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Abstract: We introduce a new triangle transformation, the shortest-edge (SE) duplication, as a natural
way of mesh derefinement suitable to those meshes obtained by iterative application of longest-edge
bisection refinement. Metric properties of the SE duplication of a triangle in the region of normalised
triangles endowed with the Poincare hyperbolic metric are studied. The self-improvement of this
transformation is easily proven, as well as the minimum angle condition. We give a lower bound for
the maximum of the smallest angles of the triangles produced by the iterative SE duplication α = π

6 .
This bound does not depend on the shape of the initial triangle.
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1. Introduction

Adaptive meshing is a fundamental component of adaptive finite element methods.
This includes refining and coarsening meshes locally [1,2]. As the mesh is enriched through
the refinement process, the solution on a given mesh provides an accurate starting iterate
for the next mesh. Frequently, it is needed not only to enrich the mesh but also to coarsen
it by some derefinement or coarsening strategy [3,4] in such a way that the nodes are
located in the places where it is necessary for a more accurate solution while the number of
unknowns remains bound. Mesh coarsening and mesh refinement are usually combined to
provide a flexible approach for the adaptation of time-dependent problems [5].

In the context of adaptive finite element methods, both in two and three dimensions,
longest-edge bisection-based algorithms have been largely studied in the last years [6–8].
These algorithms guarantee the construction of high-quality triangulations [9,10], assuring
the maximum angle condition [11] and the non-degeneracy of the obtained meshes [10].
Non-degeneracy of the meshes means that the minimum angle generated is bounded away
from zero, and it is closely related to the finite number of similarly different triangles
or tetrahedra generated. Further, some longest-edge bisection-based partitions show a
mesh quality improvement property, meaning that the generated meshes not only do
not degenerate but also present better quality than the previously obtained mesh as the
refinement is applied.

For coarsening a refined mesh, we may consider different approaches, such as remov-
ing nodes, swapping edges, or amplifying elements [2]. Here we study the shortest-edge
duplication of a triangle as a simple procedure to be applied to those triangles for coarsen-
ing a triangular mesh that has been obtained by the iterative application of local refinements
based on longest-edge bisection. This method shows to be effective at coarsening meshes
while improving the smallest angle. On the other hand, if it is desired to maintain the
resolution of the mesh while improving the smallest angles, the method can be combined
with a local refinement strategy to improve high-order mesh quality while maintaining
sufficient resolution, for example, by the self-similar refinement scheme [2,12], albeit this

Mathematics 2022, 10, 3643. https://doi.org/10.3390/math10193643 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193643
https://doi.org/10.3390/math10193643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5493-3090
https://orcid.org/0000-0001-9459-2585
https://orcid.org/0000-0002-5077-6531
https://orcid.org/0000-0001-8140-9008
https://doi.org/10.3390/math10193643
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193643?type=check_update&version=2


Mathematics 2022, 10, 3643 2 of 14

issue will not be tackled in this paper. It should be underlined, however, that there have
been recent approaches, such as the hr-adaptivity, which are able to address this problem
[13].

Our goal in the paper is to study the metric properties of the shortest-edge duplication,
in the sequel SE duplication, of a triangle. To this end, we will employ the results of hyper-
bolic geometry and particularly the Poincare half-plane model, which has demonstrated its
utility in similar triangle partitions [14,15].

Given an initial triangle, a new triangle is obtained by doubling the shortest edge,
maintaining the longest edge as unaltered. The SE duplication will be explicitly set up in
the next definition.

Definition 1. Let t0(A, B, C) denote triangle t0 with vertices A, B and C. Let us assume that the
shortest edge of t0 is edge AB, while the longest one is edge BC. Then, the SE SE duplication of t0 is
t1(A1, B, C), where A1 = B + 2

−→
BA.

Notice that the SE duplication is a transformation of triangles that may be applied
recursively. For example, and continuing with the triangle in Definition 1, if the shortest-
edge of triangle t1 is A1B, and the longest one is BC, the SE duplication of t1 is triangle
t2(A2, B, C), where A2 = B + 2

−−→
BA1. See Figure 1.
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Figure 1. First SE duplications of triangle t0.

