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Abstract: In order to solve the problem in which structurally incoherent low-rank non-negative
matrix decomposition (SILR-NMF) algorithms only consider the non-negativity of the data and do not
consider the manifold distribution of high-dimensional space data, a new structurally incoherent low
rank two-dimensional local discriminant graph embedding (SILR-2DLDGE) is proposed in this paper.
The algorithm consists of the following three parts. Firstly, it is vital to keep the intrinsic relationship
between data points. By the token, we introduced the graph embedding (GE) framework to preserve
locality information. Secondly, the algorithm alleviates the impact of noise and corruption uses the L1
norm as a constraint by low-rank learning. Finally, the algorithm improves the discriminant ability by
encrypting the structurally incoherent parts of the data. In the meantime, we capture the theoretical
basis of the algorithm and analyze the computational cost and convergence. The experimental results
and discussions on several image databases show that the proposed algorithm is more effective than
the SILR-NMF algorithm.

Keywords: feature extraction; low-rank; SILR-NMF; graph embedding (GE); structurally incoherent
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1. Introduction

In the past few decades, “curse of dimensionality” [1] problems have been a hot topic
for many researchers. A popular dimensionality reduction method, 2D Local Preserving
Projections (2DLPP) [2–4], has been widely utilized in pattern recognition [5–7] and com-
puter vision [8–10]. However, on the basis of the 2DLPP unsupervised algorithm, some
improved 2DLPP supervised algorithms have also been proposed [11–13].

Unfortunately, these above algorithms are similar in that they all use the L2 norm,
which will hinder the algorithms’ performance when dealing with noise or abnormal data.
Therefore, in order to solve the problem in which the L2 norm is affected by outliers,
many researchers use L1-norm-based algorithms as dimension reduction algorithms of
distance criteria, which are widely considered to be effective methods [14–18]. For example,
L1-PCA [14] and PCA-L1 [15], based on the PCA algorithm, solve the noise and outlier
sensitivity in the data through an optimization problem. Finally, the Rotation Invariant
L1-norm PCA (R1-PCA) [16] algorithm proposed on the basis of L1-PCA has some PCA
properties, which has some PCA properties. In order to solve the general L1 norm local
preservation problem, Ref. [17] proposed the LPP algorithm (LPP-L1) based on the PCA-L1
algorithm to more effectively preserve the spatial topological structure. At the same time,
in order to solve the outliers and corrosion problems in LPP-L1, a 2DLPP algorithm based
on LPP-L1 algorithm (2DLPP-L1) was proposed [18].

In recent years, compared with algorithms based on L1 norm, many feature extraction
algorithms using low rank representation (LRR) are conducive to extracting clean infor-
mation, which has proved to be crucially important when there is noise in the data. The
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robustness of these algorithms has attracted considerable attention from researchers [19–24].
For example, in order to better maintain the lowest rank representation and global structure
of data, the LRR in reference [19,20] introduced the single subspace clustering problem
into multiple subspace clustering. The subspace structure was recovered from the data
damaged by noise or occlusion. On the basis of LRR, a robust PCA (RPCA) was proposed
by introducing kernel norm [21,22]. On the basis of LRR, the manifold structure was
introduced as the regularization term, and Laplace regularization LRR [23] was proposed
and applied to clustering data. Based on the combination of the NNLRS-graph and LRR,
the non-negative concept was introduced to propose a non-negative low-rank sparse graph
(NNLRS) [24] to maintain the global structure in the data.

A new matrix factorization method with structural incoherence (SILR-NMF) [25]
has been introduced into face recognition to improve the recognition performance in
the presence of corrupted data. In Ref. [26], a new structurally incoherent method
was proposed to improve the additional discrimination ability in face recognition by
introducing the structural incoherence. Motivated by [25] and [26], we propose a new
algorithm dubbed structural incoherent low rank two-dimensional local discriminant
mapping embedding (SILR-2DLDGE), which is superior to the SILR-NMF algorithm
who has important limitations. Since the SILR-NMF algorithm can not make full use of
the neighborhood relationship between data points. SILR-2DLDGE is implemented in
three steps. Firstly, the intra-class weighted matrix graph and the inter-class weighted
matrix graph are constructed to maintain the discriminant information of local neighbor-
hood. Secondly, low-rank learning is used to eliminate noise and damage in the data.
Finally, the structural incoherencies [25,26] are combined to optimize the discriminant
information of different classes.

The four main contributions of this paper are as follows:

• We present a novel algorithm-based 2DLPP, which can simultaneously perform struc-
turally incoherent, optimal graph Laplacian, and low-rank functions in a unified
strategy. The algorithm has stronger discriminant ability than SILR-NMF, which fully
reveals the structure information of the neighborhood to improve the discrimina-
tion ability.

• We propose to introduce intraclass and interclass graphs into the structurally incoher-
ent model to make the data points in the same class more compact and different class
data points as far away as possible.

• We used the low-rank feature to ensure that the given data are treated as two parts
composed of the low-rank matrix and sparse matrix, representing useful features and
nasty noise, respectively, so as to improve the performance of the algorithm using
kernel norms as a measure of the regularization term.

• We designed a practical and simple algorithm to cater to the optimization process, and
verified the algorithm on five datasets. Actually, our proposed method can achieve
better performance.

