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Abstract: In this study, we consider a nonlinear system of three connected delay differential neoclas-
sical growth models along with stochastic effect and additive white noise, which is influenced by
stochastic perturbation. We derived the conditions for positive equilibria, stability and positive solu-
tions of the stochastic system. It is observed that when a constant delay reaches a certain threshold
for the steady state, the asymptotic stability is lost, and the Hopf bifurcation occurs. In the case of the
finite domain, the three connected, delayed systems will not collapse to infinity but will be bounded
ultimately. A Legendre spectral collocation method is used for the numerical simulations. Moreover,
a comparison of a stochastic delayed system with a deterministic delayed system is also provided.
Some numerical test problems are presented to illustrate the effectiveness of the theoretical results.
Numerical results further illustrate the obtained stability regions and behavior of stable and unstable
solutions of the proposed system.

Keywords: three connected neoclassical growth models; stochastic delay system; stability analysis;
Itô formula; spectral method
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1. Introduction

In mathematical economics, the examination of the stochastic delay differential neo-
classical growth model (NGM) plays a key role. In general, this model is constructed with
two very simple assumptions; one is capital and full-time labor hiring, while the other
is the immediate adjustment in the market, which helps in the long-run behavior of the
economy [1–3]. The main advantage of these models is that they are well-behaved and are
usually asymptotically stable for the steady state, but in reality, these growth path models
constantly exhibit fluctuations. For this reason, the neoclassical model could be a good
alternative to show how such persistent behavior can emerge when nonlinearities and a
production delay are present. Since the neoclassical growth model is always affected by
environmental noises, the stochastic models are more suitable in the real world [4–7].

In economics, the most frequently discussed issue is to test the economic growth
models. Many researchers have investigated these models for various population data and
complex behaviors. Day studied a neoclassical growth model with time delay and noticed
that despite its simple structure, the resulting dynamic system shows the emergence of
erratic fluctuations in the capital accumulation process when the production function is
unimodal and the delay in production is explicitly considered [8,9]. However, his models
were totally occupying discrete time and a mound-shaped function that described the
negative effect of subsequent pollution from increasing fundamentals. It was identified by
numerical approaches that such models could achieve periodic and even chaotic behavior.
Following the pioneering work of Day, Matsumoto and Szidarovszky, an economics-based
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model for understanding the complex dynamics of economics was created [10–12]. In
earlier work in this field, most of the researchers only considered discrete time scales
[13–15]. For the detection of chaos, the three period condition, introduced by Li and Yorke,
has many applications in nonlinear differential equations of the first-order, followed by
the work of Rosser, which offers many applications [16,17]. Very little work has been
performed that is committed to the case of continuous time scales due to the fact that there
is no preferred criterion to detect chaos and the system has three dimensions.

In this article, we will examine an extension of the NGM to the early works of Swan
and Solow [18,19]. The new NGM is constructed with three connected assumptions; one is
the permanent labor employment, the second is the continual adjustment in the market
output and the third one is the instantaneous growth of the products. Thus, it is very
convenient to describe the long-term behavior of the economy due to the well-operating
production function. We provide a detailed stability analysis of the steady state in the
continuous time structure with time delays. We further investigate the equilibrium points
of a system of three connected NGMs, positive equilibria and conditions for stability with
stochastic-type effects that are directly proportional to the obtained equilibrium from
deviation of the system state. For the numerical simulations, we use spectral methods
based on Legendre polynomials [20–27].

The remaining structure of the article is: In Section 2, the mathematical model is
formulated with time delays, followed by the description of the method in Section 3. Some
preliminary results are given in Section 4. A stability analysis is presented in Section 5. For
the confirmation of theoretical results, some numerical tests are performed in Section 6,
and Section 7 concludes the article.

2. Model Description

To study the three connected NGMs and discuss the stability of the zero equilibrium
under stochastic effects, the stochastic three connected NGMs have the following form:


dx1(t) =

[
− α1x1(t) + β1x2(t) + γ1x3(t) + δ1xν1

1 (t− τ1)e−ρ1x1(t−τ1)
]
dt + σ1x1(t)dB1(t)

dx2(t) =
[
− α2x2(t) + β2x3(t) + γ2x1(t) + δ2xν2

2 (t− τ2)e−ρ2x2(t−τ2)
]
dt + σ2x2(t)dB2(t)

dx3(t) =
[
− α3x3(t) + β3x1(t) + γ3x2(t) + δ3xν3

3 (t− τ3)e−ρ3x3(t−τ3)
]
dt + σ3x3(t)dB3(t),

(1)

with initial values:

xi(s) = $i(s); s ∈ [−τ, 0]; $ ∈ C
(
[−τ, 0],R+

)
; i = 1, 2, 3. (2)