It is clear that by the SE duplication of a triangle, the two shortest edges of the triangle
increase, while the longest edge remains unaltered.

Let τ be a locally refined triangular mesh obtained by a longest-edge bisection-based
refinement. One could apply the SE duplication of some triangles in order to coarsen the
mesh. This procedure consists of locally changing a triangle by SE duplication. As a matter
of example, Figure 2 shows the application of SE duplication to a refined mesh obtained by
the longest-edge bisection so that a derefined mesh appears.

Figure 2. SE duplication procedure as a derefinement process.

2. Normalised Region for Triangles and Piecewise Function for the SE Duplication

For any arbitrary triangle, a similar triangle can be found by performing suitable sym-
metries, scaling, translations and rotations such that the normalised triangle has the longest
edge with vertices (0, 0) and (1, 0), and the opposite vertex, z, in the upper plane at the left
of the vertical line x = 1

2 ; that is, with the shortest edge to the left with vertices (0, 0) and
z [12]. Using this procedure, all similar triangles are represented by a unique complex number

z ∈ Σ, where Σ is the set of the complex plane Σ = {z/ Im z > 0, Re z ≤ 1
2

, |z− 1| ≤ 1}. Σ is
called the space of triangular shapes. See Figure 3, where Σ is in grey.
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LE(0,0) (0,1)

Figure 3. Normalised triangle and normalised region Σ = {z/ Im z > 0, Re z ≤ 1
2 , |z− 1| ≤ 1}.

For any point z ∈ Σ, let w(z) be its image in Σ by the shortest-edge duplication trans-
formation. w(z) is a piecewise function that depends on the location of z in Σ. Explicitly,
function w(z) is defined as follows, depending on which subregion point z is in according
to the subregions in Figure 4.

w(z) =



wV(z) = 2z if z ∈ V,

wVI(z) = 1− 2z if z ∈ VI,

wI I I(z) =
2z

2z− 1
if z ∈ I I I,

wIV(z) =
2z− 1

2z
if z ∈ IV,

wI I(z) =
1

1− 2z
if z ∈ I I,

wI(z) =
1
2z

if z ∈ I.

Figure 4 shows the subdomains in Σ needed to define function w(z).

I

II

III

V VI

IV

Figure 4. Circles and straight lines defining the subregions for the piecewise function w.

The values of function w, depending on the position of point z in each sub-region, may
be easily deduced. As a matter of example, Figure 5 shows the definition of function w(z)
for z in the first two lower subregions of the space of triangular shapes. Similar figures
may be found for the other subregions. In Figure 5 right, w(z) = 2z, while in Figure 5 left,



Mathematics 2022, 10, 3643 4 of 14

w(z) = 1− 2z̄ in order to normalise the triangle to have its shortest edge on the left side, so
that w(z) belongs to Σ.

z

w(z)=2z

z

2zw(z)=1-2z−

LE LE

SE

0 1 0 1

Figure 5. Definition of w for z ∈ V on the left, and for z ∈ VI on the right.

Using hyperbolic geometry, such as the Poincare half-plane model, see [14–17], the
circumferences and straight lines in the definition of the piecewise function w are orthogonal
to Im z = 0 and, therefore, are geodesics in the Poincare half-plane. The expressions
for function w are isometries in the half-plane hyperbolic model because they have the

form
az + b
cz + d

or
a(z̄) + b
c(z̄) + d

with real coefficients ad− bc > 0. Function w is invariant with

respect to the inversion of the circumferences |z| = 1/2 and |z− 1/2| = 1/2, and under
symmetry with respect to the straight line Re z = 1/2. We recall here the expression of
these transformations in [18]. Let K be an arbitrary circle with centre q and radius R. Then
the inversion in K, written z 7→ z̃ = IK(z), is equal to

IK(z) =
R2

z̄− q̄
+ q =

qz̄ + (R2 − |q|2)
z̄− q̄

.

