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Abstract: Understanding of the glucose risk factors-mediated mechanism in human breast cancer
remains challenging. In this perception, for the first time, we proposed a complex nonlinear dynamical
model that may provide a basic insight into the mechanism of breast cancer for the patient with
existing glucose risk factors. The impact of glucose risk factors on the cancer cells’ population is
evaluated using the formulated analytical model. The dynamical features of the cancer cells are
described by a system of ordinary differential equations. Furthermore, the Routh–Hurwitz stability
criterion is used to analyze the dynamical equilibrium of the cells’ population. The occurrence of
zero bifurcation as well as two and three of the Jacobian matrix are obtained based on the sums of
principal minors of order one. The glucose risk factors are exploited as the bifurcation parameters
(acted as necessary and sufficient conditions) to detect the Hopf bifurcation. The presence of excess
glucose in the body is found to affect negatively the breast cancer cells’ dynamics, stimulating chaos
in the normal and tumor cells and thus drastically deteriorating the efficiency of the human immune
system. The theoretical results are validated using the numerical simulations. It is concluded that the
present findings may be beneficial for the future breast cancer therapeutic drug delivery and cure.
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1. Introduction

Human cancers are one of the most deadly diseases with life-threatening attributes,
yet they remain incurable despite the advancement of modern medicines and surgical
procedures. In general, there are many types of cancers such as blood, skin, colon, lung,
breast, etc. to cite a few. Amongst all these, breast cancer is more prevalent in women
than men, thereby causing several million deaths annually worldwide [1–3]. An estimate
by the global cancer statistics of 2020 revealed that breast cancer in women is becoming
very common with approximately 2.3 million new cases every year (11.7%), thus rapidly
surpassing lung cancer (11.4%), colorectal cancer (10.0%), prostate cancer (7.3%), and
stomach cancer (5.6%) [4]. Numerous studies have continually been conducted to determine
the complex mechanism of cancer cells dynamics and growth processes, providing new
knowledge to improve the cancer treatment, drug delivery, and therapeutic strategies. In
spite of many dedicated efforts, various significant factors that are responsible for the
breast cancer development in the tissues such as estrogen excess and nutrients are far from
being understood. In addition, the glucose risk factors-mediated processes in human breast
cancer that impart further impetus need to be explored.

Over the decades, diverse mathematical models have been introduced to examine the
dynamical behavior of the cancer cells in the presence of varied factors. Roberto et al. [5]
proposed a mathematical model to evaluate the effects of obesity as a risk factor on the
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tumor growth and immune response. In addition, several models were presented to show
that the stored fat in an obese human body contributes considerably to the tumor growth,
thus increasing the risk factors toward survival [6]. The impact of an unhealthy diet as
one of the risk factors for cancer was evaluated using an analytical model [7]. The results
obtained from the model simulation displayed that the immune cells’ boost up through
the intervention of vitamins can delay the mechanisms of the tumor cells’ growth and
division. Admon and Maan [8] constructed a mathematical model to determine the effect
of immune response and drugs on the growth mechanisms of tumor cells. The results
demonstrated that the combination of immune and drug can provide a better way to kill
the tumor cells. Mufudza et al. [9] assessed the impact of estrogen on the dynamics of
normal, breast cancer, and immune cells using a system of ordinary differential equations
(ODEs). It was concluded that extra estrogen can increase the degree of tumor formation
and inhibit the immunity development. Oke et al. [10] extended the model proposed by
Mufudza et al. [9] in the context of chemotherapy treatment and the ketogenic diet. A
set of ODEs was applied to examine the breast cancer cells’ dynamics in the presence of
chemotherapy medicine and ketogenic diet. It was affirmed that an increase in the level
of estrogen can appreciably affect the dynamical stability of the cells’, accelerating the
growth of tumor. In addition, the presence of the ketogenic diet during treatments was
shown to reduce the number of cancer cells to zero when the reproductive number of a
certain threshold was less than one. The level of the immune system, anti-cancer treatment
effectiveness, and ketogenic diet dose rates could contribute to reducing the breast cancer
risk, while an increase in the estrogen level could improve the formation rate of the tumor.
Meanwhile, many mathematical models used the bifurcation analysis to determine the
behavior of cells under a specific parameter. The chaos of cells was shown to occur when
the value of a specific parameter is changed over time.

More recently, fractional differential equations have been used in a cancer growth
model to determine the tumor-immune dynamics [11]. The chaotic behaviors of the pro-
posed cancer model for both commensurate and incommensurate cases have been un-
derstood in terms of the bifurcation diagram, Lyapunov exponent, and phase plot. It
was concluded that various chaotic behaviors can emerge when the derivative’s order
surpasses the threshold limit. Consequently, it becomes impossible to predict the number
of healthy host, tumor, and effector cells [11]. Another investigation [12] was made to
examine the tumor cells’ characteristics when the immune response is absent, wherein the
tumor, normal, and fat cells were inspected using bifurcation in order to identify the chaotic
regime. The findings exhibited the occurrence of codimention-1 bifurcation of the system
and the complete absence of any periodic solutions. This in turn suggested an eventual
deterioration of the condition and non-existence of Hopf bifurcation.

It is established that cancer cells display the aerobic glycolysis process, implying that
such cells obtain most of their energy from the glycolysis, wherein glucose is transformed
to lactate for energy after its fermentation even during the accessibility of oxygen, which is
a phenomenon called the Warburg effect [13]. In addition, resembling other types of cancer
cells, the breast carcinoma cell lines display dependency on glucose, deriving most of their
energy as adenosine triphosphate (ATP) from high-throughput glycolysis [14]. Numerous
studies confirmed that cancer cells feed heavily on glucose; thus, they are included in the
model to determine its effect on the breast cancer cells. Chen et al. [15] examined the role
of glucose deprivation during the breast cancer cells’ death. Wardi et al. [16] showed that
excessive glucose intake can increase and proliferate the cancer cells development, while
glucose restriction can reduce and inhibit the cancer cells’ growth.