x is the capital per labor, where R+ = (0,+∞), and αi, (i = 1, 2, 3) are each positive.
Moreover, βi and γi are the coupling coefficients, where all the remaining parameters
δi, νi, ρi and τ = max{τ1, τ2, τ3}, are greater than zero. βi(t)(i = 1, 2, 3) are independent
white noises and σ2

i (i = 1, 2, 3) denote noises intensities. For brief details of the above
parameters backdrop, we refer the readers to [28]. The neoclassical growth differential
system with a delay and with variable coefficients is investigated in [29–31]. Shaikhet
studies the two connected NGMs with stochastic perturbation and investigates the stability
of equilibrium [32]. Some research work related to the stochastic delay system, stochastic
fractional delay system, stochastic complex network with delay and stochastic highly
nonlinear coupled system with delays can be found in [33–37]. In the literature, to the best
of our knowledge, no one has considered the three connected stochastic systems. The main
motivation of this work is to consider the three connected NGMs and to apply a high-order
numerical scheme based on Legendre polynomials along with theoretical justifications.

3. Description of the Method

This section incorporated the spectral method (SM) for solving the stochastic neoclas-
sical growth model given by Equation (1). In the present method, we used Legendre Gauss
quadrature along with the weight function. For the SM, we consider the Legendre Gauss
Lobatto points {tj}N

j=0.
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Our aim in this study is to develop an approximate solution to Equation (1). We apply
the integral of Equation (1) from [0, t], then:

x1(t) = x1(0) +
∫ t

0

(
− α1x1(s) + β1x2(s) + γ1x3(s) + δ1xν1

1 (s− τ1)e−ρ1x1(s−τ1)

)
ds

+
∫ t

0
σ1x1(s)dB(s),

x2(t) = x2(0) +
∫ t

0

(
− α2x2(s) + β2x3(s) + γ2x1(s) + δ2xν2

2 (s− τ2)e−ρ2x2(s−τ2)

)
ds

+
∫ t

0
σ2x2(s)dB(s),

x3(t) = x3(0) +
∫ t

0

(
− α3x3(s) + β3x1(s) + γ3x2(s) + δ3xν3

3 (s− τ3)e−ρ3x3(s−τ3)

)
ds

+
∫ t

0
σ3x3(s)dB(s), (3)

where x1(0), x2(0) and x3(0) are the initial values for the functions x1(t), x2(t) and x3(t),
respectively. Taking linear transformation s = t

2 (1 + θ) = η(say) to analyze the SM over
standard interval [−1, 1] in Equation (3):

x1(t) = x1(0) +
t
2

∫ 1

−1

(
− α1x1(η) + β1x2(η) + γ1x3(η) + δ1xν1

1 (η − τ1)e−ρ1x1(η−τ1)

)
dθ

+
t
2

∫ 1

−1
σ1x1(η)dB(θ),

x2(t) = x2(0) +
t
2

∫ 1

−1

(
− α2x2(η) + β2x3(η) + γ2x1(η) + δ2xν2

2 (η − τ2)e−ρ2x2(η−τ2)

)
dθ

+
t
2

∫ 1

−1
σ2x2(η)dB(θ),

x3(t) = x3(0) +
t
2

∫ 1

−1

(
− α3x3(η) + β3x1(η) + γ3x2(η) + δ3xν3

3 (η − τ3)e−ρ3x3(η−τ3)

)
dθ

+
t
2

∫ 1

−1
σ3x3(η)dB(θ), (4)

The spectral equations (semi-discretised) form of Equation (4) is given by

x1(t) = x1(0) +
t
2

N

∑
k=0

(
− α1x1(η) + β1x2(η) + γ1x3(η) + δ1xν1

1 (η − τ1)e−ρ1x1(η−τ1)

)
ωk

+
t
2

N

∑
k=0

σ1x1(η)ω
∗
k ,

x2(t) = x2(0) +
t
2

N

∑
k=0

(
− α2x2(η) + β2x3(η) + γ2x1(η) + δ2xν2

2 (η − τ2)e−ρ2x2(η−τ2)

)
ωk

+
t
2

N

∑
k=0

σ2x2(η)ω
∗
k ,

x3(t) = x3(0) +
t
2

N

∑
k=0

(
− α3x3(η) + β3x1(η) + γ3x2(η) + δ3xν3

3 (η − τ3)e−ρ3x3(η−τ3)

)
ωk

+
t
2

N

∑
k=0

σ3x3(η)ω
∗
k , (5)
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where the Legendre–Gauss quadrature with weights are

ωk =
2

[L′N+1(sk)]2(1− s2
k)

, 0 ≤ k ≤ N.