In particular, for K1, circle |z| = 1/2, we have IK1(z) =
1
4z̄

, while for K2, circle

|z− 1/2| = 1/2, we have IK2(z) =
z̄

2z̄− 1
.

On the other hand, ff ᾱz + αz̄ = r is a line in the complex plane such that z1 is the
reflection of z2 in the given line, then r = z̄1α+ z2ᾱ. In particular, for the straight line L with
equation Re z = 1/2, the expression of the reflection in line L, sayRL(z), isRL(z) = 1

2 − z̄.

Theorem 1. Function w is invariant with respect to the inversion of the two circumferences,
|z− 1/2| = 1/2 and |z| = 1/2, and under symmetry with respect to the straight line Re z = 1/2
that appears in its definition.

Proof. The proof follows easily by checking that
wI(RL(z)) = wI I(z) ∀z ∈ I I, wI I(RL(z)) = wI(z) ∀z ∈ I,

wI I I(RL(z)) = wIV(z) ∀z ∈ IV, wIV(RL(z)) = wI I I(z) ∀z ∈ I I I,

wV(RL(z)) = wVI(z) ∀z ∈ VI, wVI(RL(z)) = wV(z) ∀z ∈ V.

Similarly, for inversions IKi (z), with i = 1, 2, it holds, in closed form, that

wJ
(
IKi (z)

)
= wIKi

(J)(z) ∀z ∈ IKi (z)

where J represents any subregion in the definition of function w.
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If z1 and z2 are such that Im zi > 0, then the hyperbolic distance d between z1 and z2,
d(z1, z2), is

d(z1, z2) = cosh−1
(

1 +
|z1 − z2|

2Im z1 Im z2

)
.

On the other hand, if Re z1 = Re z2, then

d(z1, z2) =

∣∣∣∣ln( Im z1

Im z2

)∣∣∣∣.
Let z1 and z2 be points in a geodesic circumference, and z2 be the upper point located

over the centre of the circumference, the hyperbolic length of the segment in the geodesic
from z1 to z2, say l, verifies

θ = 2 arctan(e−l)

where θ is the difference between π/2 and the central angle is determined by the segment
from z1 to z2 over the geodesic. See Figure 6.

Figure 6. Hyperbolic length l from z1 to z2 verifies θ = 2 arctan(e−l).

Definition 2. A region Ω ⊂ Σ is called a closed region for SE duplication if w(z) ∈ Ω ∀z ∈ Ω.

Lemma 1 (non-increasing property). If z1, z2 ∈ Σ, then d(w(z1), w(z2)) ≤ d(z1, z2).

Proof. Let us first assume that z1 and z2 are in a region with the same definition of w, then
d(z1, z2) = d(w(z1), w(z2)). This may be checked easily and also follows because w is an
isometry in Σ.

Suppose now that z1 and z2 are not in a region with the same definition of w. z1 and
z2 may be in two regions sharing a common boundary. In this case, there is z′1 in the region
of z2 with w(z1) = w(z′1) because of the symmetry of w with respect to the boundary. Let γ
be the geodesic line that joins z1 and z2. γ intersects the boundary at a point, say z∗. Then,
since points z1, z∗ and z2 are in the same geodesic, d(z1, z2) = d(z1, z∗) + d(z∗, z2). Further,
d(z1, z∗) = d(z′1, z∗) because z1 and z′1 are symmetrical points with respect to the boundary
containing z∗. See Figure 7.

*

γ

Figure 7. The geodesic line joining z1 and z∗ is an image by reflection of the segment joining z′1 with
z∗, and so d(z1, z∗) = d(z′1, z∗).

Therefore, by the triangular inequality,

d(z1, z2) = d(z1, z∗) + d(z∗, z2) = d(z′1, z∗) + d(z∗, z2) > d(z′1, z2).

Thus, d(w(z1), w(z2)) = d(w(z′1), w(z2)) = d(z′1, z2) < d(z1, z2).
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If, z1 and z2 are in different regions not sharing a common boundary, we may apply the
previous process to bring both z1 and z2 into the same region and the proof is finished.

