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Abstract: There is a great deal of literature devoted to mathematical models of corruption, including
corruption in auctions. However, the relationship between the seller and the auctioneer is not
studied sufficiently. The research aim is to analyze such relations in a game theoretic setup. We
built a difference game theoretic model in normal form that describes possible collusion between an
auctioneer and participants of an auction. The auctioneer acts on behalf of a seller. The seller can
control possible collusions by administrative and economic mechanisms. The probability of detection
depends on audit cost. We consider four cases of absence/presence of the collusion and those of the
audit. The model is investigated numerically by simulation modeling using an original method of
qualitatively representative scenarios. Several conclusions are made: factors of corruption are low
probability of detection, small penalty, and big corruption gain of the auctioneer.
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1. Introduction

Corruption is traditionally defined as the “misuse of a position of trust for dishonest
gain”. Most papers devoted to the modeling of corruption use Gary Becker’s idea [1] that
struggle with any crime is effective when the utility of prevention of the crime is greater
than the respective costs. This economic approach was adapted to corruption by Susan
Rose-Ackerman and other authors [2–5]. Good reviews are proposed in [6–8]. Most papers
use static game theoretic models in normal form or multi-step games; some of them are
based on dynamic control models with one or several agents [9].

Interesting modern mathematical models of corruption are based on multi-agent
approach and mean field game theory [10–12]. Games of inspection and corruption are de-
scribed in the literature [13,14]. Kolokoltsov [12] develops an evolutionary games approach
further in a setting of the two-level hierarchy, where a local inspector can be corrupted and
is further controlled by the higher authority.

A big stream of literature is concerned with corruption in auctions. In the general
case, the players are a seller (principal), an auctioneer who acts on behalf of the seller
(supervisor), and auction participants (agents). An illustrative historical example with a
famous personality, Goethe, is described in [15]. Many modern cases from real life are also
documented, especially in construction and procurement auctions [16].

Most papers discuss collusion among agents when the interests of the seller and the
auctioneer coincide [17–22]. Graham and Marshall [17] studied collusive bidder behavior
at single-object second price and English auctions. Mailath and Zemsky [18] considered
heterogeneous bidders, and McAfee and McMillan [19] formalized bidding rings. Repeated
auctions are analyzed in [20,22]. Athey et al. [21] presented evidence from timber auctions.

A smaller amount of literature focuses on collusion between the auctioneer and
the agents. This kind of corruption can only occur if the seller delegates the sale to an
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auctioneer, and their interests may not coincide. This literature can be subdivided into
three directions [16].

The first one was introduced in a seminal paper by Laffont and Tirole [23]. They
assumed that the auctioneer could assess complex multidimensional bids and was predis-
posed to a particular agent. That framework was developed in [24,25]. The authors showed
that corruption, counter-intuitively, may increase if the number of competing agents in-
creases. Additionally, corruption may entail inefficiency proportional to the manipulation
by an auctioneer.

A second branch investigates a particular form of bid rigging when the auctioneer
grants a “right of first refusal” to a favored agent. Then, in a first-price auction, the
favored agent plays in fact a second-price auction, whereas the other agents pay their bid if
they win. A positive feature of that approach is that it explains how corruption destroys
efficiency. However, this advantage is lost when the selection of the favored agent becomes
endogenous. Besides, the corrupt auctioneer should contact all agents to select the favored
one. Naturally, the risk of detection and punishment increases [26,27].

The third branch of the literature supposes that the auctioneer arranges bid rigging
after he has observed all the bids. This permits him to contact only one–two agents and
select the one whose collaboration promises the highest profit [16,28].

Serious attention to the modeling of corruption is analyzed by the theory of sustainable
management [29,30]. The author’s approach is presented in detail in [31]. A method of
qualitatively representative scenarios in simulation modeling is described in [32]. Different
game theoretic models of corruption and their computer simulation are analyzed in [33–35].

In this paper, we follow the third branch of literature characterized above and study
a possible collusion between an auctioneer and the agents. However, the players in a
built game theoretic model are the auctioneer and the seller who uses administrative and
economic mechanisms to control the corruption. The research aim is to analyze such
relations in a game theoretic setup.

The contribution of this paper is as follows:

- We build a dynamic game theoretic model of collusion in auctions.
- We formalize administrative and economic control mechanisms used by a seller to

detect the collusion.
- Several model examples for different model parameters are numerically simulated.