Similarly, ω∗k =
√

ωk × randn(1, N) is the stochastic weight function.
To find the numerical solution for the proposed system, we used the Legendre polyno-

mials of the following form:

x1(t) =
N

∑
n=0

anPn(t), x2(t) =
N

∑
n=0

bnPn(t), x3(t) =
N

∑
n=0

cnPn(t) (6)

In the above equation, an, bn, cn are the Legendre coefficients for the classes x1, x2, x3,
respectively, where Pn(t) are the Legendre polynomials. Incorporating Equation (6) into
Equation (5), we get the following algebraic system

N

∑
n=0

anPn(t) =
N

∑
n=0

anPn(0) +
t
2

N

∑
k=0

(
− α1

N

∑
n=0

anPn(η) + β1

N

∑
n=0

bnPn(η) + γ1

N

∑
n=0

cnPn(η)

+ δ1

N

∑
n=0

aν1
n Pν1

n (η − τ1)e−ρ1 ∑N
n=0 anPn(η−τ1)

)
ωk +

t
2

N

∑
k=0

σ1

N

∑
n=0

anPn(η)ω
∗
k ,

N

∑
n=0

bnPn(t) =
N

∑
n=0

bnPn(0) +
t
2

N

∑
k=0

(
− α2

N

∑
n=0

bnPn(η) + β2

N

∑
n=0

cnPn(η) + γ2

N

∑
n=0

anPn(η)

+ δ2

N

∑
n=0

bν2
n Pν2

n (η − τ2)e−ρ2 ∑N
n=0 bnPn(η−τ2)

)
ωk +

t
2

N

∑
k=0

σ2

N

∑
n=0

bnPn(η)ω
∗
k ,

N

∑
n=0

cnPn(t) =
N

∑
n=0

cnPn(0) +
t
2

N

∑
k=0

(
− α3

N

∑
n=0

cnPn(η) + β3

N

∑
n=0

anPn(t)(η) + γ3

N

∑
n=0

bnPn(η)

+ δ3

N

∑
n=0

cν3
n Pν3

n (η − τ3)e−ρ3 ∑N
n=0 cnPn(η−τ3)

)
ωk +

t
2

N

∑
k=0

σ3

N

∑
n=0

cnPn(η)ω
∗
k . (7)

Thus there is 3N + 3 unknowns in the system given in Equation (7) with 3N nonlinear
algebraic equations. After incorporating the initial conditions, we get

N

∑
n=0

anPn(0) =
N

∑
n=0

($1)n,
N

∑
n=0

bnPn(0) =
N

∑
n=0

($2)n

N

∑
n=0

cnPn(0) =
N

∑
n=0

($3)n. (8)

Now, using Equation (7) along with Equation (8) results in 3N + 3 nonlinear equations
having 3N + 3 unknowns. We obtain the numerical solution to the proposed stochastic
system given in Equation (1) by incorporating the values of these unknowns into Equation
(6).

4. Preliminary Results

In the current section, we recommend a few fundamental lemmas and definitions,
which might be useful for showing the continuation of the unique global positive solution
of Equation (1).

Definition 1. The proposed system in Equation (1) is bounded in the mean if for each positive
M > 0 free from the initial conditions of Equation (2) as

lim
t→∞

supE|x(t)| ≤ M (9)

Lemma 1. Let ν, ρ > 0, and f (x) = xνe−ρx, then f (x) ≤ ( ν
ρe )

ν for x ∈ R+.
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Proof. The proof is simple and is left for the reader.

Lemma 2. If ai ∈ R, bi, ci ∈ R+, (i = 1, 2, 3), then a1x2+(b1+c1)x+a2y2+(b2+c2)y+a3z2+(b3+c3)z
1+x2+y2+z2

≤ D(a1, a2, a3, b1, b2, b3, c1, c2, c3) where D(a1, a2, a3, b1, b2, b3, c1, c2, c3) =

(
a1 +

√
a2

1 + b2
1 + c2

1 + a2 +
√

a2
2 + b2

2 + c2
2 + a3 +

√
a2

3 + b2
3 + c2

3

)
/2, a1, a2, a3 ≥ 0,

−(b2
1 + c2

1)/4a1 − (b2
2 + c2

2)/4a2 − (b2
3 + c2

3)/4a3, a1, a2, a3 < 0,(
a1 +

√
a2

1 + b2
1 + c2

1

)
/2− (b2

2 + c2
2)/4a2 − (b2

3 + c2
3)/4a3, a1 ≥ 0; a2, a3 < 0,(

a2 +
√

a2
2 + b2

2 + c2
2 + a3 +

√
a2

3 + b2
3 + c2

3

)
/2− (b2

1 + c2
1)/4a1, a1 < 0; a2, a3 ≥ 0.