Definition 3. Let z be in Σ. The orbit of z by the SE duplication, Γ(z), is the set as Γ(z) =

∪n≥0w(n)(z), where w(0)(z) = z, and w(n)(z) = w
(

w(n−1)(z)
)

.

For ζ = 1
2 + 1

2 i, Γ(ζ) = {ζ}, since w(ζ) = ζ. Other fixed points for w are x1 = 1
4 +

√
7

4 i

and q1 = 3
8 +

√
23
8 i. In sub-region I, as denoted in Figure 8, w(z) = 1

2z̄ , which is an inversion

with respect to the circumference of equation |z| =
√

2
2 , or x2 + y2 = 1

2 . Therefore, for z
in the arc of that circumference which is in region I, |Γ(z)| = 1. It may be easily verified
that these are the only fixed points for w ∈ Σ. Notice that although (0, 0) is another fixed
point, that triangle is invalid and does not belong to the space of triangular shapes Σ where
it is required Im z > 0. Further, it follows that for z ∈ I, |Γ(z)| ≤ 2. For example, for
v0 = 1

2 +
√

3i
2 , which corresponds to the equilateral triangle, then Γ(v0) = {v0, v1}, where

v1 = 1
4 +

√
3

4 i.

II

I

ζ

v
2
*

v
2

v
0

v
3 v

4

ζ
1

x
1

q
1

q
2

q
2
*

x
2
*

v
1

x
2

Figure 8. Regions for Lemma 2.

In order to prove that the orbit for any point z is finite, we will use the division of the
normalised region is shown in Figure 8. We consider the sets w−1

J (I), with J = I I I, V, VI, IV,

where w−1
J (I) =

{
w−1

J (z) for z ∈ I
}

. It is clear that w−1
J (I) ⊂ J. These sets are the coloured

subsets in Figure 8. The points labelled in the figure are x1 = 1
4 +

√
7

4 i, x2 = 3
8 +

√
7

8 i and

x∗2 = 1
8 +

√
7

8 i are pre-images of x1. Similarly, v1 = w−1(v0), v2 = w−1
IV (v1), v∗2 = w−1

I I I(v1),
v3 = w−1

V (v1), and v4 = w−1
VI (v1). Further, q2 is the pre-image of q1 in region IV; that is,

q2 = 5
12 +

√
23

12 i, while q∗2 = 1
12 +

√
23

12 i = w−1
I I I(q1).

Lemma 2. S = I ∪ I I ∪ w−1
I I I(I) ∪ w−1

V (I) ∪ w−1
VI (I) ∪ w−1

IV (I) is a closed region. Further, if
z ∈ S, then |Γ(z)| ≤ 3.

Proof. Let z ∈ S. If z ∈ I, w(z) = wI(z) = 1
2z̄ is an inversion with respect to the circum-

ference of equation |z| =
√

2
2 , then w(z ∈ I) = z′ ∈ I. Therefore, for z ∈ I, |Γ(z)| ≤ 2.

Further, by construction, w
(

w−1
J (I)

)
⊂ I, with J = I I I, V, VI, IV, so |Γ(z)| ≤ 3 for

z ∈ w−1
I I I(I) ∪ w−1

V (I) ∪ w−1
VI (I) ∪ w−1

IV (I). Finally, by the symmetry of function w about line
Re z = 1

4 , then for z ∈ I I, w(z) = −1
2z−1 ∈ I, and, therefore, |Γ(z)| ≤ 3 for z ∈ I I.
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The argument of the last lemma may be applied recursively, considering each of the pre-
images of the last sets by wJ , with J = I I I, V, VI, IV. In that way, since the pre-images of the
lowest vertices considered tend to the horizontal line Im(z) = 0, it follows that |Γ(z)| < ∞,
∀z ∈ Σ. This fact will also be shown experimentally by a Monte Carlo experiment later.

Lemma 3. There is ε′ > 0 such that for every z ∈ Σ such that the hyperbolic distance to any of the
points v0, v1, v2 or v∗2 is less than or equal to ε′ then |Γ(z)| < ∞.