The rest of study was planned as follows: Section 2 mainly introduces the early
algorithms such as LRR, SILR-NMF, and LRMD-SI. Section 3 introduces the details of
proposed algorithm, and analyzes the computational complexity and convergence of the
SILR-2DLDGE algorithm. In Section 4, we compare the proposed algorithm with other
state-of-the-art algorithms, and verify the promising performance of the SILR-2DLDGE
algorithm on five databases. The summary and future work can be seen in the last section
of the paper.

2. Related Works
2.1. Notation

To facilitate the understanding of this article, we will introduce the related work on
some early algorithms, i.e., LRR, LRMD-SI, and SILR-NMF algorithms.
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Firstly, we consider N original space samples Xi ∈ Rm×n into feature space Yi ∈ Rn×d.
Then, the linear transformation shown in Equation (1) can be obtained:

Yi = PTXi,i ∈ (1, 2, · · · , N) (1)

where P ∈ Rd×n is a transformation matrix, and n > d.
Secondly, we define the matrix Z= [z ij] ∈ Rm×n, and then Zi or Z.j is used to

represent the ith or jth row of Z, respectively.

Finally, we define the matrix ‖Z‖1 = ∑i,j
∣∣zij
∣∣, ‖Z‖F =

√
∑ ‖Zi.‖2

2, and ‖Z‖2,1 = ∑j ‖Z.j‖2
,

respectively. Additionally, ‖Z‖∗ represents the kernel norm which is used to compute the
sum of the singular matrix.

2.2. LRR

The LRR [19] algorithm is different from sparse representation [27]. LRR adopts a
joint approach to transfer the recovery of damaged data to multiple subspaces, which is an
effective subspace segmentation algorithm. At the same time, the global structure of data is
obtained by searching the lowest rank representation of all data.

Each data vector in X can be learned by the linear combination of the T:

X = TZ, (2)

where Z = [Z1, Z2, . . . Zn] is the coefficient matrix being, representation X:

min
Z
‖Z‖∗, s.t. X = TZ, (3)

Here, ‖ · ‖∗ denotes the nuclear norm.
The noise E can be separated from corrupted data as follows [19]:

min
Z
‖Z‖∗ + λ‖E‖ 2,1 s.t. Z = X−TE, (4)

where λ is a parameter.

2.3. SILR-NMF

In view of the fact that face is often affected by noise, SILR-NMF [25] is a better choice
for feature representation and image classification. We can obtain Equation (5) as the final
form of its objective function:

min
Z,E,U≥0,V≥0

∑
i,j
‖X−UV‖2

F+∑
i 6=j

α‖Zi‖∗ + β‖Ei‖1 + γ∑
i 6=j
‖ZT

j Zi‖
2

F
s.t. Z = X− E (5)

where α, β, and γ are positive parameters.

2.4. LRMD-SI

In view of the fact that face is often affected by noise, Wei et al. [26] introduced a
structurally incoherent constraint based on low-rank matrix decomposition (LRMD-SI),
which is considered to have good performance in image representation and classification.
We can obtain Equation (6) as the final form of its objective function:

min
Z,E

c

∑
i=1
{‖Zi‖∗ + λ‖Ei‖1}+ η∑

i 6=j
‖ZT

j Zi‖
2

F
s.t. Xi = Ei + Zi, (6)

where matrix ‖.‖F is the F-norm of the matrix, η is the parameter, and i ∈ (1, 2, . . . , c.).
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3. Structurally Incoherent Low-Rank 2D Local Discriminant Graph Embedding

This section discusses the objective function of the SILR-2DLDGE algorithm, and
describes its optimization process, computational complexity, and convergence.

3.1. The Objective Function of SILR-2DLDGE

In low-rank matrix recovery, the training dataset X =
[

X̃1, X̃2, · · · , X̃C

]
, which is divided

into the low-rank matrix Z =
[

Z̃1, Z̃2, · · · , Z̃C

]
and the noise matrix E =

[
Ẽ1, Ẽ2, · · · , ẼC

]
,

where X̃i =
[

X̃1, X̃2, · · · , X̃N

]
(i = 1, 2, · · · , C), C is the number of class of training sample

X, and N is the total number of data in the i class of training sample X. Then, we have
the following:

min
Z̃i ,Ẽi

C

∑
i=1

{
‖Z̃i‖∗ + λ‖Ẽi‖1

}
s.t. X̃i = Z̃i + Ẽi (7)

where λ is a parameter.
The following equation can be obtained by encoding the 2DLDGE algorithm into

Equation (10) and introducing an orthogonal constraint on Y:

min
Z̃i ,Ẽi ,P̃i

∑
i,j
‖Yi −Yj‖2

2Sw
ij − γ‖Yi −Yj‖2

2Sb
ij+

C
∑

i=1

{
α‖Z̃i‖∗ + β‖Ẽi‖1

}
s.t. Z̃i = B̃i, Ỹi = P̃i

T Z̃i and X̃i = Z̃i + Ẽi

(8)

where the balance parameters α > 0 and β > 0.
We define the scatter matrix Sw

ij (intra-class) and the scatter matrix Sb
ij (inter-class) in

Equation (8):

Sw
ij =

{
1, i f Xi ∈ N+

Kc
(Xj) or Xj ∈ N+

Kc
(Xi)

0, otherwise.
(9)

Sb
ij =

{
1, Xi ∈ N+

Kb
(Xj) or Xj ∈ N+

Kb
(Xi)