Proof. By using Lemma 1.2 of [38] for the two connected neoclassical models, we can
obtain the result easily for three connected neoclassicals, so we discard the proof.

Lemma 3. For any given initial conditions of Equation (2), there exists a unique global positive
solution x(t) =

(
x1(t), x2(t), x3(t)

)
of Equation (1) in a closed interval [−τ,+∞], and each

xi(t), (i = 1, 2, 3) will be a positive with unit probability.

Proof. It is simple to see that for t ∈ [0, τ], then the proposed system given in Equation
(1) along with the initial conditions of Equation (2) reduces to the linear stochastic system,
now by using Theorem 3.3.1 of [39], provided that there is a unique stable solution x(t)
in the interval [0, τ]: if solution x(t) is in the interval [0, τ] once it is known, then we can
easily proceed such arguments in the intervals [τ, 2τ], [2τ, 3τ]... Therefore, we will obtain
the solution of the max interval [−τ, µe], where µe denotes the explosion time. Now, to
prove µe = ∞, we assume that m0 ≥ 1, is a sufficiently large number, such as:

1
m0

< min
τ≤t≤0

$i(t) ≤ max
τ≤t≤0

$i(t) < m0.

Therefore, for each integer m ≥ m0, the stopping time is defined by:

µm = inf
{

t ∈ [0, µe) : xi(t) ∈
( 1

m
, m
)
, i = 1, 2, 3

}
,

where we assume that φ is the empty set with the usual convention inf φ = +∞. Obviously,
µm is consistently increasing as m→ ∞. We set µ∞ = limm→∞ µm, where µ∞ ≤ µe. If µ∞ =
∞ can be proven, then µe = ∞ where xi(t) ∈ R+ i = 1, 2, 3 as t ≥ 0. For this we need to
prove that µ∞ = ∞. To do this, we must define C2-function V : R+ ×R+ ×R+ → R+ by
V(x1, x2, x3) = ∑3

i=1(xi − 1− ln xi). For t ∈ [0, µm ∧ T) to show this, we use the Itô formula:

dV
(

x1(t), x2(t), x3(t)
)
= LV

(
x1(t), x2(t), x3(t), x1(t− τ1), x2(t− τ2), x3(t− τ3)

)
dt

+
3

∑
i=1

σi
(
xi(t)− 1

)
dBi(t), (10)
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where m ≥ m0, T > 0 is arbitrary, and the operator’s LV is defined by

LV
(

x1(t), x2(t), x3(t), x1(t− τ1), x2(t− τ2), x3(t− τ3)
)

=
3

∑
i=1

(
αi +

σ2
i

2
+ δix

νi
i (t− τi)e−ρxi(t−τi) −

δix
νi
i (t− τi)e−ρxi(t−τi)

xi(t)

)
−
(
α1 − (β3 + γ2)

)
x1(t)−

(
α2 − (β1 + γ3)

)
x2(t)−

(
α3 − (β2 + γ1)

)
x3(t)

−
(β1 + γ3)x2

2(t) + (β2 + γ1)x2
3(t) + (β3 + γ2)x2

1(t)
x1(t)x2(t)x3(t)

. (11)

We use the inequality y ≤ 3
(
y− 1− ln y

)
+ 3 for all y ∈ R+, along with Lemma 1, then we

can find Equation (11):

LV
(

x1(t), x2(t), x3(t), x1(t− τ1), x2(t− τ2), x3(t− τ3)
)

≤
3

∑
i=1

(
αi +

σ2
i

2
+ δi

(
νi
ρie

)νi)
+ 6 max

{
|α1 − (γ2 + β3)|, |α2 − (β1 + γ3)|, |α3 − (γ1 + β2)|

}
+ 3 max

{
|α1 − (γ2 + β3)|, |α2 − (β1 + γ3)|, |α3 − (γ1 + β2)|

}
V
(
x1(t), x2(t), x3(t)

)
= 3 max

{
|α1 − (γ2 + β3)|, |α2 − (β1 + γ3)|, |α3 − (γ1 + β2)|

}
V
(
x1(t), x2(t), x3(t)

)
+ L, (12)

where L = ∑3
i=1

(
αi +

σ2
i
2 + δi

(
νi
ρie

)νi)
+ 6 max

{
|α1 − (γ2 + β3)|, |α2 − (β1 + γ3)|, |α3 −

(γ1 + β2)|
}

.