Proof. Notice that ε′ may be chosen such that every hyperbolic circle with centre v0, v1,
v2 or v∗2 and radius ε′ intersects only the geodesic lines defining w that pass through their
centres, as Figure 9 shows.

Let us first suppose that z ∈ Σ with d(z, v0) ≤ ε′. In that case, z ∈ I so |Γ(z)| ≤ 2.

II

III
IV

V VI

I

VII

ζ

v
2

*

v
2

v
1

v
0

Figure 9. ε′ is such that every hyperbolic circle with a centre at v0, v1 and v2 intersects only with the
geodesic lines in the definition of w(z) passing through its centres.

On the other hand, if d(z, v1) ≤ ε′, w(z) ∈ I, so |Γ(z)| ≤ 3. Finally, if d(z, v2) ≤ ε′ or
d(z, v∗2) ≤ ε′, then d(w(z), v1) ≤ ε′, so it is reduced to the previous case.

Lemma 4. Let q1 = 3
8 +

√
23
8 i and r = d(q1, v1). Then there exists ε > 0 such that for every

z ∈ Σ with d(q1, z) ≤ r + ε, then |Γ(z)| < ∞.

Proof. Let us consider that ε > 0 is small enough so that the hyperbolic circle with a
centre at q1 and radius r + ε does not intersect with region VII. This is possible because
d(q1, v1) < d(q1, x2), as it is shown in Figure 10. With such a ε, we may assure that the region
of z such that d(q1, z) ≤ r + ε is contained in I ∪ IV along with a small hyperbolic circle
with its centre at v1, so it is inside region S from Lemma 2. It follows that |Γ(z)| < ∞.

Lemma 5. Let ε > 0 as in the previous lemma, and r = d(q1, v1). Let K be a compact set contained
in the normalised region Σ such that for every z ∈ K it holds that d(z, q1) > r + ε. Then, there
exists a value A, where 0 < A < 1 such that for every z ∈ K, d(w(z), q1) < A · d(z, q1).

Proof. Function

φ(z) =
d(w(z), q1)

d(z, q1)

is continuous in K. Since K is compact, there exists A, the maximum value of φ(z) in K. By
not increasing the distance and since w(q1) = q1, then d(w(z), q1) ≤ d(z, q1). In addition, if
z ∈ K, z is not in region I, and the inequality between the distances is strict. In particular,
this happens for the value of z ∈ K in where the maximum is attained, where A < 1.
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r

ε

Figure 10. For a suitable ε, a circle with its centre at q1 and radius d(q1, v1) + ε is in region S from
Lemma 2.

Theorem 2. If z ∈ Σ, then |Γ(z)| < ∞.

Proof. Let r and ε be as in the previous lemmas. If d(z, q1) ≤ r + ε, then |Γ(z)| < ∞, by
Lemma 5. Let us suppose, therefore, that d(z, q1) > r+ ε. Let K be the compact set given by the
points u ∈ Σ such that d(u, q1) ≤ d(z, q1) with d(u, q1) ≥ r + ε, and also d(u, q2) ≤ d(z, q2)
with d(u, q2) ≥ r + ε. In Figure 11, K is grey. By Lemma 5, there exists A such that for every
u ∈ K, d(w(u), q1) ≤ A · d(u, q1). Therefore, d(w(z), q1) ≤ A · d(z, q1) with A < 1. By the
non-increasing property, d(w(z), q2) ≤ A · d(z, q2). Therefore, either w(z) ∈ K or the orbit
|Γ(w(z))| < ∞. By iterating this process, the orbit |Γ(z)| is described as a finite set and a finite
number of finite orbits of points with a distance to q1 of less than or equal to r + ε. Therefore,
by Lemma 4 these orbits are also finite.

Figure 11. In grey are the points u ∈ Σ with d(u, qi) ≤ d(z, qi) and d(u, qi) ≥ r + ε, for i = 1, 2.

