinafter also referred to as trial) is a laborious operation and
requires significant computational resources. As noted in the introduction, this statement
of the problem fully corresponds to the inverse problem of chemical kinetics.

The Lipschitz condition (9) can be used to construct estimates of the function global
minimum, which can serve as a foundation for designing global optimization algorithms
and proving their convergence conditions (see, for example, [25]).

One of the main difficulties in solving Lipschitz global optimization problems is the so-
called “curse of dimensionality”—the exponential increase in the number of trials required
to solve a problem with a given accuracy, accompanied by the increasing dimensionality
of the problem. It is possible to smooth this effect while maintaining the accuracy of
the solution by constructing significantly uneven coverages of the search domain with
trial points.

Known examples of such methods are the DIvide RECTangles (DIRECT) algorithm [26],
the simplicial partitions algorithm [12], the diagonal partitions algorithm [13]. These
techniques are based on adaptive partitioning of the search domain into a finite number of
subdomains at each iteration. Then, the need for further subdivision for a more detailed
study of these subdomains is estimated (using the accumulated information about the
objective function). A fundamentally different approach to solving a multidimensional
problem (7) is its reduction to one or more one-dimensional problems followed by the use of
efficient methods of one-dimensional optimization. Such a reduction may be accomplished,
for example, by a recursive optimization scheme [27] or by Peano curves [28]. The latter
approach is used in this work.
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Using a continuous single-valued correspondence (Peano curve) y(x) of the real
axis segment [0, 1] onto hyperinterval D from (8), a multidimensional problem (7) can be
reduced to a one-dimensional one:

φ(y∗) = φ(y(x∗)) = min {φ(y(x)) : x ∈ [0, 1]}.

It is known [25,28] that the reduced one-dimensional function φ(y(x)) will no longer
be Lipschitzian, but will satisfy the Hölder condition:

|φ(y(x1))− φ(y(x2))| ≤ H|x1 − x2|1/N ,

where the Hölder constant H is associated with the Lipschitz constant L by the formula
H = 2L

√
N + 3.

Specific methods for the numerical construction of this kind of mapping (called
evolvents) are discussed in [25,28]. Here, we note that evolvent will approximate the
theoretical Peano–Hilbert curve with an accuracy of 2−m, where m is the parameter that
sets the approximation accuracy. Examples of evolvent for different dimensions are shown
in Figure 1.

(a)
(b)

Figure 1. Evolvents with m = 4 and (a) N = 2, (b) N = 3.

Thus, under this approach, the search trial at some point xk ∈ [0, 1] will consist of
constructing the image yk = y(xk) first, and only then of calculating the function value
zk = φ(yk). We will call the three values, {xk, yk, zk}, the trial result.

3.2. Asynchronous Parallel Algorithm Used to Determine the Global Minimum of a Function

The parallel algorithm used in this study is based on the information-statistical ap-
proach to the development of global optimization methods, the theoretical foundations of
which are set out in [25].

We have implemented an asynchronous paralleling scheme of the “master/worker”
type. The master process performs a global search algorithm, in which the search informa-
tion is accumulated. Then the Lipschitz constants for the objective function are estimated
on this basis, and the points of new trials are calculated and distributed over the work
processes. Worker-processes receive points from the master, carry out new trials in them,
and send the results of the trials to the master.

Let us assume that at each iteration, the master calculates one new trial point and
transfers it for processing to the worker. At the same time, a trial performed by a worker is
a much more labor-intensive operation than the selection of a new point by a master, which
eliminates the worker downtime. In this case, the total number of trials performed by each
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worker will depend on the labor intensity of the specific trial and cannot be estimated
in advance.

When describing a parallel algorithm, let us assume that there is one process master
and p workers. The superscript will indicate the serial number of the trial performed, and
the subscript will be used to number the trials in ascending order of the coordinate.

The initial iteration is carried out according to a special rule. The master process (let
us assume that this is the process No 0) initiates p parallel trials at p different points of the
search region, two of which are boundary points, and the rest are arbitrary internal points
(for example, uniformly distributed). Thus, the initial trials are carried out at the points
{y(x1), y(x2), . . . , y(xp)}, where x1 = 0, xp = 1, xi ∈ (0, 1), i = 2, . . . , p− 1.

Let us suppose that the master process has obtained the results of k trials, and at the
current time the worker processes are conducting trials at the points {y(xk+1), y(xk+2), . . . ,
y(xk+p)}.