We assume that each m ≥ m0 applies integrals on both sides of Equation (10) from 0 to
µm ∧ T, then

EV
(

x1(µm ∧ T), x2(µm ∧ T), x3(µm ∧ T)
)

≤ L1 + 3 max
{
|α1 − (γ2 + β3)|, |α2 − (β1 + γ3)|, |α3 − (γ1 + β2)|

}
×E

∫ µm∧T

0
V
(
x1(t), x2(t), x3(t)

)
dt

≤ L1 + 3 max
{
|α1 − (γ2 + β3)|, |α2 − (β1 + γ3)|, |α3 − (γ1 + β2)|

}
×
∫ T

0
EV
(
x1(µm ∧ t), x2(µm ∧ t), x3(µm ∧ t)

)
dt, (13)

where L1 := V
(

x1(0), x2(0), x3(0)
)
+ LT. Using the Gronwall inequality, we obtain from

Equation (13) that

EV
(
x1(µm ∧ T), x2(µm ∧ T), x3(µm ∧ t)

)
≤ L1e3T max

{
|α1−(β3+γ2)|,|α2−(β1+γ3)|,|α3−(β2+γ1)|

}
. (14)

Since for each η ∈ {µm ∧ T} there certainly exists one of x1(µm, η) or x2(µm, η) or x3(µm, η),
which are equal to m or 1/m, therefore, V

(
x1(µm ∧ T), x2(µm ∧ T), x3(µm ∧ t)

)
≥ (m− 1−

ln m) ∧
( 1

m + ln m− 1
)
. Then it follows from Equation (14) that
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L1e
3T max

{
|α1−(γ2+β3)|,|α2−(β1+γ3)|,|α3−(γ1+β2)|

}
≥ EV

(
x1(µm ∧ T), x2(µm ∧ T), x3(µm ∧ t)

)
≥ E

[
Iµm≤T(η)V

(
x1(µm ∧ T), x2(µm ∧ T), x3(µm ∧ t)

)]
≥ P

{
µm ≤ T

}
(m− ln m− 1) ∧

( 1
m

+ ln m− 1
)
,

here, Iµm≤T should be the indicator function of
{

µm ≤ T
}

. Since m → ∞, there exists
limm→∞ P

{
µm ≤ T

}
= 0; therefore, P

{
µ∞ ≤ T

}
= 0. Since T is an arbitrary positive, we

must have P
{

µ∞ < ∞
}
= 0. Therefore, P

{
µ∞ = ∞

}
= 1 is the required result.

Remark 1. It is essential to the inspection whether or not the solution of Equation (1), along with
initial values of Equation (2), will not collapse to infinity in a finite time (global existence). Indeed,
we cannot obtain the global existence of the proposed solution only from the explicit expression of the
given system. Although Lemma 3 is fundamental to the study of the global existence of the positive
solution for the proposed system of Equation (1). It is worth declaring that by using Lemma 3, we
can show the proposed stochastic delay Equation (1) in the sense that we have a positive solution
that will not collapse to infinity in finite time.

5. Main Results

In the present section, we discuss the important properties of the proposed system
given in Equation (1), which are the criteria for the alternate boundedness in the mean.

Theorem 1. If (α1 > β3 + γ2), (α2 > β1 + γ3) and (α3 > β2 + γ1), then the global solution
x(t) =

(
x1(t), x2(t), x3(t)

)
of Equation (1) with the initial values Equation (2) of t ≥ 0 are

positive almost surely and satisfy:

lim
t→∞

supE|x(t)| ≤ δ

α
(15)

and

lim
t→∞

sup
1
t

∫ t

0
E
(
xp

1 (t) + xp
2 (t) + xp

3 (t)
)
ds ≤ Q1 + Q2 + Q3, (16)

where α = min
{

α1 − (β3 + γ2), α2 − (β1 + γ3), α3 − (β2 + γ1)
}

, δ = ∑3
i=1 δi

(
νi
ρie

)νi

, and

p ≥ 1 such that A1 := α1 − (β3 + γ2)− p−1
2 σ2

1 + p−1
p
(

β3 + γ2 − (β1 + γ1)
)
> 0,

A2 := α2 − (β1 + γ3)− p−1
2 σ2

2 + p−1
p
(

β1 + γ3 − (β2 + γ2)
)
> 0 and

A3 := α3 − (β2 + γ1)− p−1
2 σ2

3 + p−1
p
(

β2 + γ1 − (β3 + γ3)
)
> 0,

Qi = maxy≥0
{
− pAiyp + pδi

( νi
ρie
)νi yp−1}, i = 1, 2, 3. Namely, Equation (1) is ultimately

bounded in the mean.