3. Classes of Triangles

Here, we focus on the number of dissimilar triangles that are produced in the SE
duplication scheme. Our goal in this section is to study the number of dissimilar triangles
so that we can get a classification of the triangles. Let class Cn be the set of triangles for
which the SE duplication produces exactly n dissimilar triangles.

We develop a Monte Carlo experiment that can be used to visually represent the
classes of triangles according to the number of dissimilar triangles generated.
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The process can be described in three phases: (1) Pick a point within the mapping
domain defined by the horizontal base and by the two bounding exterior circular arcs. This
point z = (x, y) is the apex of a target triangle. (2) Apply SE duplication to the triangle
defined by z and its successors and stop when no new shapes appear. (3) The number of
steps until termination defines the number of dissimilar triangles for z. This process is
recursively applied to a large sample of triangles uniformly over the domain. The output
of the experiment is a graph where all of the dissimilar triangles are represented using a
colour map to obtain the result in Figure 12.
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Figure 12. (a) Dissimilar triangle classes generated by a Monte Carlo computational experiment for
the SE duplication. (b) Lines inside each nth triangle class with Γ(z) = n− 1.

Note that the number of dissimilar triangles has been drawn within several coloured
regions. For instance, label 2 stands for the two dissimilar triangles and is associated
with the targeted triangles within the region above the pair of arcs that intersect on the
vertical line of symmetry near the point y = 0.3. Label 3 is in the region below for the
3 dissimilar triangles. A graph is then constructed in this manner that fills a completely
coloured diagram. It should be noted that triangles with needle-like shapes located close to
the baseline will require a higher number of SE duplications until new dissimilar triangles
no longer appear.

Note that the region where all the trajectories end in the diagram is located at the
dark blue region. Therefore, we can determine a lower bound of the maximum of the
smallest angles for the last generated triangles of α = 30◦, which are related to the apex
with Re z = 1/4. It can be seen that the smallest angle in each of the regions generated
by duplicating its shortest edge is bounded from below with total independence of the
initial point of the respective trajectories. This is a salient property in comparison with the
evolution of the angles in other longest-edge schemes, for example, in the 4T-LE partition.
In the case of 4T-LE partition, these lower bounds depend on the geometry of the initial
triangle. See [9,10] for details on the evolution properties of the angles when the 4T-LE
partition is recursively applied. In Table 1, the minimum angles generated in the process
are listed.
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Table 1. Sequences of dissimilar triangles obtained by SE duplication.

Triangle 1 Triangle 2
# of Dissimilar Triangles 7 # of Dissimilar Triangles 8

It. n γn βn αn γn βn αn

0 145.455 32.595 1.950 173.972 5.423 0.605
1 143.291 32.595 4.114 173.216 5.423 1.361
2 138.199 32.595 9.206 170.950 5.423 3.627
3 123.933 32.595 23.472 153.690 20.887 5.423
4 77.683 69.722 32.595 144.929 20.887 14.184
5 69.722 59.153 51.126 102.859 56.254 20.887
6 84.036 59.153 36.811 78.056 56.254 45.690
7 69.722 59.153 51.126 81.241 56.254 42.504
8 78.056 56.254 45.690

Triangle 3 Triangle 4
# of Dissimilar Triangles 7 # of Dissimilar Triangles 4

It. n γn βn αn γn βn αn

0 169.900 8.572 1.528 114.624 54.900 10.475
1 167.719 8.572 3.708 102.074 54.900 23.025
2 158.613 12.814 8.572 74.625 54.900 50.475
3 125.395 41.790 12.814 86.502 54.900 38.598
4 106.818 41.790 31.390 74.625 54.900 50.475
5 75.424 62.784 41.790
6 73.181 62.784 44.033
7 75.424 62.784 41.790

In addition, we may find curves inside each coloured region that appear from the
trajectories of the triangles in the diagram. Figure 12b shows some of these curves of
interest as follows.

It has already been proven that for z ∈ I, Γ(z) ≤ 2. In this sub-region, w(z) = 1
2z̄ is an

inversion with respect to the circumference of |z| =
√

2
2 , or x2 + y2 = 1

2 . Therefore, for z in
the arc of circumference w(z) = z so |Γ(z)| = 1.