Let one of the processes (without limiting the commonality, we can assume that this
is the process No 1), at some point in time, complete the trial at the point y(xk+1). The
remaining processes are at the stage of conducting their trials, i.e., at these points multiple
trials have already been initiated, but have not yet been finalized.

Then the No 1 process forwards to the master process the trial results, i.e., the three
values {xk+1, yk+1, zk+1}. The master saves the results in its information base and selects a
new trial point xk+p+1 for the process No 1 in accordance with the rules described below.

Step 1. Renumber the points of the set

Xk =
{

x1, x2, . . . , xk+p
}

,

which contains all the points at which the trials have either been carried out or are being
carried out by the lower index in ascending order, i.e.,

0 = x1 < x2 < · · · < xx+p = 1.

Step 2. Calculate values

M1 = max
{
|zi − zi−1|

(xi − xi−1)1/N : xi−1 /∈ Ik, xi /∈ Ik, 2 ≤ i ≤ k + p
}

,

M2 = max
{
|zi+1 − zi−1|

(xi+1 − xi−1)1/N : xi ∈ Ik, 2 ≤ i < k + p
}

,

M = max{M1, M2},

where zi = φ(y(xi)), if xi /∈ Ik, 1 ≤ i ≤ k + p. If the value M is 0, assign M = 1. The values
zi = φ(y(xi)) at xi ∈ Ik are undefined because the trials at xi ∈ Ik are not finished yet.

Step 3. For each interval (xi−1, xi), xi−1 /∈ Ik, xi /∈ Ik, 2 ≤ i ≤ k+ p, calculate the value

R(i) = rM∆i +
(zi − zi−1)

2

rM∆i
− 2(zi + zi−1),

called the characteristic of this interval. Here, ∆i = (xi − xi−1)
1/N , and r > 1 is the

reliability parameter of the method.
Step 4. Select the interval [xt−1, xt] with the highest characteristic value, i.e.,

R(t) = max{R(i) : xi−1 /∈ Ik, xi /∈ Ik, 2 ≤ i ≤ k + p}.

Step 5. Calculate the point xk+p+1 ∈ (xt−1, xt) according to the formula:

xk+p+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[
|zt − zt−1|

M

]N
.
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Immediately after calculating the point xk+p+1 of the next trial, the master appends it
to the set Ik and forwards it to the worker, which starts the trial at this point.

The master stops the algorithm if either the condition ∆t < ε (where t is the number
of the interval with the maximum characteristic from Step 4) or the condition k > Kmax
(where k is the number of trials performed) is met. The real number ε > 0 and the integer
Kmax ≥ 1 are the algorithm parameters which correspond to the accuracy of the solution
search and the maximum number of trials.

The sequential global search algorithm, on the basis of which the proposed asyn-
chronous algorithm was implemented, allows the following interpretation [29]. Using the
points of previously performed trials, it is possible to construct a minorant of the objective
function, for which the value −R(i), where R(i) is the value of the characteristics of the
interval (xi−1, xi), will be the value of the minorant at the point of its minimum at the
interval (xi−1, xi), 1 ≤ i ≤ k + p. In accordance with Step 4 of the algorithm, a new trial is
carried out in the interval with the lowest value of the minorant. In accordance with Step 5,
the point of the new trial coincides with the minorant minimum point.

The theory of convergence and various modifications of serial and parallel algorithms
are detailed in the monographs [13,25]. It should be noted that the asynchronous par-
allelization scheme described here, in contrast to the synchronous schemes used earlier
in solving a number of applied problems (see, e.g., [24]), provides a full load of all the
processes involved in solving problems with different labor intensities of trials at different
points in the search domain.

3.3. Features of the Software Implementation of the Parallel Algorithm

In our implementation of the global search algorithm, MPI is used to organize parallel
calculations. A process with the rank 0 acts as a master, processes with a rank other than 0
act as calculators (workers) (see the description of the algorithm in the previous section).

The principle of process interaction (Figure 2, link 1) is as follows. The first step in
the master process is to select p points for trials. The selected trial points are sent to the
calculators and the master enters the stand-by state for receiving messages. Messages
from the calculators contain the trial result. The obtained information is used to select the
point of the next trial. The new point is sent as a message to the calculator. If the stopping
condition is met in the algorithm, instead of the trial point, the master sends a shutdown
message to the calculator.