0, otherwise.
(10)

where N+
Kc
(Xi) or N+

Kc
(Xj) in the same class means the index set of the Kc nearest neighbors

of the sample Xi or Xj, respectively. Additionally, N+
Kb
(Xi) or N+

Kb
(Xj) in the different class

express the index set of the Kb nearest neighbors of the sample Xi or Xj, respectively.
We added structural incoherence to Equation (8), which is expressed as follows to

improve the discrimination ability and further distinguish the different classes of the
Equation (7) algorithm:

min
Z̃i ,Ẽi ,P̃i

∑
i,j
‖Yi −Yj‖2

2Sw
ij − γ‖Yi −Yj‖2

2Sb
ij+

C
∑

i=1

{
α‖Z̃i‖∗ + β‖Ẽi‖1

}
+ η ∑

i 6=j
‖Z̃T

j Z̃i‖
2

F

s.t. Z̃i = B̃i, Ỹi = P̃i
T Z̃i and X̃i = Z̃i + Ẽi

(11)

In Equation (11), the algorithm improves the incoherence of algorithm structure by
adding the F-norm between different pairs of Z̃i and Z̃j. The first term is to maintain
the neighborhood information in the low dimensional subspace consistent with the clean
data structure. The second term is used to learn a low rank matrix to ensure that its noise
interference is reduced as much as possible. The last term has the discrimination ability
and further distinguishes the different classes in the data.
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3.2. The Optimization of SILR-2DLDGE

Due to the product term Z̃T
i Z̃j, the minimization Equation (11) is non-convex. We

iteratively replaced low-rank matrices Z̃i to solve the following problems:

min
Z̃i ,Ẽi ,P̃i

∑
i,j
‖Yi −Yj‖2

2Sw
ij − γ‖Yi −Yj‖2

2Sb
ij+α‖Z̃i‖∗ + β‖Ẽi‖1 + η ∑

i 6=j
‖Z̃T

j Z̃i‖
2

F

s.t. Z̃i = B̃i, Ỹi = P̃i
T Z̃i and X̃i = Z̃i + Ẽi

(12)

By introducing the auxiliary variable B̃i to solve Equation (12), the following equation
can be obtained:

min
Z̃i ,Ẽi ,P̃i

∑
i,j
‖Yi −Yj‖2

2Sw
ij − γ‖Yi −Yj‖2

2Sb
ij+α‖Z̃i‖∗ + β‖Ẽi‖1 + η ∑

i 6=j
‖Z̃T

j B̃i‖
2

F

s.t. Z̃i = B̃i, Ỹi = P̃i
T Z̃i and X̃i = Z̃i + Ẽi

(13)

Augmented Lagrange multipliers or ADMM [28] and other techniques can be used to
solve Equation (13). We solved Equation (13) by performing singular value decomposition
(SVD) at each iteration step, but it may have high computational complexity. We used the
nuclear norm property [29] to reduce the complexity of Equation (13) as follows [30]:

‖Z̃i‖∗ = min
R.H

1
2

(
‖H‖2

F + ‖R‖
2
F

)
, s.t. Z̃i = RH (14)

where Z̃i ∈ Ra×bN is an arbitrary matrix. If r ≥ min(a, bN) of Ãi, the factorization
Z̃i = Ra×r Hr×bN is obtained by the minimum solution of the above equation.

We can write the equivalent of Equation (13) using the conclusion of Equation (14)
as follows:

min
Z̃i ,Ẽi ,P̃

∑
i,j
‖Yi −Yj‖2

2Sw
ij − γ‖Yi −Yj‖2

2Sb
ij+

α
2

(
‖R‖2

F + ‖H‖2
F

)
+ β‖Ẽi‖1 + η ∑

i 6=j
‖Z̃T

j B̃i‖
2

F

s.t. Z̃i = B̃i, Ỹi = P̃i
T Z̃i and X̃i = Z̃i + Ẽi

(15)
The augmented Lagrange function of Equation (15) is detailed as follows:

L
(

Z̃i , B̃i , µ, Ẽi , P̃i , R, H, M1, M2, M3

)
= ∑

i,j
‖Yi −Yj‖2

2Sw
ij − γ‖Yi −Yj‖2

2Sb
ij+

α
2

(
‖R‖2

F + ‖H‖2
F

)
+ β‖Ẽi‖1 + η ∑

i 6=j
‖Z̃T

j B̃i‖
2

F
+ tr

(
MT

1

(
X̃i − Z̃i − Ẽi

))
+tr

(
MT

2

(
Z̃i − B̃i

))
+ tr

(
MT

3

(
Z̃i − RH

))
+ µ

2

(
‖X̃i − Z̃i − Ẽi‖

2
F + ‖Z̃i − B̃i‖

2
F + ‖Z̃i − RH‖2

F

)
= ∑

i,j
‖Yi −Yj‖2

2Sw
ij − γ‖Yi −Yj‖2

2Sb
ij+

α
2

(
‖R‖2

F + ‖H‖2
F

)
+ β‖Ẽi‖1 + η ∑

i 6=j
‖Z̃T

j B̃i‖
2

F
+ µ

2 ‖X̃i − Z̃i − Ẽi +
M1
µ ‖

2

F

+ µ
2 ‖Z̃i − B̃i +

M2
µ ‖

2

F
+ µ

2 ‖Z̃i − RH + M3
µ ‖

2

F
− 1

2µ

(
‖M1‖2

F + ‖M2‖2
F + ‖M3‖2

F

)
= 2P̃i

T Z̃i(Lw ⊗ I)Z̃i
T P̃i − 2P̃i

T Z̃i

(
Lb ⊗ I

)
Z̃i

T P̃i +
α
2

(
‖R‖2

F + ‖H‖2
F

)
+ β‖Ẽi‖1 + η ∑

i 6=j
‖Z̃T

j B̃i‖
2

F

+ µ
2 ‖X̃i − Z̃i − Ẽi +

M1
µ ‖

2

F
+ µ

2 ‖Z̃i − B̃i +
M2
µ ‖

2

F
+ µ

2 ‖Z̃i − RH + M3
µ ‖

2

F
− 1

2µ

(
‖M1‖2

F + ‖M2‖2
F + ‖M3‖2

F

)

(16)

where the penalty parameter is µ > 0, and the Lagrange multipliers are M1, M2,
and M3.