Santos and Hussain [2] evaluated the influence of glucose on the breast cancer cells. It
was asserted that a higher glucose level can enhance the breast cancer cells’ aggressiveness,
wherein glucose facilitates its rapid growth and spread. Furthermore, the results showed
that a higher glucose level can speed up the cells’ migration, proliferation, and growth.
Kretowski et al. [17] claimed that since glucose is the major energy resource for the
tumor cells’ development, an elevated amount of intracellular glucose enables the cancer
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cells proliferation due to their strong glucose-dependent metabolism. Barbosa and Martel
[18] argued that cancer cells require a higher amount of glucose even when oxygen is
accessible, displaying more sensitivity to the glucose deprivation-mediated death compared
to the normal cells. Hence, the inhibitors for the glucose uptake must be regarded as a
kind of breast cancer cure. It was acknowledged that [19] a high level of glucose can
strongly support the cell proliferation. Furthermore, the cells showed a greater invasion
and proliferation capacity in a high glucose-containing medium than the one in a normal
glucose medium. It clearly verified the effect of high glucose contents in promoting the
cancer cells’ spreading in the body.

A high quantity of glucose can lead to an impaired function of the immune system
and pathological conditions. Nevertheless, an appropriate quantity of glucose is essential for
the immune system. An elevated amount of glucose can cause the production of extreme
pro-inflammatory cytokines. Consequently, the infiltration of the high quantity of glucose
into the immune cells can adversely affect the immune system and associated signal transfer
pathways, leading to the generation of pro-inflammatory cytokines. This in turn leads to an
impaired function of the immune system, triggering pathological situations [20]. To sum up, the
majority of the previous studies confirmed that high glucose intake can enhance the growth
and proliferation of the breast cancer cells, thus providing a fertile environment for the rapid
development of breast cancer. Conversely, only a few studies have been conducted to determine
the effect of glucose on the human immune system. It was demonstrated a high or low glucose
rate in the body can negatively influence the immune cells [21]. It is needless to mention that
although several studies have qualitatively assessed the role of glucose (as main energy source)
on the breast cancer cells’ dynamics [2,13,16–22], a comprehensive mathematical model that
quantifies the impact of glucose on the complex dynamical mechanisms of breast cancer cells
is missing. It is established that glucose is the main energy source of the cancer cells for their
growth and proliferation [2]. Thus, the cancer cells’ spread, promotion, and the differentiation
and conversion into quiescent cells can be reduced with the lowering of glucose intake [16].
In order to achieve a quantitative estimate concerning the excess glucose intake by the breast
cancer cells and their negative impact on the normal, cancer, and immune cells in further
deteriorating the patient immune system, a systematic study is essential. The symmetric and
antisymmetric concepts between a realistic biological behavior and the dynamics system of
cells play an essential role in reducing cancer risks. Considering the immense fundamental
significance of understanding the adverse impact of the glucose risk factors on human breast
cancer, we developed an analytical model to determine the mechanisms of breast cancer cells
dynamics in the presence of glucose. In addition, the influence of glucose as nutrients on the
cancer cells’ growth, proliferation, invasion capacity into healthy tissues and thereafter rapid
spreading in the patient body is emphasized.

This article is structured as follows: Section 2 formulates the proposed nonlinear
dynamical model for breast cancer. Section 3 provides the local stability analyses and
criteria for the equilibrium. Section 4 analyzes the existence conditions for the zero and
Hopf bifurcation. Section 5 presents the results obtained from the numerical simulation of
the model and validates it. Section 6 briefly discusses the salient features of the results and
concludes the study with further outlook.

2. Formulation of Nonlinear Dynamical Model for Breast Cancer

In this work, we modified the earlier model of breast cancer with glucose risk factors
introduced in [9]. The proposed three-dimensional (3D) deterministic model incorporates
the host (normal), tumor, and immune cells of the breast cancer patient in the presence of
excess glucose-stimulated risk factors. The model is formulated based on the following as-
sumptions:

1. The category of host (normal) epithelial cells (N(t)) at any time (t) is composed of
the breast tissues. The life cycle of N(t) follows the logistic growth N(t)[α1 − µ1N(t)],
where α1 and µ1 are the corresponding growth and death rate of the normal breast
cells, respectively.
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2. The category of tumor cells (T(t)) and their concentration is entirely different from the
normal cells. The cell divisions in this class occur rapidly in an uncontrolled manner.
The natural death of tumor cells has no biological meaning; however, their growth
can be inhibited due to some factors such as immune suppression. The growth of
tumor cells is described by T(t)[α2 − µ2T(t)], wherein α2 and µ2 are the corresponding
growth and inhibition rate of the breast tumor cells, respectively.

3. The reasons for the appearance of the tumor cells in tissues are usually unknown.
However, many studies argued that the occurrence of tumors may be due to various
internal and external factors [23]. The factors such as cell damage, some hormones,
immune cell weakness and others are classified as internal types. Conversely, the
external factors include lifestyle, sleeping habits, stress, and exercise activity. These
factors may transform a normal cell into a tumor cell. It is further assumed that the
normal cells compete strongly with the tumor cells to gain space and energy resources
in a tiny volume, justifying our acceptance of the competition model proposed by
Mufudza et al. [9]. In essence, the interaction between tumor and normal cells
can be represented as φ1NT, where φ1 is the competition-induced death rate of the
normal cells.

4. Following the recommendation of [7], wherein due to the competition between tumor
and normal cells, the former ones (tumor) grow rapidly at the expense of later ones
(normal), one can write φ2N(t)T(t). Herein, φ2 denotes the competition-induced
growth rate of the tumor cells.

5. Numerous studies [2,13,16–22] indicated that new cancer cells are formed with the
increase of glucose contents in the patient body. New tumor cells are denoted by
gT(t), where g represents the rate of glucose excess.

6. The human immune system is mainly responsible for the protection of the body from
the growth of tumor cells, which are generated and die on daily basis [24,25]. The
immune cells (M(t)) in the absence of a tumor can be written as [s− µ3M(t)], where
s and µ3 are the corresponding growth and natural death rates of the immune cells.

7. The activity status of the tumors can boost the human immune system. A positive

nonlinear growth term of the form ρM(t)T(t)
ω+T(t) , where ρ and ω are the respective im-

mune response and threshold rates (inversely proportional to the steepness of the
immune response curve) related to the immune cells, can be used to represent such
activity status.