For this purpose, the author’s method of qualitatively representative scenarios [31]
is used.

- Some dependences between model parameters and possible corruption behavior of
an auctioneer are elicited.

Section 2 introduces the game theoretic model and its information structure. Section 3
presents the numerical simulation results for different model parameters. Section 4 summa-
rizes the results and outlines further research.

2. Game Theoretic Model

Assume that a set of agents N = {1, 2, . . . , n} takes part in different auctions during
several years t = {1, 2, . . . , T}. Denote by bt

ij a bid of the agent i in the auction j in the year
t. A matrix Bt = ||bt

ij|| and a vector m(t), of which components describe a number of
auctions in the year, t are given by a scenario as structural model parameters, as well as
values n and T.

A seller S (she) and an auctioneer A (he) are the players. In each auction, the seller
entrusts the auctioneer to sell by her name a unique indivisible good (a lot) for a maximal
possible price. It is assumed that in each auction, j in each year t the auctioneer can propose
to the agent with a maximal bid bt

max,j = max
1≤i≤n

bt
ij to win in the auction with the next bid

bt
∗j = max

i 6=max
bt

ij. In this case, the agent always accepts the proposal (enters a collusion). Then,



Mathematics 2022, 10, 3653 3 of 11

the auctioneer receives a share α from the difference ∆t
j = bt

max,j − bt
∗j (corruption gain),

and the winner agent takes the rest.
Introduce an indicator of corruption (collusion) for an auction j in the year t

Ct
j =

{
1, there is a collusion,
0, collusion is absent.

For the struggle with corruption, the seller uses administrative and economic con-
trol mechanisms. The administrative mechanism consists in sample audits of a possible
collusion. A probability of detection pt

j of the collusion is a function of the audit cost ct
j:

pt
j = p(ct

j). The function p increases monotonically, p(0) = p0, 0 < p0 << 1, lim
c→∞

p(c) = 1.

In the case of detection, the auction is cancelled, and the auctioneer pays a very big penalty
M >> 1. This penalty makes his economic activity senseless, and in fact, the auctioneer
cannot organize auctions anymore. However, if a collusion is not detected, then the seller
loses her expenditure for the audit.

Introduce an indicator of audit for an auction j in the year t

It
j =

{
1, audit is conducted,

0, audit is not conducted.

The economic control mechanism consists in that the seller proposes to the auctioneer
a share in the profit of sale (a constant reward of the auctioneer is not considered in this
model). Thus, if the collusion is absent, then the auctioneer receives st

jb
t
max,j, and if the

collusion is present, then he receives st
jb

t
∗j + α∆t

j = αbt
max,j + (st

j − α)bt
∗j.

So, for an auction, the conditions of advantages for the auctioneer to be honest are

st
jb

t
max,j ≥ αbt

max,j + (st
j − α)bt

∗j, or st
j ≥ αbecause bt

max,j > bt
∗j.

Given the made assumptions, the payoffs of both players at an auction j in the year t
for different values of the indicators of corruption and audit are the following:

It
j = Ct

j = 1

S11
jt = pt

j(M− ct
j) + (1− pt

j)[(1− st
j)b

t
∗j − ct

j ]

A11
jt = −Mpt

j + (1− pt
j)(s

t
jb

t
∗j + α∆t

j)

It
j = 1, Ct

j = 0

S10
jt = (1− st

j)b
t
max,j − ct

j

A10
jt = st

jb
t
max,j

It
j = 0, Ct

j = 1

S01
jt = (1− st

j)b
t
∗j

A01
jt = st

jb
t
∗j + α∆t

j

It
j = Ct

j = 0

S00
jt = (1− st

j)b
t
max,j

A00
jt = st

jb
t
max,j

Let us remind some notions from game theory. A game in normal form is defined
as a triple (N, X, u), where N = {1, . . . , n} is a finite set of players; X = X1 × . . .× Xn is
a set of feasible outcomes; x ∈ X is an outcome; x−i = (x1, . . . , xi−1, xi+1, . . . , xn); Xi is a
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set of feasible strategies of the i-th player; xi ∈ Xi is a feasible strategy; u = (u1, . . . , un);
ui : X → R is a payoff function of the i-th player. An outcome xNE is a Nash equilibrium if
∀i ∈ N ∀xi ∈ Xi ui(xNE) ≥ ui(xi, xNE

−i ).
Thus, we receive a game in normal form between the seller and the auctioneer:

JS =
T

∑
t=1

m(t)