Proof. In the highlights of Lemma 3, we can easily see that x(t) > 0 for t ≥ 1 almost surely.
Moreover, by using Lemma 1, we get:

d
(

x1(t) + x2(t) + x3(t)
)
≤
[
− α
(
x1(t) + x2(t) + x3(t)

)
+ δ
]
dt +

3

∑
i=1

σixi(t)dBi(t), (17)

Now, applying Itô formula, Equation (17) takes the form:

d
[
eαt(x1(t) + x2(t) + x3(t)

)]
≤ δeαtdt +

3

∑
i=1

σieαtxi(t)dBi(t), (18)
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now integrating Equation (18) from 0, t, we get:

eαtE
(

x1(t) + x2(t) + x3(t)
)
≤ x1(0) + x2(0) + x3(0) +

δ

α
(eαt − 1),

⇒ lim
t→∞

supE
(
x1(t) + x2(t) + x3(t)

)
≤ δ

α
,

In view of Lemma 1, Young’s inequality and the Itô formula follow from Equation (1), such
that:

d
(

xp
1 (t) + xp

2 (t) + xp
3 (t)

)
= p

{
−
(

α1 −
p− 1

2
σ2

1

)
xp

1 (t)−
(

α2 −
p− 1

2
σ2

2

)
xp

2 (t)

−
(

α3 −
p− 1

2
σ2

3

)
xp

3 (t) + (β3 + γ2)xp−1
1 (t)x2(t)x3(t)

+ (β1 + γ3)xp−1
2 (t)x1(t)x3(t) + (β2 + γ1)xp−1

3 (t)x2(t)x1(t)

+
3

∑
i=1

δix
p−1
i (t)xνi

i (t− τi)e−ρixi(t−τi

}
dt +

3

∑
i=1

pσix
p
i (t)dBi(t)

≤ p
{
−
(

α1 − (β3 + γ2)−
p− 1

2
σ2

1

+
p− 1

p
(

β3 + γ2 − (β1 + γ1)
))

xp
1 (t)

−
(

α2 − (β1 + γ3)−
p− 1

2
σ2

2 +
p− 1

p
(

β1 + γ3 − (β2 + γ2)
))

xp
2 (t)

−
(

α3 − (β2 + γ1)−
p− 1

2
σ2

3 +
p− 1

p
(

β2 + γ1 − (β3 + γ3)
))

xp
3 (t)

+
3

∑
i=1

δi

(
νi
ρie

)νi

xp−1
i (t)

}
dt +

3

∑
i=1

pσix
p
i (t)dBi(t)

=
3

∑
i=1

{
− pAix

p
i (t) + pδi

(
νi
ρie

)νi

xp−1
i (t)

}
dt +

3

∑
i=1

pσix
p
i (t)dBi(t)

≤
3

∑
i=1

Qidt +
3

∑
i=1

pσix
p
i (t)dBi(t),

which suggests

lim
t→∞

sup
1
t

∫ t

0
E
{

xp
1 (t) + xp

2 (t) + xp
3 (t)

}
ds ≤ Q1 + Q2 + Q3. (19)

To define the asymptotic estimation for the solution of almost surely, Mao [39] defines
the assumptions: limt→∞ sup 1

t ln |x(t)|, known as the sample Lyapunov exponent. There-
fore, we will next estimate the Lyapunov exponent of Equation (1) along with with the
initial conditions of Equation (2).

Theorem 2. The sample Lyapunov exponent of the x(t) =
(
x1(t), x2(t), x3(t)

)
solution of Equa-

tion (1) with initial the conditions of Equation (2) satisfies:

lim
t→∞

sup
ln x(t)

t
≤ G

3
(20)
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where G = D
{
− 3α1 + β1 + β2 + β3 + σ2

1 ,−3α2 + β1 + β2 + β3 + σ2
2 ,−3α3 + β1 + β2 + β3 +

σ2
3 ,−3α1 + γ1 + γ2 + γ3 + σ2

1 ,−3α2 + γ1 + γ2 + γ3 + σ2
2 ,−3α3 + γ1 + γ2 + γ3 + σ2

3 ,

3δ1
( ν1

ρ1e
)ν1 , 3δ2

( ν2
ρ2e
)ν2 , 3δ3

( ν3
ρ3e
)ν3

}
.