8. Both cells (tumor and immune cells) can fight with others, but immune cells have
the capacity to fight with the foreign cells only. Hence, the tumor and immune cells
might be reduced during the interaction process. We denote the competition via
γ1M(t)T(t) and γ2M(t)T(t), wherein γ1 is the reduction of the tumor cells by the
immune cells action and γ2 is the decrease of the immune cells by the tumor cells. It
is worth noting that the ability of the immune cells to invite the fringe can be affected
by various factors such as excess blood glucose rate, impacting the immune system
efficacy [20,21] written as gM(t).

Based on these postulates, the complete model can be casted as:

dN
dt

= N(α1 − µ1N)− φ1NT,

dT
dt

= T(α2 − µ2T) + gT − γ1MT + φ2NT, (1)

dM
dt

= s +
ρMT
ω + T

− γ2MT − µ3M− gM.

All parameters in the model (1) are positive with the initial conditions

N(0) > 0, T(0) ≥ 0 and M(0) > 0.
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Figure 1 shows the competition among the cells population in the proposed nonlinear
dynamical model of breast cancer.

N

TM

A
ttack

Logistic Growth

Figure 1. The cells’ population competition in the proposed model.

3. Model Analysis
3.1. Boundedness and Positive Invariance

We need to demonstrate that the model with the chosen parameter values is biologi-
cally plausible before we move on to the mathematical analysis by proving the boundness
and positivity of solutions.

Since our model investigates cellular populations, therefore, all the variables and
parameters of the model are non-negative. Based on the biological finding, the system will
be studied in the following region: Ψ = {(N, T, M) ∈ R3

+}

Theorem 1. The region Ψ ⊂ R3
+ of the dynamic system (1) is positively invariant, and non-

negative solution exists for all time t.

Proof. Let Ψ = Ψc ⊂ R3
+ with Ψ = {(N, T, M) ∈ R3

+ : N ≤ α1
µ1

, T ≤ α2+g
µ2

, M ≤ s
µ3+g};

then, the solutions of N(t), T(t), M(t) in the dynamic system (1) are positive for any time t.
From the first equation of system (1), it is obvious that

dN
dt
≤ α1N − µ1N2

solving this equation with Bernouli method, we obtain

N(t) ≤ α1

µ1 + cα1e−α1t (2)

and as t→ ∞

N(t) ≤ α1
µ1

.

Now, for the second equation of system (1), we have

dT
dt
≤ α2T − µ2T2 + gT

using the Bernouli method to solve this equation, we obtain

T ≤ α2 + g
µ2 + (α2 + g)ce−(α2+g)t
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then, the solution is given as

T ≤ α2+g
µ2

, as t→ ∞

The last equation of system (1) satisfies

dM
dt
≤ s− µ3M− gM

then the solution of this equation will give

M ≤ s
µ3 + g

+ ce−(µ3+g)t

and as t→ ∞, we obtain the solution

M ≤ s
µ3 + g

this completes the proof.

3.2. Existence of Equilibrium Points

The equilibrium of the solutions of the model equations can be obtained by setting the
left-hand side equal to zero:

dN
dt

=
dT
dt

=
dM
dt

= 0. (3)

Solutions of System (1) yield four steady states with two dead equilibrium points, one
tumor-free equilibrium point, and one coexisting equilibrium point. The following sections
discusses the salient features of these states.

3.2.1. Tumor-Free Equilibrium E0:

Herein, E0 signifies that only the tumor cells’ population is vanished or enforced to
extinct due to the competitive interactions among tumor, immune and normal cells. The
value of E0 can be obtained via:

E0 = (N∗, T∗, M∗) =
(

α1

µ1
, 0,

s
g + µ3

)
. (4)

Clearly, E0 exists if and only if the parameters α1, µ1, s, g and µ3 have real positive
values, indicating that all the solutions around E0 are feasible.

Biologically, this case is called the healthy case for the patient where the tumor disap-
pears, while normal cells and immune cells remain. This point can be explained as follows:
the glucose level is very low, which makes the tumor environment unprepared and thus
facilitates the elimination of cancer cells by immune cells.

3.2.2. Type 1 Dead Equilibrium E1

Herein, E1 implies that in the entire cells’ population, only the normal cells died and
tumor cells survived. The ability of a cancer cell to ‘escape malignancy’ and transformed
back to a normal state might seem impossible. Thus, it is labeled as a “dead” case of
equilibrium point. In fact, the recovery of the damaged normal cells is none, because they
are forced to become extinct. This condition yields:

E1 = (N∗, T∗, M∗) =
(

0,
1

µ2
(g + α2 − γ1M∗), M∗

)
, (5)

with

M∗ =
γ2[ωµ2 + 2(g + α2)] + µ2(g + µ3 − ρ)

3γ1γ2
. (6)
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Obviously, E1 exists if and only the parameters g, ρ, ω, α2, µ2, µ3, γ1 and γ2 are positive
and the following conditions are obeyed:

g > max{ρ− µ3,
µ2(γ2ω + µ3 − ρ)− γ2α2

γ2 − µ2
} (7)

Biologically, this point is classified as glucose risk such that the rate of glucose is greater
than the rate of the immune response, which contributes to the growth of cancer cells at a
much higher rate than normal cells. In this case, the tumor spreads, and the patient becomes
in a critical condition, leading to either mastectomy or death. The mathematical result
confirmed the biological results: if the glucose rate is higher than the immune response
rate, the point will be in the feasible region of the system. The immune response appeared
due to the high glucose rate, contributing to tumor growth. Hence, it confirms that high
glucose negatively affects the immune system, as mentioned in [20,21].

3.2.3. Type 2 Dead Equilibrium (E2):

In this case, E2 exists if and only if both the tumor and normal cells’ population vanish.
The values of E2 can be estimated using:

E2 = (N∗, T∗, M∗) =
(

0, 0,
s

g + µ3

)
. (8)

Herein, E2 is finite if and only if all parameters s, g and µ3 have real positive values,
indicating that all solutions in the proximity of E2 are realistic. Although this is an interest-
ing possibility, no tissues exist in reality because of the entire breast tissues removal by a
mastectomy surgery or the patient’s death. In fact, E2 makes no sense biologically and is
not realistic because it is not acceptable that N = T = 0 while M 6= 0, which means that
immune cells exist. The task of immune cells is to protect the normal cells or fight diseases,
but in the case of breast cancer, these cells are not active unless there are normal cells or a
tumor. Therefore, the only possible explanation for this case is that either the breast was
removed or the patient died.