∑
j=1

e−ρt
{

It
j [C

t
j S

11
jt + (1− Ct

j )S
10
jt ] + (1− It

j )[C
t
j S

01
jt + (1− Ct

j )S
00
jt ]
}
→ max

It
j ∈ {0, 1}, j = 1, . . . , m(t), t = 1, . . . , T;

JA =
T

∑
t=1

m(t)

∑
j=1

e−ρt
{

Ct
j [I

t
j A11

jt + (1− It
j )A10

jt ] + (1− Ct
j )[I

t
j A01

jt + (1− It
j )A00

jt ]
}
→ max

Ct
j ∈ {0, 1}, j = 1, . . . , m(t), t = 1, . . . , T.

The information structure of this game is the following.

1. The values of n and T, vector m(t), matrices Bt = ||bt
ij||, St = ||st

j ||, CCt = ||ct
j ||,

j = 1, . . . , m(t), t = 1, . . . , T, and the function p(c) are given.
2. The seller and the auctioneer choose simultaneously and independently the matrices

||It
j || and ||Ct

j ||, j = 1, . . . , m(t), t = 1, . . . , T.

3. The payoffs JS and JA are calculated.

The research task is to implement a computer simulation with the built game theoretic
model for a comparative analysis of the efficiency of strategies I and C for different values
of the structural parameters n, T,Bt,m(t), and the control parameters st

j, ct
j. For planning

the simulation experiments, we use the author’s method of qualitatively representative
scenarios [32].

3. Simulation Modeling

We used an original method of qualitatively representative scenarios (QRS) in sim-
ulation modeling [32]. An initial QRS set contains a small number of scenarios. It is
assumed that if they are chosen well, then it is enough to receive an acceptable forecast of
the controlled system dynamics. To prove the representativeness, we check the conditions
of internal and external stability of the QRS set. Internal stability means that for any two
scenarios from the QRS set, the respective payoffs of the players differ essentially. External
stability means that for any scenario that does not belong to the QRS set, there is a scenario
from this set such that the difference of the payoffs is small. The QRS set is corrected until
both conditions are satisfied.

From now on, we fix the discount factor ρ = 0.1, the number of agents n = 3, the game

length T = 3, and suppose that the value pt
j =

ct
j

bt
maxj
∈ [0.1, 0.9].

Example 1. In the first example, we consider a simple case when the bids are the same
for any auction and year. Namely,

B1 =

10 20 40
10 20 40
10 20 40

, B2 =

10 20 40
10 20 40
10 20 40

, B3 =

10 20 40
10 20 40
10 20 40

,

i.e., the first agent bids $10, the second agent bids $20, and the third agent bids $40 in each
auction and each year.

Additionally, fix m(t) ≡ 3, M = 10, and

S =

0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

, c =

1 1 1
1 1 1
1 1 1

.
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For these parameters independently of α for Iij = 0 and Cij = 0, we receive JS = 294.145,
and JA = 32.683. The results for Cij = 1, Iij = 1 are given in Table 1.

Table 1. Players’ payoffs for the chosen strategies Cij = 1, Iij = 1.

α JS JA

0.1 137.268 29.823
0.2 137.268 45.756
0.3 137.268 61.689
0.4 137.268 77.622
0.5 137.268 93.555
0.6 137.268 109.487
0.7 137.268 125.420
0.8 137.268 141.353
0.9 137.268 157.286

Example 2. In this example, we fix the following parameters and find the optimal
strategies of the players and the respective payoffs in dependence of the penalty value are
presented in Tables 2–4. Suppose that m(t) = 3, α = 0.5.

B1 =

10 14 16
8 10 12
6 8 16

, B2 =

12 10 14
14 16 8
12 6 10

, B3 =

20 18 16
12 16 20
20 18 16

,

S =

0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5

, c =

 1 2 4
6 8 10

12 14 16

.

Table 2. Players’ optimal strategies and payoffs in dependence of the penalty value M.

M JS JA I C

1 89.180 75.243
0 0 0

1 1 1
1 1 1

 0 0 0
1 1 1
1 1 1


10 148.984 66.546

0 1 1
1 1 1
1 1 1

 0 1 1
1 1 1
1 1 1


100 65.564 64.323

0 0 0
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0


1000 65.564 64.323

0 0 0
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0



Table 3. Players’ optimal strategies and payoffs in dependence of the value of α.