Next, we separated the solutions for each variable.

(1) Fix Z̃i, Ẽi, R, H, and P, and update B̃i: since Z̃i, Ẽi, R, H, and P are fixed, we can
obtain the following equation from Equation (16):

µ

2
‖Z̃i − B̃i +

M2

µ
‖

2

F
+ η∑

i 6=j
‖Z̃T

j B̃i‖
2

F
(17)
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Letting the partial derivative of variable B be zero in Equation (17):

µ

(
B̃i − Z̃i −

M2

µ

)
+ 2η∑

i 6=j
Z̃jZ̃

T
j B̃i = 0 (18)

Then, we have the following:

B̃i =

(
2η∑

j 6=i
Z̃jZ̃

T
j + µI

)−1(
µZ̃i + M2

)
(19)

(2) Fix B̃i, Ẽi, R, H, and P, and update Z̃i: by fixing other variables, we can obtain the
following equation from Equation (16):

2P̃i
T Z̃i(Lw ⊗ I)Z̃i

T P̃i − 2P̃i
T Z̃i

(
Lb ⊗ I

)
Z̃i

T P̃i+

‖X̃i − Z̃i − Ẽi +
M1
µ ‖

2

F
+ ‖Z̃i − B̃i +

M2
µ ‖

2

F
+ ‖Z̃i − RH + M3

µ ‖
2

F

(20)

In Equation (20), letting the partial derivative of Z̃i be zero, we have:

4P̃i P̃i
T Z̃i

((
Lw − Lb

)
⊗ I
)
+ 3Z̃i −

(
Q̃1 + Q̃2 + Q̃3

)
= 0 (21)

where Q̃3 = RH − M3
µ , Q̃2 = B̃i − M2

µ and Q̃1 = X̃i − Ẽi +
M1
µ .

(3) Fix Z̃i, B̃i, R, H, and P, and update Ẽi: to fix other variables, the optimal Ẽi can be
obtained in Equation (16); thus, we have:

β‖Ẽi‖1 +
µ

2
‖X̃i − Z̃i − Ẽi +

M1

µ
‖

2

F
(22)

To simplify the solution of the above problem, we introduce a shrinkage operator
according to reference [31]. In addition, Sε[X] = max(|X| − ε, 0).sgn(X) represents the soft
threshold to achieve the above purposes [32]. Finally, it is converted into Equation (23):

Ẽi = S β
µ

(
X̃i − Z̃i +

M1

µ

)
(23)

(4) Fix Z̃i, B̃i, Ẽi, H, and P, and update R: we obtain the following Equation (24) by fixing
all variables except R in Equation (16):

1
2

(
α‖R‖2

F + µ‖Ãi − RH +
M3

µ
‖

2

F

)
(24)

In Equation (24), letting the partial derivative of variable R be zero, we obtain:

µRHHT + αR−
(

M3 + µZ̃i

)
HT = 0

⇒ R =
(

M3 + µZ̃i

)
H
(
µRHHT + αR

)−1 (25)

(5) Fix Z̃i, B̃i, Ẽi, R, and P, and update H: we fix all other variables in Equation (16) except
H; thus, the following equation can be obtained:

1
2

(
α‖H‖2

F + µ‖Z̃i − RH +
M3

µ
‖

2

F

)
(26)
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The following equation is obtained to use the partial derivative of Equation (26):

µRT RH + αH −
(

µZ̃i + M3

)
HT = 0

⇒ H =
(
αI + µRT R

)−1RT
(

µZ̃i + M3

) (27)

(6) Fix Z̃i, B̃i, Ẽi, R, and H, and update P: we simplify Equation (16) and obtain the
solution of variable P:

Ψ = arg min
P̃i

2P̃i
T Z̃(Lw ⊗ I)Z̃T P̃i − 2P̃i

T Z̃
(

Lb ⊗ I
)

Z̃T P̃i (28)

Equation (28) will be converted as follows :

2P̃i
T Z̃
((

Lw − Lb
)
⊗ I
)

Z̃T P̃i = 2P̃i
T(X̃− Ẽ)

((
Lw − Lb

)
⊗ I
)
(X̃− Ẽ)

T
P̃i

(29)

In order to solve the equation better, we add a constraint adjustment; the equation is
as follows:

P̃i
T
(

Dw − Db
)
(X̃− Ẽ)

T
P̃i = 1 (30)

Equations (29) and (30) can be transformed into the following formula:

argmin
pT(X−E)(Dw−Db)(X−E)T p=1

P̃T(X− E)
((

Lw − Lb
)
⊗ I
)
(X− E)T P̃ (31)

The solution of Equation (31) is the same as solving the generalized eigenvalue equa-
tion as follows:

(X− E)
((

Lw − Lb
)
⊗ I
)
(X− E)T p

= λ(X− E)
(

Dw − Db
)
(X− E)T p

(32)

Algorithm 1 gives the concrete steps of SILR-2DLDGE.