Figure 2. Implemented scheme of parallel computations (1—link via MPI, 2—link via streams).

Each process that performs the role of a calculator creates an instance of the task when
it starts, and then goes into a stand-by mode for messages from the master process. When
a message containing a trial point is received, a computational experiment is performed.
The results of the experiment are sent to the master. After the experiment, the process itself
continues to wait for new messages. When a shutdown message is received, the resources
used by the task are released and the main process is terminated.
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When implementing the asynchronous scheme, we assumed that the start time for
calculating the objective function values is different for each particular process. Our
implementation takes into account the fact that the trial point as well as the calculation
results represent a small amount of data that can be sent relatively quickly over the network.
As a result, basic point-to-point MPI message forwarding operations were used to interact
between the master and the calculators (Figure 2, link 1).

When conducting computational experiments (see next section), the solution of the
direct problem of chemical kinetics was performed using MATLAB. In the initial version of
the problem, each set of parameters required starting the MATLAB process, transferring
the trial point, as well as obtaining the results of computational experiments. A number of
additional settings have been made to reduce computing overhead. First, the source code
for the computational experiment was compiled into an executable application. Second,
the approach in which MATLAB received a trial point through input stream and returned
the results of the computational experiment through output stream was implemented. This
approach allowed each calculator to run a process with the compiled MATLAB code once,
intercept input and output streams, and then perform calculations without waiting for new
processes to start.

4. Numerical Experiments

The asynchronous parallel global search algorithm was implemented on C++; the
software was built on Intel MPI and Intel C++ compiler, version 2017.0.1 (Intel Corporation,
academic licence, https://www.intel.com, accessed on 1 September 2022). The objective
function of the problem to be solved was implemented in MATLAB 2019b (The Math-
Works, Inc., campus-wide academic license, https://matlab.mathworks.com, accessed on
1 September 2022). In order to check the stability of the developed parallel program, it
was launched on three different supercomputers: Lomonosov-2 (Moscow State University),
Lobachevsky (University of Nizhni Novgorod), and MVS-10P (Joint Supercomputer Center
of the RAS). The main part of the experiments was carried out on the Lomonosov-2 super-
computer with the following computer nodes characteristics: Intel Haswell-EP E5-2697v3
CPU (processor frequency 2.6 GHz, 14 cores), 64 GB of RAM, CentOS 7 operating system.

To solve the optimization problem, a combination of the parallel global search algo-
rithm and a local optimization method was used. In the first stage of the search, the parallel
asynchronous algorithm described in Section 3 was used. The core parallel global search
algorithm is available on GitHub, https://github.com/UNN-ITMM-Software/gsa_nlp_
solver (accessed on 1 September 2022). One hundred and one processes were involved
in the launch, of which one process was a master and the remaining 100 were workers
(calculators). The values of the method parameters were set as follows: the maximum
number of trials Kmax = 3000, the search accuracy ε = 10−3, the reliability parameter r = 3,
the evolvent accuracy parameter m = 12. At the second stage, the solution was refined
using the Hooke–Jeeves pattern search method (see, e.g., [30]) with an accuracy of ε = 10−4

and a limit on the number of trials Kmax = 500. The total time for solving the problem was
8109 s and an optimum point was found with the objective function value φ∗ = 0.002115.
Thus, using the developed algorithm, the inverse problem of chemical kinetics was solved
and the kinetic parameters of the reaction were found, which are given in Table A1.

5. Discussion

After the development of the kinetic reaction model, it is necessary to check the
adequacy of the model; this procedure can be carried out using a direct kinetic problem.
Substituting the found kinetic values k0

j and Ej into the system (1)–(5), the direct problem
of chemical kinetics was solved and the concentrations of reaction substances xi and
temperature T were found (Figures 3 and 4).

Figures 3 and 4 show graphs of changes in the concentrations of individual components
of the reaction and temperature changes in the reactor unit. It should be noted that in the
figures the vertical lines separating the graphs characterize three consecutive reactors (I,

https://www.intel.com
https://matlab.mathworks.com
https://github.com/UNN-ITMM-Software/gsa_nlp_solver
https://github.com/UNN-ITMM-Software/gsa_nlp_solver
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II, III). The initial data on the concentrations of the components were known only at the
entrance to reactor I and at the exit from reactor III. The concentrations of components at
the outlet of reactor III are marked with a marker in the figures.
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Figure 3. Changes in concentrations of (a) n-pentane (n-C5) and n-hexane (n-C6), (b) isopentane
(i-C5), 2-methylpentane (2-MP), 3-methylpentane (3-MP), 2,2-dimethylbutane(2,2-DMB), and 2,3-
dimethylbutane (2,3-DMB).
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Figure 4. Changes in (a) concentrations of benzene, cyclohexane (CH*), methyl cyclopentane (MCP),
and cyclopentane (CP), (b) temperature.