Similarly to the points in region I, where |Γ(z)| = 1, there exist points in lower regions
such that |Γ(z)| = 2. These points will be those where w(z) is precisely in the arc of
circumference, say γ, of equation |z| =

√
2

2 . That is, by studying the pre-images of w for
z ∈ γ, the corresponding arcs in lower regions of σ may be found as follows

• If z ∈ I I, w(z) = −1
2z−1 . If w(z) ∈ γ, then

∣∣∣z− 1
2

∣∣∣ =
√

2
2 , which is the arc of a

circumference with centre ( 1
2 , 0) and radius

√
2

2 . Notice that this circumference is out
of Σ, and, therefore, there is no point in region I I where |Γ(z)| = 2.

• If z ∈ I I I, w(z) = 2z̄
2z̄−1 . If w(z) ∈ γ, then

∣∣ 2z̄
2z̄−1

∣∣ = 1√
2
. If z = (x, y), we have

(x + 1
2 )

2 + y2 = 1
2 , which is the arc of a circumference with centre (− 1

2 , 0) and radius√
2

2 , arc γ3 in the figure.

• If z ∈ IV, w(z) = 2z−1
2z . If w(z) ∈ γ, then

∣∣∣ 2z−1
2z

∣∣∣ = 1√
2

. If z = (x, y), (x− 1)2 + y2 = 1
2 ,

which is the arc of a circumference with centre (1, 0) and radius
√

2
2 , arc γ4 in the figure.

• If z ∈ V, w(z) = 2z. If w(z) ∈ γ, then |z| =
√

2
4 , which is a circumference with centre

(0, 0) and radius
√

2
4 , arc γ5 in the figure.

• If z ∈ VI, w(z) = 1− 2z̄. If w(z) ∈ γ, then |1− 2z̄| = 1√
2
, so

∣∣∣z− 1
2

∣∣∣ = √
2

4 , arc of a

circumference with centre ( 1
2 , 0) and radius

√
2

4 , arc γ6 in the figure.
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The analysis of subsequent lines where |Γ(z)| = n, for n ≥ 3 is analogous to those
already carried out by considering the pre-images of the circular arcs already studied. The
first of these arcs is depicted in Figure 12b.

It is worth noting here that the fractal appearance of these arcs, in the diagram of
triangular shapes is similar to that of the fractal appearance of the boundary of the regions
depending on the number of dissimilar triangles generated by SE duplication.

4. Improvement Properties

The non-degeneracy property has been very relevant in the approximation prop-
erties of finite element spaces and the convergence issues of multigrid and multilevel
algorithms [19]. The non-degeneracy is held when the interior angles of all elements are
bounded uniformly away from zero. This property should be assured in refinement and
remeshing strategies. It is well-known that the longest-edge bisection algorithms guarantee
the construction of high-quality triangulations [10,15].

However, the most interesting property of SE duplication is the self-improvement
property, as the following theorem establishes.

Theorem 3 (self-improvement property). Let t0 be an initial obtuse triangle in which SE
duplication is iteratively applied. Then a (finite) sequence of dissimilar triangles, one per iteration,
is obtained: {t0, t1, . . . tN−1, tN , . . . tN+M}, where triangles t0, t1, t2, . . . , tN−1 are obtuse, triangle
tN is nonobtuse, and the SE duplication of tN produces a finite number of new, not obtuse triangles
tN+1 and tN+M.

The iterative SE duplication transformation applied to an initial obtuse triangle pro-
duces a finite sequence of ‘better’ triangles in the sense that the new triangle is ‘less obtuse’
than the previous one, and its minimum angle is greater than the minimum angle of the
previous triangle, until triangle tN becomes nonobtuse.

This process results in one of the situations illustrated in the next diagram:

(1) tN−1 → tN 	
obtuse nonobtuse

(2) tN−1 → tN 
 tN+1
obtuse nonobtuse nonobtuse

(3) tN−1 → tN → · · · tN+M−1 
 tN+M
obtuse nonobtuse nonobtuse nonobtuse

THE THREE ENDINGS TO AN ORBIT BY THE SE DUPLICATION.