Algorithm 1 SILR-2DLDGE

Input: Parameters α, β, γ and η; and Training set X in Equation (14).
Initialization: Ẽi = 0, B̃i = 0, ρ > 0, M1 = 0, M2 = 0, M3 = 0.
Repeat
Step 1. Fixing Z̃i, Ẽi, R, H and P, update B̃i with Equation (17);
Step 2. Fixing B̃i, Ẽi, R, H and P, update Z̃i with Equation (20);
Step 3. Fixing Z̃i, B̃i, R, H and P, update Ẽi with Equation (22);
Step 4. Fixing Z̃i, B̃i, Ẽi, H and P, update R with Equation (24);
Step 5. Fixing Z̃i, B̃i, Ẽi, R and P, update H with Equation (26);
Step 6. Fixing Z̃i, B̃i, Ẽi, R and H, update P with Equation (28);
Step 7. Update parameter M1, M2, and M3 as follows:

Update M1 through M1 = µ
(

X̃i − Ãi − Ẽi

)
+ M1;

Update M2 through M2 = µ
(

Ãi − B̃i

)
+ M2;

Update M3 through M3 = µ
(

Ãi − RH
)
+ M3;

Step 8. Update µ through µ = min(ρµ, maxµ);
Step 9. Update t through t = t + 1;
Until Equation (11) is converged.
Step 10. Obtain the (B̃i, Ãi, Ẽi, R, H, P) optimal solution;
Output: Obtain projection matrix P

The flow chart of the SILR-2DLDGE method is shown in Figure 1.
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3.3. The Convergence Analysis

Firstly, we analyzed and proved the weak convergence of the proposed SILR-2DLDGE
algorithm. In some cases, any limit point of the iterative sequence generated by the
SILR-2DLDGE algorithm is a stationary point satisfying the Karush–Kuhn–Tucker (KKT)
condition [33].

Assuming that the SILR-2DLDGE algorithm reaches a stationary point, any conver-
gence point must satisfy the KKT condition, which is a necessary condition for a local
optimal solution. Therefore, we can derive the KKT condition of Equation (11) as follows
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(note that Lagrange multiplier is not involved in the process of solving P; thus, we do not
prove its KKT condition):

Z̃i − RH = 0, Z̃i − B̃i = 0, X̃i − Z̃i − Ẽi = 0
∂L
∂Z̃i

= 4ppT Z̃i

((
Lw − Lb

)
⊗ I
)
+ 3Z̃i −

(
Q̃1 + Q̃2 + Q̃3

)
= 0

∂L
∂B̃i

= µ
(

B̃i − Z̃i − M2
µ

)
+ 2η ∑

j 6=i
Z̃jZ̃

T
j B̃i = 0

∂L
∂R = αR−

(
µZ̃i + M3

)
HT + µRHHT = 0

(X− E)
((

Lw − Lb
)
⊗ I
)
(X− E)T p

= λ(X− E)
(

Dw − Db
)
(X− E)T p

∂L
∂H = αH −

(
µZ̃i + M3

)
HT + µRT RH = 0

M1 ∈ β∂Ẽi
‖Ẽi‖1

(33)

It can be deduced from the last relationship in Equation (33) that:

M1
µ

+ X̃i − Z̃i ∈ β
∂Ẽi
‖X̃i − Z̃i‖1

µ
+ X̃i − Z̃i , Λ β

µ

(
X̃i − Ãi

)
(34)

where the application element to X̃i− Z̃i is the scalar function Λ β
µ
(t) = t+ β

µ ∂|t|. From [34],

the following relationships will be learned:

Ẽi = Λ−1
β
µ

(
M1

µ
+ X̃i − Z̃i

)
= S

(
M1

µ
+ X̃i − Z̃i,

β

µ

)
(35)

where S(x, ε) = max(|x| − ε, 0).sign(x). Thus, the following equation can be obtained with
the KKT condition:

Z̃i − RH = 0, Z̃i − B̃i = 0, X̃i − Z̃i − Ẽi = 0
∂L
∂Z̃i

= 4ppT Z̃i

((
Lw − Lb

)
⊗ I
)
+ 3Z̃i −

(
Q̃1 + Q̃2 + Q̃3

)
= 0

∂L
∂B̃i

= µ
(

B̃i − Z̃i − M2
µ

)
+ 2η ∑

j 6=i
Z̃jZ̃

T
j B̃i = 0

∂L
∂R = αR + µRHHT −

(
µZ̃i + M3

)
HT = 0

∂L
∂H = αH + µRT RH −

(
µZ̃i + M3

)
HT = 0

Ẽi = S
(

X̃i − Z̃i +
M1
µ , β

µ

)
(36)

On the basis of the above conditions, the point convergence satisfying the KKT condi-
tion is proved.

Theorem 1 [25]. Suppose that
{

θ j}∞
j=1 is bounded to be generated by the SILR-2DLDGE algo-

rithm and let θ,
(

Z̃i, B̃i, H, R, Ẽi, P̃i, M1, M2, M3

)
. If limj→∞

{
θ j+1 − θ j} = 0 satisfies KKT

conditions and converges, then it can be obtained that any point converges to the KKT point in{
θ j}∞

j=1.