3.2.4. Coexisting Equilibrium E3:

E3 signifies that all types of cells population survived in the competition, and their
coexistence can mathematically be expressed as:

E3 = (N∗, T∗, M∗) =
(

1
µ1

(α1 − φ1T∗), T∗,
1

γ1γ2µ1
(γ2l2 − k1T∗)

)
, (9)

where T∗ can be represented by the real positive zeros of the system of cubic equations of
the form:

k1

(
T
∗)3

+ k2

(
T
∗)2

+ k3T∗ + k4 = 0, (10)

k1 = γ2(µ1µ2 + φ1φ2) > 0,

k2 =
k1

γ2
l1 − γ2l2,

k3 =
ω

γ2
k1(g + µ3)− l1l2 + sγ1µ1,

k4 = −ω[(g + µ3)l2 − sγ1µ1], (11)

and

l1 = ωγ2 + g + µ3 − ρ,

l2 = µ1(g + α2) + α1φ2.
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Substituting T∗ = η − k2
3k1

into Equation (10), all equation numbers must be changed,
and one obtains:

η3 + Uη + V = 0, (12)

where U = k3
k1
− 1

3

(
k2
k1

)2
and V = k4

k1
+ 2

27

(
k2
k1

)3
− k2k3

3k2
1

.

Next, let 3AB = −U and A3 + B3 = −V; then, we obtain

A =

(
−V

2
+
√

D
)1/3

,

B =

(
−V

2
−
√

D
)1/3

,

where D =
(

V
2

)2
+
(

U
3

)3
.

The solutions of Equation (12) take the form:

η1 = A + B,

η2,3 = −1
2
(A + B)± i

√
3(A− B), (13)

where i2 = −1. The solution of Equation (12) depends on the sign of the discriminant D
with the following possibilities [26]:

• For D > 0, we achieve one real root and two imaginary roots.
• For D < 0, one achieves three real roots.
• For D = 0 and U = V = 0, we obtain one simple real root with a multiplicity of three.

• For D = 0 and
(

U
3

)3
= −

(
V
2

)2
6= 0, one obtains thee real roots with single and

double multiplicity.

Algebraic manipulations of Equations (9)–(13) indicate that E3 can exist under the condition:

0 < T∗ < min
{

α1

φ1
,

γ2l2
k1

}
. (14)

The coexisting point represents the interaction stage among normal, cancer, and
immune cells. All cells compete for survival in this stage. The immune cells are activated
as a result of tumor appearance.

3.3. Local Stability of Equilibrium

It is important to perform the local stability analysis of the equilibrium points such
as E0, E1, E2 and E3 to obtain a basic insight into the breast cancer cells’ dynamics. The
following Jacobian matrix J(E∗) was computed to determine the local stability of the
equilibrium:

J(E∗) =


α1 − 2µ1N∗ − φ1T∗ −φ1N∗ 0

φ2T∗ −γ1M∗ + φ2N∗ − 2µ2T∗ + g + α2 −γ1T∗

0 M∗
(

ρω

(ω+T∗)2 − γ2

)
T∗
( ρ

ω+T∗ − γ2
)
− (µ3 + g)

. (15)

Theorem 2. The tumor-free equilibrium point E0 is characterized by:

• Asymptotically stable (sink) if g < g0.
• Unstable (saddle) if g > g0.
• Nonhyperbolic if g = g0.
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where g0 is given by:

g0 =

√
∆− (α1φ2 + α2µ1 + µ1µ3)

2µ1
, (16)

and

∆ = (α1φ2 + α2µ1 + µ1µ3)
2 − 4µ1(α1µ3φ2 + α2µ1µ3 − sγ1µ1) > 0,

s > s0 =
µ3

γ1µ1
(α1φ2 + α2µ1).

Proof. Substituting the equilibrium point E0 (4) into (15), one obtains the following varia-
tional matrix:

J(E0) =


−α1

−α1φ1
µ1

0

0 − γ1s
µ3+g + φ2α1

µ1
+ g + α2 0

0 s(ρ−ωγ2)
ω(µ3+g) −(µ3 + g)

. (17)

The characteristic equations of J(E0) yield the eigenvalues:

λ1 =
µ1g2 + (α1φ2 + α2µ1 + µ1µ3)g + (α1µ3φ2 + α2µ1µ3 − sγ1µ1)

(µ3 + g)µ1
,

λ2 = −(µ3 + g),

λ3 = −α1.

It is clear that λ2 and λ3 are always negative. The solution of λ1 = 0 in terms of g yields
one positive zero when g = g0 such that s > s0 = µ3

γ1µ1
(α1φ2 + α2µ1). One can deduce

that (λ1 < 0, λ1 > 0) for (g < g0, g > g0). In addition, if g < g0, then all eigenvalues of
matrix (17) are negative, indicating E0 as a local asymptotic stable point. Conversely,
for g > g0, i.e., λ1 > 0, E0 is a saddle point. For g = g0, then J(E0) has only one zero
eigenvalue, making E0 a nonhyperbolic point.

Biologically, cancer cells depend on their ability to reproduce and absorb glucose,
which means that if the rate of glucose is lower than g0, it will contribute significantly to
the inhibition of cancer cells and reduce their strength and ability to reproduce and spread.
This leads to the stability of the patient’s health. Many studies focused on this characteristic
of cancer cells. Therefore, they recommended some methods to reduce the amount of
glucose entering the body, such as a low-carb or ketogenic diet [10] and avoiding unhealthy
ones. In addition, recent studies are now focusing on studying the effect of glucose uptake
inhibitor drugs or inhibiting glucose transporters as an anti-cancer treatment to reduce
tumor cancer cell proliferation [18,27–29].

Theorem 3. The type 1 dead equilibrium point (E1) is unstable.

Proof. The local stability of the equilibrium point E1 was examined using the variational
matrix J(E1):

J(E1) =


α1 − φ1T∗ 0 0

φ2T∗ −µ2T∗ −γ1T∗

0 M∗
[

ρω

(ω+T∗)2 − γ2

]
T∗
[ ρ

ω+T∗ − γ2
]
− (µ3 + g)

, (18)

where T∗ = g+α2−γ1 M∗
µ2

and M∗ is defined in Equation (6). One eigenvalue of J(E1) yields

λ = α1 +
φ1[µ2l1 − γ2(g + α2)]

3µ2γ2
. (19)
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Applying the conditions given in Equations (7) and (19), one finds that λ is always
positive. Therefore, E1 is an unstable equilibrium point.