α JS JA I C

0.1 66.016 57.971
0 0 0

0 0 1
0 0 0

 0 0 0
0 0 1
0 0 0


0.3 65.326 58.144

0 0 0
1 0 1
0 0 0

 0 0 0
1 0 1
0 0 0


0.5 65.326 59.324

0 0 0
1 0 1
0 0 0

 0 0 0
1 0 1
0 0 0


0.9 65.326 64.323

0 0 0
1 0 1
0 0 0

 0 0 0
1 0 1
0 0 0
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Table 4. Players’ optimal strategies and payoffs in dependence of the audit cost.

No c JS JA I C

1 ct
j = 0 47,619 12,658

1 1 1
1 1 1
1 1 1

 0 0 0
0 0 0
0 0 0


2 c1

1 = 1 otherwise ct
j = 0 47.326 15.14

0 1 1
1 1 1
1 1 1

 1 0 0
0 0 0
0 0 0


3 ct

j = 1 46,231 52.91
0 0 0

0 0 0
0 0 0

 0 0 0
0 0 0
0 0 1


4 ct

j : pt
j = 0.1 45.387 14.542

0 1 0
1 0 0
1 1 0

 0 0 0
1 0 1
0 0 0


Thus, there is a maximal value of the penalty that encourages the auctioneer to enter a

collusion. If the penalty is greater that this value, then it is more advantageous to be honest.
Example 3. In this example, we fix the same parameter values as in the previous one

but also assume that M = 10. Now we vary the parameter α from 0.1 till 0.9.
In dependence of the value of α, it becomes advantageous for the auctioneer to enter a

collusion with agents having certain parameters. Therefore, with an increase in the share
of the auctioneer in the payoff from a corrupt collusion, the total gain of the auctioneer
and the likelihood of corruption increase. Further, this statement makes sense if the seller
spends quite a bit to check collusion at the next auction.

Example 4. In this example, we examine a dependence of I and C on the audit cost.
Suppose that m(t) = 3, α = 0.5,

B1 =

2 4 6
8 5 4
6 3 2

, B2 =

6 3 5
4 8 3
2 5 6

, B3 =

3 7 2
5 5 7
3 4 3

, S =

0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

.

Naturally, if the seller has zero audit cost, then she detects each auction in each
year. For the given bids, a collusion is not advantageous for the auctioneer. If probability
of detection is equal to 0.1, then the conclusion is more interesting: both collusion and
detection depend directly on the difference between the maximal bid and the next one.

Example 5. Let us vary the share of the auctioneer si
j : 0 ≤ si

j < 1 for each auction and
in each year. In this case, the bids of the auction participants are not so important to us, so
we will use the values of the parameters from example 1 and try to find how the payoffs
and strategies will change. You can find the results in Table 5 below.

From the calculations in Table 5, we see that, predictably, along with an increase in
the share of the auctioneer, his payoff increases, but along with this, it can also be seen
that si

j affects the strategies of the auction participants. So, with an increase in the share of
the auctioneer in payoffs, the share of the seller decreases, along with this, it becomes less
profitable for her to spend money on checking collusion in the next auction. We can notice
that starting from a share of 0.2, the auctioneer colludes with the players, and the number
of collusions only increases with the increase in the share of the auctioneer. As a result,
with a share of 0.9, the auctioneer colludes with the players in each auction and in each
year. That is, with the selected parameters, the auction–seller economic control method
works in the opposite direction. Since the penalty remains unchanged in this example,
it becomes profitable for the auctioneer to risk colluding with the bidder in the hope of
making even more profit as the profit from the share in the sale increases. Therefore, with
an increase in the share of the auctioneer and his profit, it makes sense to increase the
penalty for collusion.
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Table 5. Players’ optimal strategies and payoffs in dependence of the auctioneer share.