Proof. Using the Young inequality, Itô formula and Lemma 1 along with Lemma 2, then
from Equation (1) we get:

ln
(
1 + x2

1(t) + x2
2(t) + x2

3(t)
)

= ln
(
1 + x2

1(0) + x2
2(0) + x2

3(0)
)
+
∫ t

0

1
1 + x2

1(s) + x2
2(s) + x2

3(s)

×
[
(−3α1 + σ2

1 )x2
1(s) + (−3α2 + σ2

2 )x2
2(s) + (−3α3 + σ2

3 )x2
3(s)

+ 3(β1 + β2 + β3 + γ1 + γ2 + γ3)x1(s)x2(s)x3(s)

+
3

∑
i=1

3δixi(s)xνi
i (s− τi)e−ρixi(s−τ)

]
ds

+
3

∑
i=1

[
Mi(t)−

∫ t

0

3σ2
i x4

i (s)(
1 + x2

1(s) + x2
2(s) + x2

3(s)
)2 ds

]
≤ ln

(
1 + x2

1(0) + x2
2(0) + x2

3(0)
)
+
∫ t

0

1
1 + x2

1(s) + x2
2(s) + x2

3(s)

×
[
(−3α1 + β1 + γ1 + β2 + γ2 + β3 + γ3 + σ2

1 )x2
1(s)

+ (−3α2 + β1 + γ1 + β2 + γ2 + β3 + γ3 + σ2
2 )x2

2(s)

+ (−3α3 + β1 + γ1 + β2 + γ2 + β3 + γ3 + σ2
3 )x2

3(s)

+
3

∑
i=1

3δi
( νi

ρie
)νi xi(s)

]
ds +

3

∑
i=1

[
Mi(t)−

∫ t

0

3σ2
i x4

i (s)(
1 + x2

1(s) + x2
2(s) + x2

3(s)
)2 ds

]
≤ ln

(
1 + x2

1(0) + x2
2(0) + x2

3(0)
)
+
∫ t

0
Gds

+
3

∑
i=1

[
Mi(t)−

∫ t

0

3σ2
i x4

i (s)(
1 + x2

1(s) + x2
2(s) + x2

3(s)
)2 ds

]
(21)

Mi(t) =
∫ t

0
3σix2

i (s)
1+x2

1(s)+x2
2(s)+x2

3(s)
dBi(s), i = 1, 2, 3. Now, for each positive n, applications of the

exponential martingale inequality [39] yield to:

p
{

sup
0≤t≤n

[
Mi(t)−

∫ t

0

3σ2
i x4

i (s)(
1 + x2

1(s) + x2
2(s) + x2

3(s)
)2 ds

]
> 3 ln n

}
≤ 1

n2 , i = 1, 2, 3.

By applying the lemma of Borel-Cantelli, for certainly all ω ∈ Λ there are ni = ni(ω) ≥
1(i = 1, 2, 3) random integers such as:

sup
0≤t≤n

[
Mi(t)−

∫ t

0

3σ2
i x4

i (s)(
1 + x2

1(s) + x2
2(s) + x2

3(s)
)2 ds

]
≤ 3 ln n, n ≥ ni.

Therefore,

Mi(t) ≤
∫ t

0

3σ2
i x4

i (s)(
1 + x2

1(s) + x2
2(s) + x2

3(s)
)2 ds + 3 ln n, (i = 1, 2, 3). (22)
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Then using Equation (21), together with Equation (22), implies

ln
(
1 +

3

∑
i=1

x2
i (t)

)
≤ Gt + 4 ln n + ln

(
1 +

3

∑
i=1

x2
i (0)

)
,

However, each 0 ≤ t ≤ n, n ≥ n1 ∨ n2 ∨ n3. Hence for each ω ∈ Λ, if n ≥ n1 ∨ n2 ∨ n3, n−
1 ≤ t ≤ n, certainly we have:

ln
(
1 + x2

1(t) + x2
2(t) + x2

3(t)
)

t
≤
[
Gt + 4 ln n + ln

(
1 + x2

1(0) + x2
2(0) + x2

3(0)
)]

n− 1
.

When n tends to infinity, then we get:

lim
n→∞

sup
ln xi(t)

t
≤ lim

n→∞
sup

ln
(
1 + x2

1(t) + x2
2(t) + x2

3(t)
)

3t

≤ lim
n→∞

sup

[
Gn + 4 ln n

n−1 + ln
(
1 + x2

1(0) + x2
2(0) + x2

3(0)
)]

3(n− 1)

=
G
3

, i = 1, 2, 3. (23)

Remark 2. For the existence of a positive solution, the conditions are not necessary from Lemma 3.
Therefore, in this article, we have generalized the main results [29,32,40].

6. Results and Discussion

In the present section, we provide some test examples along with numerical simula-
tions to confirm the theoretical justifications.