As indicated in condition (7), the glucose risk appears when the glucose rate becomes
more significant than the immune response rate, allowing cancer cells to proliferate. Thus,
the patient’s health becomes unstable and is considered an emergency.

Theorem 4. The type 2 dead equilibrium (E2) is a saddle point.

Proof. The variational matrix J(E2) takes the form:

J(E2) =

 α1 0 0
0 −γ1s

µ3+g + g + α2 0

0 s(ρ−ωγ2)
ω(µ3+g) −(µ3 + g)

, (20)

The characteristic equations of J(E2) produce the eigenvalues:

λ1 = α1,

λ2 = −(µ3 + g), (21)

λ3 =
g(g + µ3 + α2) + µ3α2 − γ1s

µ3 + g
.

From Equation (21), one obtains that the eigenvalue λ1 is always positive and λ2 is
always negative. However, λ3 under certain conditions can be positive or negative, making
E2 an unstable(saddle) equilibrium point.

Biologically, this indicates that either the mastectomy was performed or the patient
died. As a result, the system becomes unstable at E2.

Theorem 5. The coexistence equilibrium point E3 is an asymptotically stable point. E3 is an
asymptotically stable point when:

a1 > 0, a3 > 0, a1a2 − a3 > 0

This implies,

a1 = (γ2 −Q2 − µ2 − φ1)T∗ + g + α1 + µ3 > 0,
a3 = T∗

µ1

{
φ1[k1P− (µ1µ2 − φ1φ2)(Q2 − γ2)]T∗2 + [−α1k1P− γ2l2φ1P
+(µ1µ2 − φ1φ2)(gφ1 + Q2α1 − α1γ2 + µ3φ1)]T∗

−α1[(µ1µ2 − φ1φ2)(g + µ3)− γ2l2P]} > 0,
a1a2 − a3 = −1

µ1
[(γ2 −Q2 − µ2 − φ1)T∗ + g + α1 + µ3]× {[k1P− µ1(µ2 + φ1)(Q2 − γ2)

−φ1(µ1µ2 − φ1φ2)]T∗2 + [µ1(µ2 + φ1)(g + µ3)
+ α1(Q2µ1 − γ2µ1 + µ1µ2 − φ1φ2)− γ2l2P]T∗ − α1µ1(g + µ3)}
− T∗

µ1

{
φ1[k1P− (µ1µ2 − φ1φ2)(Q2 − γ2)]T∗2 + [−α1k1P− γ2l2φ1P

+(µ1µ2 − φ1φ2)(gφ1 + Q2α1 − α1γ2 + µ3φ1)]T∗

−α1[(µ1µ2 − φ1φ2)(g + µ3)− γ2l2P]} > 0.

(22)

Proof. The stability conditions of E3 were examined using the variational matrix J(E3),
which takes the form:

J(E3) =

φ1T∗ − α1
φ1
µ1
(φ1T∗ − α1) 0

φ2T∗ −µ2T∗ −γ1T∗

0 (k1T∗ − γ2l2)
[

1
µ1γ1
−Q1

]
(Q2 − γ2)T∗ − (µ3 + g)

, (23)
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where Q1 = ρω

µ1γ1γ2(ω+T∗)2 , Q2 = ρ
ω+T∗ . The characteristic equation obtained from the

matrix (23) can be expressed as:

F(λ) = a0λ3 + a1λ2 + a2λ + a3 = 0.

where

a0 = 1,

a1 = (γ2 −Q2 − µ2 − φ1)T∗ + g + α1 + µ3,

a2 =
−1
µ1

{
[k1P− µ1(µ2 + φ1)(Q2 − γ2)− φ1(µ1µ2 − φ1φ2)]T∗2

+[µ1(µ2 + φ1)(g + µ3) + α1(Q2µ1 − γ2µ1 + µ1µ2 − φ1φ2)− γ2l2P]T∗

−α1µ1(g + µ3)},

a3 =
T∗

µ1

{
φ1[k1P− (µ1µ2 − φ1φ2)(Q2 − γ2)]T∗2 + [−α1k1P

−γ2l2φ1P + (µ1µ2 − φ1φ2)(gφ1 + Q2α1 − α1γ2 + µ3φ1)]T∗

−α1[(µ1µ2 − φ1φ2)(g + µ3)− γ2l2P]}, (24)

and P = γ1µ1Q1 − 1. Following the well-known Routh–Hurwitz criteria for the stability in
continuous systems, one achieves: E3 is asymptotically stable if

a1 > 0, a3 > 0, and a1a2 − a3 > 0. (25)

Substituting Equation (24) into (25), one recovers the results given by the relations (22).
Thus, E3 is asymptotically stable if the inequalities (22) have at least one real solution;
otherwise, E3 is unstable.

4. Bifurcation

When J(E∗) at any equilibrium point E∗ of the model Equation (1) has some eigenval-
ues having a real part equal to zero, then the nonlinear flow close to E∗ has very different
behavior compared to the one close to the origin, indicating the bifurcation of the model
and thus the occurrence of new dynamics. For instance, the equilibrium may be initi-
ated or obliterated, commencing even new periodic or quasiperiodic orbits. Thus, to
ascertain the breast cancer cells dynamics, it is mandatory to analyze the transcritical and
Hopf bifurcation of the model of Equation (1) around the equilibrium points E0 and E3,
respectively.