No si
j JS JA I C

1 0 314.4 23.43
1 1 1

1 1 1
1 0 0

 0 0 0
0 0 0
0 0 0


2 0.1 287.15 44.68

1 1 1
1 1 1
0 0 0

 0 0 0
0 0 0
0 0 0


3 0.2 258.46 69.37

1 1 1
1 1 0
0 0 0

 1 1 0
0 0 0
0 0 0


4 0.3 228.78 98.05

1 1 1
1 1 0
0 0 0

 1 1 1
0 0 0
0 0 0


5 0.4 196.1 130.73

1 1 1
1 0 0
0 0 0

 1 1 1
0 0 0
0 0 0


6 0.5 163.41 172.13

1 1 1
0 0 0
0 0 0

 1 1 1
1 0 0
0 0 0


7 0.6 130.73 196.1

1 1 0
0 0 0
0 0 0

 1 1 1
1 1 0
0 0 0


8 0.7 65.37 261.462

1 0 0
0 0 0
0 0 0

 1 1 1
1 1 1
0 0 0


9 0.8 32.68 294.15

0 0 0
0 0 0
0 0 0

 1 1 1
1 1 1
1 0 0


10 0.9 2.97 326.83

0 0 0
0 0 0
0 0 0

 1 1 1
1 1 1
1 1 1


Example 6. Let us now look at the dependence of the strategies and payoffs of the

players depending on the discount factor ρ. For the calculation, we will use the parameters
from example 1. The calculation results are presented in Table 6.

Table 6. Players’ optimal strategies and payoffs in dependence of the discount factor ρ..

No ρ JS JA I C

1 0.1 215.89 130.73
1 1 1

1 1 1
1 1 1

 1 1 1
1 1 1
1 1 1


2 0.2 197.12 119.47

1 1 1
1 1 1
1 0 0

 1 1 1
1 1 1
1 0 0


3 0.3 181.17 109.9

1 1 1
1 1 0
0 0 0

 1 1 1
1 1 0
0 0 0


4 0.4 167.57 101.74

1 1 1
0 0 0
0 0 0

 1 1 1
0 0 0
0 0 0


5 0.5 155.95 94.77

1 1 0
0 0 0
0 0 0

 1 1 0
0 0 0
0 0 0


6 0.6 146.0 88.8

1 0 0
0 0 0
0 0 0

 1 0 0
0 0 0
0 0 0


7 0.7 137.45 83.67 (0) (0)
8 0.8 130.1 79.26 (0) (0)
9 0.9 118.26 72.15 (0) (0)
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Given such parameters, with an increase in the discount factor, the gains of the seller
and the auctioneer fall. It becomes less profitable for the seller to spend money on checking
the next auction, and for the auctioneer to collude because of the decreasing benefits
compared to the fine. At the maximum values of the discount coefficient, it becomes not
at all profitable for the seller to spend funds on checking auctions, and the auctioneer to
collude to obtain additional profit.

Example 7. Let us study the dependence of the winnings and strategies of the auction
participants on the size of the players’ bids. To do this, we take the initial values of the bets
of each player as it follows:

B1 =

1 2 4
1 2 4
1 2 4

, B2 =

1 2 4
1 2 4
1 2 4

, B3 =

1 2 4
1 2 4
1 2 4

.

We are interested to see how, with fixed parameters, and how the strategies of the
seller and the auctioneer will change with a proportional increase in the difference in the
bids of the auction participants. Therefore, we introduce a multiplier ν : ν = 1, . . . , 10 for
the players’ rates νBi and calculate the optimal strategies and payoffs of the auctioneer
and the seller for each νBi, i = 1, . . . , 3. The calculation results are presented in Table 7.

We suppose that m(t) = 3, α = 0.3 and S =

0.5 0.2 0.1
0.4 0.5 0.2
0.4 0.4 0.1

,c =

1 2 1
3 1 2
2 3 1

.

Table 7. Optimal strategies of auction participants and their payoffs depending on the bid size.

ν JS JA I C

1 19.61 13.07
0 0 0

0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0


2 39.22 26.15

0 0 0
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0


3 57.83 40.42

1 0 0
0 1 0
0 0 0

 0 1 0
0 0 0
0 0 0


4 77.44 53.89

1 0 0
0 1 0
0 0 0

 0 1 0
0 0 0
0 0 0


5 95.32 69.09

1 0 0
0 1 0
0 1 0

 0 1 1
0 0 0
0 0 0


6 113.29 84.87

1 0 0
0 1 0
1 1 0

 0 1 1
0 0 0
0 0 1


7 132.91 99.01

1 0 0
0 1 0
1 1 0

 0 1 1
0 0 0
0 0 1


8 149.81 116.06

1 0 0
1 1 0
1 1 0

 0 1 1
0 0 1
0 0 1


9 169.41 130.57

1 0 0
1 1 0
1 1 0

 0 1 1
0 0 1
0 0 1


10 189.021 145.072

1 0 0
1 1 0
1 1 0

 0 1 1
0 0 1
0 0 1


From the results in Table 7, we see that with an increase in rates, that is, an increase in