Proof of Theorem 1. M+
i is the next point of Mi in the sequence

{
Mj

i

}∞

j=1
. Firstly, M1, M2,

and M3 can be obtained, as shown in the following equation:

M+
1 ← µ

(
X̃i − Z̃i − Ẽi

)
+ M1

M+
2 ← µ

(
Z̃i − B̃i

)
+ M2

M+
3 ← µ

(
Z̃i − RH

)
+ M3

(37)
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If
(

X̃i − Z̃i − Ẽi

)
→ 0 ,

(
Z̃i − B̃i

)
→ 0 and

(
Z̃i − RH

)
→ 0 , then we can obtain that(

M+
1 −M1

)
→ 0 ,

(
M+

2 −M2
)
→ 0 and

(
M+

3 −M3
)
→ 0 . Thus, the sequence variables

of
{

Mj
1

}∞

j=1
,
{

Mj
2

}∞

j=1
and

{
Mj

3

}∞

j=1
converge to the stationary point, and we obtain the

first three conditions in Equation (37).
Next, according to the SILR-2DLDGE algorithm and the fourth KKT condition, we

obtain Equation (38): (
2η ∑

j 6=i
Z̃jZ̃

T
ij + µI

)(
B̃+

i − B̃i

)
=
(

µZ̃i + M2

)
−
(

2η ∑
j 6=i

Z̃jZ̃
T
ij + µI

)
B̃i

(38)

When
(

B̃+
i − B̃i

)
→ 0, we can derive M2 − 2η ∑

j 6=i
Z̃jZ̃

T
j i B̃i → 0 from the second condition.

The following equation is obtained by the third KKT condition:

2µ
(

Z̃+
i − Z̃i

)
= µ(Q1 + Q2 + Q3)− 4ppT Z̃i

((
Lw − Lb

)
⊗ I
)
− 2µZ̃i

(39)

Thus, 4ppT Z̃i

((
Lw − Lb

)
⊗ I
)
+ 2µZ̃i − µ(Q1 + Q2 + Q3)→ 0 when

(
Z̃+

i − Z̃i

)
→ 0.

Similarly, the following equation can be obtained:

(R+ − R)
(
µHHT + αI

)
= µ

(
Z̃i +

M2
µ

)
HT − R

(
µHHT + αI

) (40)

When (R+ − R)→ 0, αR + µRHHT − µ
(

Z̃i +
M2
µ

)
HT → 0 can be obtained. Similarly:

(
αI + µRT R

)
(H+ − H)

= µRT
(

Z̃i +
M2
µ

)
−
(
αI + µRRT)H

(41)

When (H+ − H)→ 0 , we have αH + µRT RH − µRT
(

Z̃i +
M2
µ

)
→ 0 .

From the last condition in Equation (35), the following equation is as follows:

Ẽ+
i − Ẽi = S

(
X̃i − Z̃i +

M1

µ
,

β

µ

)
− Ẽi (42)

We can obtain the last condition when Ẽ+
i − Ẽi → 0 .

Both sides of Equations (38)–(42) indicate tending to 0 when limj→∞
{

θ j+1 − θ j} = 0.
Finally, the sequence variable of

{
θ j}∞

j=1 can be obtained asymptotically to satisfy the KKT
condition in Equation (11).

QED �

3.4. Computational Complexity

The main computation steps of SILR-2DLDGE algorithm are shown in steps 2 and 6.
In the SILR-2DLDGE algorithm, the complexity of step 2 is O(t(2a2l)) to solve the Sylvester
equation problem, and the complexity of step 6 is O(t(2a3)). Therefore, we can obtain the
total complexity of the SILR-2DLDGE algorithm, which is O(t(2(a3 + a2l))), where t is the
number of iterations.
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4. Experiment Results

In this section, we introduce several representative experiments to verify the robust-
ness of the proposed SILR-2DLDGE algorithm. We compared the results of the proposed
algorithm with 2DLPP [2–4], LPP-L1 [17], 2DLP-L1 [18], LRR [19,20], SILR-NMF [25],
LRMD-SI [26], and LPP [35,36] algorithms on FERET [37], ORL [38], coil100 [39], Yale [40],
AR [41], and PolyU [42] databases, respectively.

4.1. Selection of Samples and Parameters

In each subsequent experiment, we will randomly select T = 5, 6, 10, 5, 6, 3 samples
from each class in FERET, ORL, COIL 100, Yale, AR, and PolyU databases for training. In
each running experiment, NN classifier was used for classification, and the experiment was
repeated 10 times.

In all the following experiments, we used an iterative algorithm to derive solutions of
the L1-norm algorithms and set the maximum value of iterations of the relevant iterative
algorithm to 500. The LPP, 2DLPP, LPP-L1, and 2DLPP-L1 algorithms based on local graph
embedding are obtained using k-nearest neighbors, where k = T − 1 (T is the training sets
of each databases) is well collected in the observation space [43]. We choose the parameters
of LRR, LRMD-SI, and SILR-NMF models in the references. From the objective function
of the SILR-2DLDGE algorithm in Equation (13), the parameter range of α, β, and η were
selected from [0.001, 0.01, 0.1, 1, 10, 100, 1000], and the γ parameter was selected from
[0.1, 0.2, . . . . . . , 0.9, 1] to evaluate the effect, the values of parameters in our algorithm are
given in Table 1.

Table 1. Parameter values of the SILR-2DLDGE algorithm on different datasets.