Figure 3a shows that the concentrations of n-pentane and n-hexane are continuously
decreasing. This is mainly due to the transformation of the alkanes with a normal (linear)
structure into the corresponding isomers, which is reflected in Figure 3b. With the transfor-
mation of n-pentane, everything is natural, since only one isomer is known. In the case of
n-hexane, everything is somewhat different: first, the conversion of n-hexane into isomers
2-methylpentane and 3-methylpentane is carried out and the latter are further converted
into 2,2-dimethylbutane and 2,3-dimethylbutane.

In Figure 4a, it can be seen that the concentration of cyclopentane in reactor I gradually
decreases to zero. The decrease in cyclopentane concentration can be explained by the
hydrogenation reaction to n-pentane. According to Figure 3a, this is probably the reason
for the increase in the concentration of n-pentane at the beginning of reactor I. Additionally,
this figure shows a sharp decrease in the concentration of benzene, presumably due to
hydrogenation reactions.

Figure 4b shows a graph of temperature changes in reactors I–III. According to the
technological scheme, refrigeration equipment for cooling the reaction mixture is installed
after reactor II; therefore, a sharp decrease in temperature is observed when the catalyst is
18 tones. A gradual increase in temperature in reactors III here indicates the presence of
isomerization reactions that occur with a slight exothermic effect.

It is worth noting that the composition of the products at the outlet of the last reactor
and the temperature differences in all reactors are close to the industrial data. Thus, these
facts may indicate the adequacy of the model we have developed.
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6. Conclusions

To summarize, the problem of developing a kinetic model for the process of catalytic
isomerization of the pentane-hexane fraction using a parallel optimization method was
considered. Due to the switch of the oil refining industry to the production of gasoline with
the Euro-5 standard, this process is becoming important. On the basis of known industrial
data on the concentrations of reaction components and the temperature at the outlet of
the third reactor, the inverse problem of chemical kinetics was solved, and the activation
energies and pre-exponential factors of each reaction stage were calculated. To solve the
optimization problem, the authors have developed a parallel global search algorithm
and a program based on Lipschitz optimization. The kinetic parameters found made it
possible to develop a mathematical model of the process, which is in good agreement with
industrial data.

The future plan is to study the dynamics of the gas–liquid flow in the reactor unit for
the process of catalytic isomerization of the pentane-hexane fraction, taking into account
diffusion and heat exchange processes through the catalyst layer.
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Appendix A

The Table A1 is a numerically calculated kinetic parameters of a chemical reaction.
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Table A1. Kinetic parameters of the catalytic isomerisation reaction of the pentane-hexane fraction,
according to the scheme of chemical transformations (Table 1).

No E, kcal/mol log k0 No E, kcal/mol log k0

1 149.320 18.492 25 141.046 5.799
2 129.372 15.604 26 80.093 4.401
3 108.439 9.286 27 177.947 3.694
4 87.168 9.002 28 92.282 10.670
5 123.830 14.203 29 159.368 16.169
6 162.603 17.997 30 97.215 9.612
7 161.429 17.114 31 188.306 7.194
8 142.261 12.667 32 111.789 11.467
9 127.715 12.130 33 124.370 12.764
10 96.409 11.318 34 101.952 6.352
11 64.223 7.214 35 131.079 16.427
12 94.973 8.388 36 177.771 11.250
13 174.387 7.600 37 72.632 15.123
14 161.502 18.146 38 67.167 14.013
15 98.296 11.305 39 230.976 12.798
16 104.987 11.499 40 214.539 13.532
17 42.264 3.622 41 291.967 26.096
18 45.070 5.530 42 185.864 20.281
19 162.126 21.057 43 134.411 14.229
20 231.848 28.391 44 82.0120 8.262
21 245.107 28.488 45 388.331 17.056
22 204.298 23.176 46 286.722 18.898
23 53.493 5.911 47 356.242 5.148
24 252.728 1.600 48 355.642 9.141
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