4.1. Zero Bifurcation

The zero bifurcation occurs when a real eigenvalue of the system of the model Equa-
tion (1) surpasses zero value. Stefano and Desmarchelier [30] used novel strategies to
obtain the necessary and sufficient conditions for different types of local bifurcations for
co-dimension one and two in dynamical systems of higher dimensions. These approaches
depended on the principal minors’ sum of order one, two and three of J(E∗). Assuming g
as the critical parameter for the bifurcation, we analyzed the zero bifurcation using: a zero
bifurcation occurs when J(E∗) of a continuous 3D system has one eigenvalue λ1 = 0 at a
bifurcation parameter µ such that Re λ2,3(µ) 6= 0, if E∗(µ) exists. To assess the types of
zero bifurcation about E0, the system of equations in (1) were linearized around a steady
state E0(N0, T0, M0). The Jacobian matrix yields:

J(E0) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (26)

According to [30], the sums of principal minors of orders one, two and three of J(E0)
can be written as:
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c2 = a11 + a12 + a13, (27)

c1 =

∣∣∣∣[ a11 a12
a21 a22

]∣∣∣∣+ ∣∣∣∣[ a11 a13
a31 a33

]∣∣∣∣+ ∣∣∣∣[ a22 a23
a32 a33

]∣∣∣∣, (28)

c0 = |J(E0)|, (29)

where c2, c1, and c0 represent the corresponding trace, minors’ sums of order two, and
determinant of J(E0). The values of c2, c1 and c0 depended on the chosen bifurcation
parameters. The characteristic function F(J(E0)) can be formulated as:

F(J(E0)) = (λ− λ1)(λ− λ2)(λ− λ3) = λ3 − c2λ2 + c1λ + c0. (30)

Using Equation (30), one obtains c2 = λ1 + λ2 + λ3, c1 = λ1λ2 + λ2λ3 + λ1λ3 and
c0 = −λ1λ2λ3. To be more specific, the following propositions of [30] can be used:

Proposition 1 ([30]). The generic saddle-node bifurcation emerges if and only if c0 = 0.

Using this proposition, one arrives at the following theorem:

Theorem 6. The model Equation (1) experiences a generic saddle-node bifurcation at E0 where
g = g0 such that s > s0 ≡ µ3

γ1µ1
(α1φ2 + α2µ1).

Proof. According to Theorem 2, the system of Equation (1) has a simple zero eigen-
value λ1 = 0 at E0 if g = g0 such that s > s0. Based on Proposition 1, the system of
Equation (1) was shown to experience a generic saddle-node bifurcation when g = g0 such
that s > s0.

The next goal is to determine the nature of bifurcation (such as elementary saddle-node,
transcritical or pitchfork) that one obtains in Theorem 6. For this analysis, the following
theorem is recalled:

Theorem 7 ([31]). Consider the one-parameter family
.
x= f (x0, µ) and assume that there is an

equilibrium point x0 ∈ Rn provided that f (x0, µ) = 0 for all µ. Furthermore, when µ = µ0,
suppose that the following hypotheses hold.

(A1) The Jacobian matrix J(M) = Dx f (x0, µ0) has a simple one zero eigenvalue λ = 0 with
eigenvector υ, and J(M)T has an eigenvector w corresponding to the eigenvalue λ = 0.

(A2) J(M) has l eigenvalues with negative real parts and n − l − 1 eigenvalues with positive
real parts.

(A3) w
((

∂ f
∂µ

)
(x0, µ0)

)
= 0.

(A4) w
(

Dx

(
∂ f
∂µ

)
(x0, µ0)υ

)
6= 0.

(A5) w
(

D2
x f (x0, µ0)(υ, υ)

)
6= 0.

Then, the system
.
x= f (x0, µ) experiences a transcritical bifurcation at x0 as the bifurcation

parameter µ varies through the bifurcation value µ = µ0.

Theorem 8. The system of Equation (1) undergoes a transcritical bifurcation at E0 as the bifurcation
parameter g varies through the bifurcation value g = g0.

Proof. Let
.
x = f (x, g) =

( .
N,

.
T,

.
M
)

, as defined in (1). The related Jacobian matrix for
g = g0 can be written as:
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M = J(E0, g0) =

 −α1
−α1φ1

µ1
0

0 0 0
0 s(ρ−ωγ2)

ω(µ3+g0)
−(µ3 + g0)

. (31)

It is obvious that J(E0, g0) has a simple eigenvalue λ = 0. The transcritical bifurcation
is characterized by the exchange of stability of the equilibrium point E0 when the parameter
g passes through the bifurcation value g = g0. Note that the vectors υ = ( φ1ψ

µ1
, ψ, 1)

and w = (0, 1, 0) are the eigenvectors of the matrices M and MT , respectively, with the

respective eigenvalue of λ = 0 where ψ = ω(µ3+g0)
2

s(ωγ2−ρ)
, ρ 6= ωγ2. Furthermore, we have that

wT
((

∂ f
∂g

)
(E0, g0)

)
= (0, 1, 0)

 0
0
−s

µ3+g0

 = 0,

w
(

Dx

(
∂ f
∂g

)
(E0, g0)υ

)
= (0, 1, 0)

 0
ψ
−1

 = ψ 6= 0,

w
(

D2
x f (E0, g0)(υ, υ)

)
= (0, 1, 0)

 −2φ1ψ
−2µ2ψ
−2ρsψ

ω2(µ3+g0)

 = −2µ2ψ 6= 0.

Clearly, all hypotheses of Theorem 7 are satisfied, and thus, the system of Equation (1)
exhibits a transcritical bifurcation at E0 at (0, 0) when g = g0. Herein, the proof of Theorem 8
is completed.

4.2. Hopf Bifurcation

The Hopf bifurcation of the model in Equation (1) at E3 was analyzed, wherein the
matrix J(E3) = D f (E3, g) at a certain value of g possesses one real eigenvalue (negative)
and two eigenvalues (complex conjugate without real part). Using a linear approximation
of the vector field, one cannot decide the local dynamics in the vicinity of an equilibrium
point during the existence of Hopf bifurcation. For a given parameterized polynomial
vector field, Weber introduced a semi-algebraic system of Hopf bifurcation criteria [32]
via the Hurwitz determinants. We implemented Weber’s algorithms [32] for the Hopf
bifurcation to obtain a semi-algebraic system through Routh–Hurwitz criterion [33] given
by:

H =


a1 a3 a5 ... ...
a0 a2 a4 ... ...
0 a1 a3 a5 ...
0 a0 a2 a4 ...

. . .