Dataset
Parameters of SILR-2DLDGE

α β γ η

FERET 0.001 0.1 0.3 0.01
ORL 0.01 0.1 0.2 0.001

COIL 100 0.1 10 0.5 100
Yale 0.001 0.01 0.3 0.01
AR 0.001 0.1 0.8 0.01

PolyU 0.01 0.1 0.6 10

4.2. Experiments on Occlusion Databases

To verify the robustness of the algorithm, we will randomly add 10 × 10 blocks to
different positions of images to carry out continuous occlusion experiments in FERET, ORL,
and COIL100 databases.

• FERET database

The FERET database is mainly used to study changes in pose, illumination, and facial
expression. There are 200 classes in the FERET database, and each class has seven images
with a resolution of 40 × 40 pixels, resulting in a total of 1400 gray-scale images.

• ORL database

The ORL database is mainly used to study changes with different expressions, postures,
and illuminations. There are 40 classes in the ORL database., and each class has 10 images
with a resolution of 56 × 46 pixels, resulting in a total of 400 gray-scale images.

• COIL 100 database

The COIL 100 object database is mainly used to study changes with different illumina-
tions. There are 100 subjects, and each subject has 72 images with a resolution of 32 × 32 pixels,
resulting in a total of 7200 gray-scale images. Figure 2 shows some occlusion images on the
three different databases.
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Figure 2. Some occlusion images from the three different databases. (a) FERET, (b) ORL, and
(c) COIL 100.

To verify the effectiveness of continuous occlusion in FERET, ORL, and COIL100
databases, respectively, we randomly added 10 × 10 blocks to different positions of images.
Figures 3–5 show the average recognition rates (%) of different dimension changes on the
three different databases.
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Figure 3. The average recognition rates (%) of the eight algorithms in the FERET database vary with
the dimension.

We ran a set of experimental results and compared them with seven methods; the
results are presented in this section. According to the settings in Section 4.1, when each
class in FERET, ORL, and COIL100 databases randomly selects T sample points to form
a training sample set, the optimal average recognition rate (%) of the seven algorithms is
shown in Table 2.
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Table 2. The best average recognition rates (%) of the eight algorithms in FERET, ORL, and COIL100
databases and the corresponding dimensions (D).

Algorithm

Database

Without Occlusion Occlusion Size = 10 × 10

FERET ORL COIL20 FERET ORL COIL20

LPP
87.16 89.50 86.69 84.35 87.36 85.90
25(D) 18(D) 20(D) 26(D) 20(D) 24(D)

2DLPP
89.28 93.11 88.35 86.76 90.55 86.86

40 × 16(D) 50 × 14(D) 32 × 20(D) 40 × 18(D) 50 × 16(D) 32 × 22(D)

LPP-L1
84.25 86.33 83.45 82.18 85.87 81.65
28(D) 22(D) 26(D) 30(D) 24(D) 28(D)

2DLPP-L1
85.42 88.36 84.35 83.82 87.58 82.36

40 × 12(D) 50 × 14(D) 32 × 18(D) 40 × 16(D) 50 ×16(D) 32 × 20(D)

LRR
82.65 86.85 81.20 80.63 85.25 79.95
32(D) 16(D) 28(D) 36(D) 18(D) 32(D)

LRMD-SI
88.70 91.35 86.80 86.78 89.80 84.95
16(D) 18(D) 16(D) 18(D) 18(D) 20(D)

SILR-NMF
92.52 93.95 90.65 90.23 91.68 88.28

418(D) 26(D) 20(D) 22(D) 30(D) 20(D)
SILR-

2DLDGE
94.75 96.62 92.54 91.61 94.86 90.58

40 × 18(D) 50 × 16(D) 32 × 20(D) 40 × 16(D) 50 × 20(D) 32 × 18(D)
D: dimension.
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4.3. Experiments on Noise Databases

Experiments were carried out on different levels of random pixel corruptions to verify
the robustness of the algorithm. “Salt & pepper” noise with a density of 0.1 was added to
the Yale, AR, and PolyU databases for corrosion experiments.

• Description of the Yale database

The Yale face database is mainly used to study changes in facial expressions and
lighting conditions. There are 15 classes in the Yale database, and each class has 11 images
with a resolution of 50 × 40 pixels, resulting in a total of 165 gray-scale images.

• Description of the AR database

The AR database is mainly used to study the changes in lighting conditions, facial
expressions, and occlusion. There are 70 men and 56 women with a total of 126 people in
the AR database, including 4000 color images with a resolution of 50 × 40 pixels.

• Description of the PolyU palmprint database

The PolyU database is mainly used to study image changes in two periods. There are
100 different palms in the PolyU database, and each palm has six samples, resulting in a
total of 600 gray images with a resolution of 64 × 64 pixels. Figure 6 shows the original
images and some corrosion images on the three different databases.
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Figure 6. Some the original images and corrosion images on the three different databases. (a) Yale,
(b) AR, and (c) PolyU.

For continuous corrosion experiments, we randomly added a density of 0.1 of “salt &
pepper” noise to the Yale, AR, and PolyU databases. Then, we ran a set of experiments and
compared them with seven methods to evaluate the proposed SILR-2DLDGE algorithm.
Figures 7–9 show the average recognition rates (%) of different dimension changes on the
three different databases.
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As in the last experiment, we can obtain the best average recognition rates (%) of the
eight algorithms according to the settings in Section 4.1, as shown in Table 3.
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Table 3. The best average recognition rates (%) of different algorithms and corresponding dimensions
(D) on the Yale, AR, and PolyU databases and the corresponding dimensions.