Consider the stochastic delay differential NGM system given in Equation (1), with
the parameter values given by α1 = 1.32, α2 = 1.9, α3 = 1.9, β1 = 1, β2 = 1, β3 = 0.5, γ1 =
1, γ2 = 0.8, γ3 = 0.6, δ1 = 3, δ2 = 2, δ3 = 2, νi = 2, τi = ρi = 1(i = 1, 2, 3), with initial
values $1 = $2 = $3 = 1. From Theorem 2 with Lemma 3 , it follows that the proposed
three connected stochastic delay neoclassical growth systems, along with the initial con-
ditions given in Equation (2), have a unique global positive solution, as shown in Figure
1. It also satisfies the sample Lyapunov exponent for the proposed parameter values
limn→∞ sup 1

t ln xi(t) ≤ 24/e2, (i = 1, 2, 3). Although we choose p = 1.5 then we have each
A1 := α1 − (β3 + γ2)− p−1

2 σ2
1 + p−1

p
(

β3 + γ2 − (β1 + γ1)
)
> 0,

A2 := α2 − (β1 + γ3)− p−1
2 σ2

2 + p−1
p
(

β1 + γ3 − (β2 + γ2)
)
> 0 and

A3 := α3 − (β2 + γ1)− p−1
2 σ2

3 + p−1
p
(

β2 + γ1 − (β3 + γ3)
)
> 0, Qi = maxy≥0

{
− pAiyp +

pδi

(
νi
ρie

)νi

yp−1}, i = 1, 2, 3. Namely, Equation (1) is ultimately bounded in the mean by

Theorem 1, as shown in Figure 1. Similarly, for the same parameter values given in Figure 1,
we draw the comparison of the deterministic (to take in Equation (1) σi = 0, i = 1, 2, 3) with
the stochastic one in Figure 2. We can clearly see that both solutions are in very good agree-
ment. In Figure 3, we use the parameter values α1 = 1.26, α2 = 1.8, α3 = 1.6, β1 = 1, β2 =
0.8, β3 = 0.5, γ1 = 1, γ2 = 0.8, γ3 = 0.7, δ1 = 3, δ2 = 2, δ3 = 2, νi = 2, τi = ρi = 1, σi =
1, (i = 1, 2, 3). For the above parameter values, the proposed stochastic delay NGM system
has an unstable positive solution, clearly seen in Figure 3. Again, using the same parameter
values as given in Figure 3 above, we draw the comparisons of both the stochastic system
with the deterministic one in Figure 4. Using the parameter values α1 = 1.3, α2 = 1.9, α3 =
1.9, β1 = 1, β2 = 1, β3 = 0.5, γ1 = 1, γ2 = 0.8, γ3 = 0.6, δ1 = 5, δ2 = 5, δ3 = 4, νi = 0.7, τi =
ρi = 1, σi = 1, (i = 1, 2, 3). From the above parameter values, the system given in Equation
(1) satisfies the sample Lyapunov exponent and each Ai, i = 1, 2, 3 is greater then zero,
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along with Qi = maxy≥0
{
− pAiyp + pδi

(
νi
ρie

)νi

yp−1}, i = 1, 2, 3. Therefore, from Theorem

1 and Theorem 2, the models are exponentially mean square stable and merge to zero, as
shown in Figure 5. Similarly, for the same parameter values as given in Figure 6 above, we
draw the comparison of the deterministic with the stochastic one.

t

0 10 20 30 40 50 60 70 80 90 100

x(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x
1
(t)

x
2
(t)

x
3
(t)

Figure 1. Solution for each class of stochastic delay NGM systems from Equation (1).
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2

x
1
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x
2
(t) Sto

x
3
(t) Sto

x
1
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x
2
(t) Det

x
3
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Figure 2. Comparisons of the solutions for each class of stochastic delay NGM systems from Equation
(1) with the deterministic model (σi = 0), i = 1, 2, 3.
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3
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Figure 3. Solution for each class of stochastic delay NGM systems from Equation (1), with τi = ρi =

1(i = 1, 2, 3).
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Figure 4. Comparisons of the unstable positive solutions for each class of stochastic delay NGM
systems from Equation (1) with the deterministic model, σi = 1, (i = 1, 2, 3).
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t
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Figure 5. Mean square stable solution for each class of stochastic delay NGM systems from Equation
(1).
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Figure 6. Comparisons of the stable solutions for each class of stochastic delay NGM systems from
Equation (1) with the deterministic model, σi = 1, (i = 1, 2, 3).

7. Conclusions

In this article, we consider a novel approach for three connected delay differential
NGMs under stochastic perturbations. It is observed that the nonlinearity and delay can
be sources of continuous time chaos. Constant delay can generate complex dynamics
involving chaos via period-doubling bifurcation. Stability conditions for positive and zero
equilibria of the proposed model are obtained. For numerical simulations, we convert
the proposed system to a nonlinear system using a polynomial with Legendre-Gauss
quadrature and respective weight functions. We consider both deterministic and stochastic
models. It is shown that the proposed stochastic delay NGM system given in Equation (1),
along with initial conditions given in Equation (2), has a global positive solution that is
conclusively bounded. The numerical results confirm the theoretical justifications.
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