. (32)

where H is said to be the Hurwitz matrix of the characteristic polynomial F(λ) associated
to the Jacobian matrix J(E∗) at any equilibrium point E∗. The ith order principal minor of
the matrix H is termed as its ith Hurwitz determinant and denoted as ∆i. In an autonomous
continuous nonlinear dynamical system, the sufficient and necessary conditions for the
occurrence of Hopf bifurcation can be introduced using the following theorem [32]:

Theorem 9. Let F(λ) ∈ R[λ] be a degree n polynomial given by

F(λ) = a0λn + a1λn−1 + ... + an,
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with a0 > 0. Let ∆1, ∆2...∆n be the sequence (F) of Hurwitz determinants. Then, F(λ) has a pair
of distinct roots, iω and −iω, in the imaginary axis and all other roots in the left half-plane if and
only if:

an > 0, ∆n−1 = 0, ∆n−2 > 0, ..., ∆1 > 0. (33)

The conditions stated in Theorem 9 achieve:

Theorem 10. The model Equation (1) undergoes a Hopf bifurcation at E3 if the following conditions
are fulfilled:

a1 > 0, a3 > 0, a1a2 − a3 = 0. (34)

such that

ao = 1
a1 = (γ2 −Q2 − µ2 − φ1)T∗ + g + α1 + µ3,

a3 = T∗
µ1

{
φ1[k1P− (µ1µ2 − φ1φ2)(Q2 − γ2)]T∗2 + [−α1k1P

γ2l2φ1P + (µ1µ2 − φ1φ2)(gφ1 + Q2α1 − α1γ2 + µ3φ1)]T∗

−α1[(µ1µ2 − φ1φ2)(g + µ3)− γ2l2P]},
a1a2 − a3 = −1

µ1
{(γ2 −Q2 − µ2 − φ1)T∗ + g + α1 + µ3}×{

[k1P− µ1(µ2 + φ1)(Q2 − γ2)− φ1(µ1µ2 − φ1φ2)]T∗2

+[µ1(µ2 + φ1)(g + µ3) + α1(Q2µ1 − γ2µ1 + µ1µ2 − φ1φ2)− γ2l2P]T∗

−α1µ1(g + µ3)} − T∗
µ1

{
φ1[k1P− (µ1µ2 − φ1φ2)(Q2 − γ2)]T∗2

+[−α1k1Pγ2l2φ1P + (µ1µ2 − φ1φ2)(gφ1 + Q2α1 − α1γ2 + µ3φ1)]T∗

−α1[(µ1µ2 − φ1φ2)(g + µ3)− γ2l2P]}.

Proof. Since F(J(E3)) is a degree 3 polynomial, then according to Theorem 9, the sufficient
and necessary conditions for the occurrence of hopf bifurcation at E3 can be written as:

a3 > 0, ∆1 > 0, ∆2 = 0. (35)

where ∆1 = a1, ∆2 = a1a2 − a3a0. Thus, the conditions in Equation (35) can be written as
a3 > 0,
a1 > 0,

a1a2 − a3 = 0,
(36)

where a1, a2, and a3 are defined in (24). Substituting Equation (24) into Equation (36), one
obtains the results of Equation (34), this completing the proof of Theorem 10.

5. Numerical Simulation of the Proposed Model

The numerical model equations derived in Sections 3 and 4 are simulated, and the
results are presented herewith. Maple (2020 version) software and MATLAB (2020a version)
ODE45 solver were used for the simulations of the model equations. The findings obtained
from the simulations of the model Equation (1) discerned the complex dynamical behavior
of the breast cancer cells’ population in the co-existence of both normal (host) and immune
cells. In addition, the impact of the given fixed parameters that asymptotically stabilized
the model Equation (1) and its stability lost via zero and Hopf bifurcations were examined.
Table 1 enlists the values of all fixed parameters used in the stability or bifurcations analysis.
All values in Table 1 are taken from [9].
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Table 1. The fixed parameters used in zero and Hopf bifurcations.

Parameter Value Unit
α1 0.7 day−1

µ1 0.8 day−1

φ1 0.1 day−1

α2 0.98 day−1

µ2 0.4 day−1

γ1 0.8 day−1

ρ 0.3 day−1

ω 0.3 day−1

γ2 0.29 day−1

µ3 0.15 day−1

Case 1. Complete absence of tumor cells We took φ2 = 0.5, s = 0.6 > s0 and varied
g. Theorem 6 was used to obtain s0 ' 0.27. Equation (16) was used to obtain
g0 = 0.15521 with ∆ ' 2.257 > 0, thereby achieving a free equilibrium point
E0 = (0.875, 0, 1.966). The associated Jacobian matrix J(E0) produced a zero
eigenvalue (λ1 = 0) and two negative eigenvalues λ2 = −0.7, λ3 ' −0.782.
Theorem 6 was used in the model Equation (1) to obtain a generic saddle-node
bifurcation for g = g0. Interestingly, E0 changed its stability via the transcritical
bifurcation when g crossed the critical value g0.

Figure 2 displays the glucose parameter-dependent transcritical bifurcation of the
model Equation (1). It was observed that E0 is a stable point for g < g0 (Figure 2a). With the
increase of g, the dynamics of the cells population became chaotic for g > g0, indicating that
the existing glucose in the breast cancer patient’s body can add significant risks and make
the normal cells highly unstable when the tumor cells are absent. In addition, excessive
contents of g in the patient body can lead to a quick chaos saturation in the normal cells
population. It can be argued that glucose might have an influence on the logistic growth
of the normal cells (Figure 2a). From the biological perspective, it can be inferred that the
presence of glucose in the breast cancer patient’s body may cause a mutation of the normal
cells, forcing them to grow uncontrollably and thus leading to carcinoma [24,34]. Figure 2b
clearly shows that glucose excess has an appreciable influence on the dynamical behavior
of the immune cells, resulting in a decrease in the efficiency of the immune system [20,21]
without entering in any chaotic regime. This observation can be ascribed to various factors
such as the nature of the immune cells that die and reproduce daily [24,25]. In short, the
immune cells might not reach the chaotic state irrespective of the excess glucose level in the
cancer patient’s blood. If the immune cells reach a chaotic state, this is considered as a risk
factor wherein the immune cells might be transferred to the cancer immune cells [9]. The
corresponding parametric solutions and phase plots of the model shown in Equation (1) as
a function of g are depicted in Figures 3 and 4, respectively. The results showed that E0 is a
stable point when g < g0; however, its stability is lost gradually with the increase of g.
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(a) (b)

Figure 2. Transcritical bifurcation diagram of model (1) with respect to glucose parameter g where
g ∈ (0, 0.5). (a) represents the effect of glucose, g, on the behavior of normal cells denoted by N.
(b) shows the glucose impact on immune cells denoted by M.