Algorithm

Database

Without Noise Noise Density = 0.1

Yale AR PolyU Yale AR PolyU

LPP
90.31 88.93 89.08 89.65 85.43 87.75
32(D) 40(D) 36(D) 36(D) 40(D) 40(D)

2DLPP
91.18 90.35 91.88 90.56 87.39 88.86

56 × 26(D) 50 × 24(D) 64 × 30(D) 56 × 30(D) 50 × 28(D) 64 × 36(D)

LPP-L1
91.87 89.36 90.56 89.08 86.45 88.82
36(D) 45(D) 38(D) 32(D) 45(D) 36(D)

2DLPP-L1
92.98 90.16 91.08 90.66 88.45 89.56

56 × 20(D) 50 × 18(D) 64 × 24(D) 56 × 26(D) 50 × 22(D) 64 × 28(D)

LRR
87.65 82.96 83.25 85.36 80.40 82.82
36(D) 18(D) 16(D) 40(D) 20(D) 20(D)

LRMD-SI
91.80 86.45 88.23 89.08 83.82 85.66
20(D) 20(D) 18(D) 22(D) 28(D) 26(D)

SILR-NMF
92.51 90.69 91.48 90.65 87.02 89.54
12(D) 16(D) 10(D) 14(D) 14(D) 12(D)

SILR-
2DLDGE

95.25 93.60 94.78 93.65 90.28 92.15
56 × 12(D) 50 × 14(D) 64 × 10(D) 56 × 16(D) 50 × 12(D) 64 × 16(D)

D: dimension.

4.4. Convergence Study

In the last experiment, we will further prove the convergence of the SILR-2DLDGE
algorithm on the FERET and AR databases, respectively. The objective function values
decreased monotonically; Figure 10 shows that the proposed algorithms are convergent
due to the increase in the number of iterations.
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In addition, to further verify the effectiveness of our proposed algorithm, we took the
first three training samples from each class on the PolyU palmprint database; Table 4 shows
the CPU time of each method.

Table 4. The average CPU time consumed of the eight algorithms in the PolyU palmprint database.

PolyU
ALGORITHM LPP 2DLPP LPP- L1 2DLPP- L1 LRR LRMD-SI SILR-

NMF
SILR-

2DLDGE

Noise density = 0.1 (S) 0.981 0.818 1.236 0.852 0.765 0.783 0.706 0.652
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4.5. Observations and Discussion

The four contributions of the SILR-2DLDGE algorithm are as follows:

(1) In Tables 2 and 3, the maximum average recognition rate of the SILR-2DLDGE algo-
rithm on different databases is the highest, which fully shows that our algorithm is
optimal and robust. The key reason is that SILR-2DLDGE not only learns a base matrix
with low-rank property and local discriminant ability, but also has the advantages of
SILR-NMF, which can weaken the disturbance of noise.

(2) The SILR-2DLDGE algorithm has the advantages of low-rank learning, sparse learn-
ing, and incoherent structure learning, similarly to the SILR-NMF algorithm, as well
as the advantages of graph embedding, which shows that more discrimination infor-
mation can be obtained by sparse learning combined with the L1 norm and L * norm.
We can see from the curve changes in Figures 3–5 and 7–9 that the average recognition
rates of this algorithm in three noisy databases and three occlusion databases are
higher than that of other algorithms, which fully show that our algorithm has stronger
robustness than other algorithms.

(3) The SILR-2DLDGE algorithm takes less time than the others (Table 4) and learns
the sparse transformation matrix to encode the geometric structure of the data and
effectively improve the classification accuracy, which can obtain clean data in cases of
noise disturbance. At the same time, structural incoherence can ensure that it is easier
to separate data points of different classes.

(4) The maximum average recognition rate of the SILR-2DLDGE algorithm varies among
different databases. For example, the SILR-2DLDGE algorithm has the highest average
maximum recognition rate without occlusion on the ORL database, whereas it has
the lowest average maximum recognition rate with an occlusion of 10 × 10 on the
COIL20 database. At the same time, the SILR-2DLDGE algorithm has the highest
average maximum recognition rate without noise on the YALE database, whereas
it has the lowest average maximum recognition rate with added “salt and pepper”
noise with a density of 0.1 on the AR database. The above reasons are due to the small
number of ORL and YALE samples, the large AR and PolyU palmprint databases, the
presence of glasses and other occlusions in AR, and the presence of illumination and
other effects in the PolyU palmprint.

5. Conclusions

This study mainly combined the 2DLPP algorithm with low-rank representation
learning and proposed a structurally incoherent low-rank two-dimensional local discrim-
inant graph embedding (SILR-2DLDGE) algorithm based on subspace learning, graph
embedding, low-rank sparsity, and structural incoherence. Identification information, local
geometry information, low-rank representation information, and structural incoherence
existed simultaneously in the proposed algorithm. In addition, the ultimate goal of the
proposed algorithm is to make the data points as independent as possible from different
classes. In particular, it used low-rank learning L1 norms as constraints to reduce the
influence of noise and corruption. The noise and occlusion experiments on six public
databases further proved that the proposed SILR-2DLDGE algorithm is more robust than
other algorithms. The algorithm is sensitive to parameters. In the future, we will study
various parameters and further improve the robustness of the algorithm.
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