The first situation corresponds to the orbit ending in a fixed point for the SE duplication.
In the other two possibilities, the orbit also ends in region I but not at a fixed point of w.
Since function w(z) is an inversion in I w2(z) = z. The only difference between the two
last scenarios is that in (2), the first nonobutse triangle is in I, while in (3), it is not in I. See
Figures 8 and 12. We will show some examples in the next section.

5. Numerical Examples

In this section, we present the evolution of the iterative application of the SE duplication
to some initial test triangles. The first four initial triangles were also chosen and studied by
Rivara and Iribarren in [9] and Plaza et al. in [10] in the context of the 4-triangle longest-edge
partition. Table 1 shows the different-shaped triangles obtained by SE duplication of these
triangles. The evolution of the generated triangles is visible at a glance in Figure 13.

Table 2 shows the evolution by the SE duplication applied to four more triangles shar-
ing the same minimum angle, 5◦. It should be noted that, as before, the generated triangles
are better shaped than the previous ones until the respective orbit ends in subregion I%.
We observe that triangle 8 is an acute isosceles, and all triangles of its orbit are acute.

The evolution of the generated triangles is visible at a glance in Figure 14. Notice that
once a nonobtuse triangle appears in the sequence all its sucessors in orbit are also nonobtuse.
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Figure 13. Evolution of SE duplication for the four different triangles in Table 1.

Table 2. Sequences of triangles obtained by SE duplication from initial triangles with the same
minimum angle α0.

Triangle 5 Triangle 6
# of Dissimilar Triangles 6 # of Dissimilar Triangles 5

It. n γn βn αn γn βn αn

0 146.875 28.125 5.000 123.75 51.250 5.000
1 140.057 28.125 11.817 118.092 51.250 10.658
2 117.363 34.512 28.125 104.840 51.250 23.910
3 78.236 67.252 34.512 74.750 54.002 51.25
4 67.252 62.637 50.111 87.821 54.002 38.177
5 80.958 62.637 36.405 74.750 54.002 51.25
6 67.252 62.784 50.111

Triangle 7 Triangle 8
# of Dissimilar Triangles 4 # of Dissimilar Triangles 4

It. n γn βn αn γn βn αn

0 100.625 74.375 5.000 87.500 87.500 5.000
1 95.456 74.375 10.169 87.500 82.538 9.962
2 84.935 74.375 20.690 82.538 77.685 19.777
3 74.375 65.442 40.183 77.685 64.346 37.968
4 70.022 65.442 44.537 68.170 64.346 47.483
5 74.375 65.442 40.183 77.685 64.346 37.968
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Figure 14. Evolution of SE duplication for the four different triangles in Table 2.
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6. Conclusions

In this paper, a new triangle transformation, the shortest-edge duplication of triangles,
has been defined. This transformation may be seen as the natural counterpart of the longest-
edge partition of a triangle. Metric properties of the SE duplication of a triangle in the
region of normalised triangles endowed with the Poincare hyperbolic metric have been
studied. The self-improvement of this transformation has been easily proven, as well as
the minimum angle condition. A lower bound for the maximum of the smallest angles of
the triangles obtained by iterative SE duplication has been obtained with the value α = π

6 .
This value does not depend on the shape of the initial triangle. Finally, some numerical
examples have been shown to be in total agreement with the mathematical analysis.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by ‘Fundación Parque Científico y Tecnológico de la ULPGC’
grant number ‘F2021/05 FEI Innovación y Transferencia empresarial en material científico tecnológica
en la rama Geoinformática y datos’.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bank, R.E.; Xu, J. An algorithm for coarsening unstructured meshes. Numer. Math. 1996, 73, 1–36.

[CrossRef]
2. Carey, G. Computational Grids: Generation, Refinement and Solution Strategies; CRC Press: Boca Raton, FL, USA, 1997.
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