Figure 3. Parametric solutions of model (1) for various g-values corresponding to Figure 2.

Figure 4. Phase portraits of model (1) for various g-values corresponding to Figure 2.

Case 2. In the presence of tumor cells In this case, the simulation is carried out by taking
φ2 = 0.1, ρ = 0.8, s = 0.4, and other parameters have the same fixed values as
indicated in Table 1. According to Theorem 9, J(E3) had a pair of pure imaginary
eigenvalues on the imaginary axis, and other roots lie on the left half-plane when
the conditions given by Equation (33) are violated. The achieved critical Hopf
bifurcation satisfied Equation (34) at g = g1 = 0.03941. In addition, the coexistence
equilibrium point E3 = (0.8377, 0.2983, 1.2298) was obtained. The Jacobian matrix
J(E3) had a negative real eigenvalue λ1 = −0.6665 with a pair of pure imaginary
eigenvalues λ2,3 = ±0.3115i, i =

√
−1. According to Theorem 9, the model

Equation (1) produced a Hopf bifurcation when g = g1. Furthermore, E3 changed
its stability via the Hopf bifurcation when g crossed the critical parameter g1.
Figure 5 illustrates the Hopf bifurcation diagram for g ∈ (0, 0.1). The area under
the blue line satisfied the solutions of the inequalities a1 > 0 and a3 > 0 given
in Equation (34). The critical value of g = g1 was positioned on the black line
inside the region in which a1a2 − a3 = 0 in Equation (34) was satisfied. In brief,
the emergence of Hopf bifurcation at E3 for g ∈ (0, 0.1) was clearly evidenced.
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Figure 5. The conditions in (34) are illustrated. When g = g1, the model (1) has a coexistence
equilibrium point E3 = (0.8377, 0.2983, 1.2298).

Figure 6 displays the appearance of stable point E3 for various values of g < g1 and
the stability lost via the Hopf bifurcation for g > g1. The normal and tumor cells population
(Figure 6a,b were found to be stable when the glucose factor remained below its critical
value g1. The attractor regions in the figure revealed that E3 altered its stability for g > g1,
and a perturbation appeared in the normal and tumor cells population with the increase
of g. Furthermore, the glucose excess was shown to cause a perturbation (chaos) in the
normal and tumor cells, which can be attributed to the strong interactions among the
normal and tumor cells in the patient’s body. A comparison between the effects of glucose
excess on the behavior of the immune cells (Figure 6c) showed that the tumor cells had
strong competition with other cells.

(a) (b) (c)

Figure 6. The emergence of Hopf bifurcation at E3 for normal cells N, tumor cells T, and immune
cells M, respectively, with respect to glucose parameter g where g ∈ (0, 0.1). (a) The effect of glucose
on the normal cells. (b) The effect of glucose on the tumour cells. (c) The effect of glucose on the
immune cells.

The effect of glucose excess on the immune cells in the absence of the tumor cells
(Figure 2b) was found to negatively affect the efficiency of the immune system. In addition,
the immune cells were decreased dramatically compared to the behavior of cells, as shown
in Figure 2b. From a biological viewpoint, the reduction of the cells can refer to the
interaction between the immune cells and tumor cells under the excess of glucose wherein
one of the responsibilities of the immune system is to attack the pathogen or any foreign
cells. Despite the presence of positive side effects from the behavior of the immune cells
under the existence of the tumor cells, with an excess of glucose, the immune system
did not attain the chaos. This observation clearly indicated that it is possible to modify
the dynamical behavior of the cells and avoid their transfer to the cancer immune cells,
thereby reducing the breast cancer patient’s health risks [9]. Figures 7 and 8 represent the
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parametric solution and the phase portraits, respectively, corresponding to Figure 6, which
displayed the different stability behavior of the point E3 around g1. The point E3 was found
to be stable for g < g1 and then lost its stability via the Hopf bifurcation when g = g1 and
g became greater than g1.

Figure 7. Parametric solutions of model (1) for various g values corresponding to Figure 5.

Figure 8. Phase portraits of model (1) for various g values corresponding to Figure 5.

6. Conclusions

We proposed a mathematical model for breast cancer in the presence of excess blood
glucose risk factors. To indicate the symmetry between the biological meaning and the
mathematical modeling of the cells’ behavior, the numerical model equations were simu-
lated to determine the complex dynamics of host, immune, and cancer cells population that
lead to immune system failure for the patient. The results revealed the existence of different
equilibrium points related to the tumor-free (E0), type 1 dead (E1), type 2 dead (E2), and
coexistence (E3) for various glucose parameters. The local stabilities of these equilibrium
points were analyzed in depth to determine the excess glucose-stimulated effects in the
breast cancer tissues. The zero bifurcation (generic saddle-node bifurcation) at E0 was
examined, wherein a new strategy was followed to detect such bifurcation based on the
sums of the principal minors of J(E0). It was demonstrated that E0 produces a transcritical
bifurcation for g values greater than g0. In addition, the occurrence of Hopf bifurcation at
E3 needed some sufficient and necessary conditions depending on the Hurwitz determi-
nants expressed in terms of a semi-algebraic system. The model results revealed diverse
complex dynamics such as Hopf bifurcation and chaos with the increase of g beyond a
certain threshold. An outbreak was evidenced in the normal and tumor cells population
when the blood glucose value of the breast cancer patient exceeded a certain critical value.
Despite the instability of the immune cells for g above the critical value, they did not pass
through any chaotic regime, which was ascribed to the nature of the damage caused by
excess glucose to normal cells and tumors only wherein the immune response provided a
stimulus to the creation of new cancer cells at the expense of normal cells via the compet-
itive mechanisms. The numerical simulation results validated the analytical predictions.
The results of this study open the door to several biological, medical and mathematical
studies that are contributing to raising awareness of cancer risk and its treatment. In the
end, it is asserted that the present comprehensive model for breast cancer with added
glucose risk factors may constitute a basis to study other types of the cancer risks in the
presence of external factors.
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