the value of an item sold at an auction, the likelihood of corruption and the expediency of
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inspections increase. You can also notice that as the rates increase, the seller begins to check
the auctions for which the cost of checking is minimal, and the share of the auctioneer is
maximal. The auctioneer, in turn, colludes in those cases when his share is maximal in
the auctions in which it is not profitable for the seller to conduct an audit. As a result,
we get a situation in which it is beneficial for the seller to check those auctions in which
the auctioneer does not collude with the auction participants. On the other hand, if the
seller had not carried out these checks, then the auctioneer would have colluded in these
competitions and would have received a large profit, while the seller would have lost more
than he would spend on checking the auctions.

Example 8. Now let us see how the strategies of the players change depending on
the probability of being caught, which is a function of the costs of its implementation.
For calculations, we will use the parameters from example 2. The calculation results are
presented in Table 8.

Table 8. Optimal strategies of auction participants and their payoffs depending on the probability
of capture.

No p(ct
j) JS JA I C

1
(

ct
j+0.1
ct

j+1

)1/10
161.06 41.12

1 1 1
1 1 1
1 1 1

 0 0 0
0 0 0
0 0 0


2

(
ct

j+0.1
ct

j+1

)1/2
153.4 45.91

0 0 1
1 1 1
1 1 1

 1 0 0
0 0 0
0 0 0


3 ct

j+0.1
ct

j+1
145.92 66.55

0 0 0
1 1 1
1 1 1

 1 1 1
0 0 0
0 0 0


4

(
ct

j+0.1
ct

j+1

)2
131.71 71.08

0 0 0
0 0 0
1 1 1

 1 1 1
1 1 1
0 0 0


5

(
ct

j+0.1
ct

j+1

)10
122.21 82.31

0 0 0
0 0 0
0 0 0

 1 1 1
1 1 1
1 1 1


The seller and the auctioneer change their strategies depending on the growth rate of

the catch probability function. So, if the probability of being caught is high enough and the
cost of checking auctions is relatively low, then it is beneficial for the seller to check each
auction (note that the cost of checking in our example increases with each auction held). In
the last line in Table 8, we see that the seller does not conduct any checks at all, because in
order to achieve the same probability of capture as for the function from line 1 of Table 8,
the seller will have to spend a multiple of more resources, which is not comparable with
respect to the potential win.

So, we have considered the main examples for the auction corruption model. We
did not increase the number of auctions per year and the number of years considered,
because for such calculations, it would take much more time and serious revision of the
program algorithm, because the number of considered cases increases exponentially. It
makes sense to reduce the number of participants in the competition to two to simplify
the computational process and at the same time, to vary several parameters with more
auctions in one year. In addition, the above examples allow us to understand and evaluate
the model of corruption at the auction and draw some conclusions for further research.

4. Conclusions and Future Work

In every auction, there is a maximal value of penalty M, depending on the model
parameters, for which it is advantageous for the auctioneer to organize a collusion for any
strategy of the agents. If the penalty is greater than M, then it is more advantageous for him
to be honest. Additionally, the greater is α (in fact, a share of the auctioneer in the difference
of the first and the second bid), the more advantageous for him to enter a collusion. Thus, a
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probability of collusion is proportional to the corruption gain of the auctioneer. Depending
on the share of the auctioneer, he may collude with the bidders for more profit if the profit
from such collusion is greater than the expected penalty for the collusion itself. Therefore,
increasing only the share of the auctioneer in the hope that he will have enough profit
will not protect against the emergence of corruption. With an increase in the share of the
auctioneer, it is also necessary to increase the cost of checking corruption and the amount
of the fine in case of capture.

Thus, factors of corruption are low probability of detection, small penalty, and big
corruption gain of the auctioneer. This result is quite expected but it confirms the model
adequacy and allows for its development.

Certainly, the used methodology has some limitations and constraints. The method
of qualitatively representative scenarios in simulation modeling is rather a heuristic one.
There are still no strict estimates of its precision. Additionally, the external stability cannot
be checked completely, and the number of required tests is also unknown.

The following areas of further research seem interesting.

1. To conduct more simulation experiments and to elicit additional connections between
the model parameters.

2. To prove internal and external stability (qualitative representativeness) of the sets of
simulation scenarios [32].

3. To investigate analytically several specific cases of the considered game theoretic model.

The results of investigation can be used by organizers of different auctions and tenders,
especially in public procurement.
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