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Abstract: This paper presents a novel method for computing the symmetric tridiagonal eigenvectors,
which is the modification of the widely used Inverse Iteration method. We construct the correspond-
ing algorithm by a new one-step iteration method, a new reorthogonalization method with the
general Q iteration and a significant modification when calculating severely clustered eigenvectors.
The numerical results show that this method is competitive with other existing methods, especially
when computing part eigenvectors or severely clustered ones.
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1. Introduction

Computing the symmetric tridiagonal (ST) eigenvector is an important task in many
research fields, such as the computational quantum physics [1], mathematics [2,3], dynam-
ics [4], computational quantum chemistry [5], etc. The ST eigenvector problem also arises
while solving any symmetric eigenproblem because it is a common practice to reduce the
generalized symmetric eigenproblems to an ST one.

The Divide and Conquer (DC) algorithm [6] has a considerable advantage when
calculating all the eigenpairs of an ST matrix. It is quite remarkable that the DC method,
which is efficient for parallel computation, can also be faster than other implementations
on a serial computer. However, this method does not support computing part eigenpairs
or computing eigenvectors only. In practice, it is rare to compute the full eigenvectors
of a large ST matrix. The famous QR method [7] has the same shortage while costing
more time and is hard to be parallelized. This paper focuses on modifying the solution of
computing part eigenvectors and gives a new method for eigenvectors of good accuracy
and orthogonality.

Once an accurate eigenvalue approximation is known, the Inverse Iteration method [8]
always computes an accurate eigenvector with an acceptable time cost. However, it does
not guarantee the orthogonality when eigenvalues are close. A commonly used remedy is
to reorthogonalize each approximate eigenvector, by the modified Gram–Schmidt method,
against previously computed eigenvectors in the cluster. This remedy increases up to 2n3

operations if all the eigenvalues cluster, while the time cost for the eigenvectors themselves
is only O(n2).

Dhillion proposed the Multiple Relatively Robust Representations (MRRR) algo-
rithm [9] to avoid reorthogonalization. This is an ambitious attempt as the MRRR algorithm
computes all the accurate and numerically orthogonal eigenvectors with a time cost of
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O(n2). Nevertheless, the MRRR algorithm can fail in calculating severely clustered eigen-
values of a large group, such as the glued Wilkinson matrices [10]. Dhillion fixed the
problem and modified the MRRR method subtly and cleverly [11], without increasing its
time complexity. However, this modified MRRR method, which applies the perturbation to
the root representation of the ST matrix, costs even more time than the Inverse Iteration
method with the modified Gram–Schmidt process. Even when computing random matri-
ces, the MRRR algorithm has no advantage compared with the Inverse Iteration method.
In addition, when computing part eigenvectors, the MRRR algorithm needs considerably
accurate eigenvalues to guarantee natural orthogonality and thus calls the time-consuming
Bisection method to obtain them. As a consequence, except for those cases with many
eigenvalues clusters, the Inverse Iteration method is more efficient. More related details are
presented in Section 6.

Mastronardi and Van Dooreen [12] proposed an ingenious method to determine the
accurate eigenvector of a symmetric tridiagonal matrix once an approximation of the
eigenvalue is known. In addition, they applied this method to calculate the weights of the
Gaussian quadrature rules [3].

Our strategy is to improve the Inverse Iteration method with the three main modifications:

• We replace the iteration process with a new one that only costs one step to guarantee
convergence, similar to the MRRR method;

• The envelope vector theory [13] is utilized to compute accurate and naturally orthogo-
nal eigenvectors when the eigenvalues severely cluster. By combining the new iteration
process, the time cost is even less than the cost of calculating isolated eigenvectors.
In other words, the severely clustered eigenvalues accelerate the convergence;

• We give a new orthogonalization method for the generally clustered groups of severely
clustered eigenvalues. For k clustered eigenvalues in such a case, the new orthogonal-
ization method decreases the time cost from O(nk2) to O(nk).

The numerical results confirm our promise of accuracy and orthogonality. In addition,
our new method supports computing part eigenvectors and embarrassingly parallelization,
significantly improving the computational efficiency.

This paper focuses on the symmetric tridiagonal eigenvector problem. According
to Weyl’s theorem, the real symmetric eigenvalue problem Ax = xλ is well posed, in an
absolute sense because an eigenvalue can change by no more than the spectral norm of the
change in the matrix A [14]. However, for an unsymmetric matrix Â, some of its eigenvalues
may be extremely sensitive to uncertainty in the matrix entries. Consequently, the assess-
ment of error becomes a major concern. Some specific conclusions were introduced in [14].
Readers can also see more unsymmetric examples in [15,16].

The organization of the rest of this paper is as follows: Section 2 gives the modified
iteration of the new method and an algorithm to compute an isolated eigenvector. Section 3
studies the computation of clustered eigenvectors. Section 4 introduces the general Q
iteration and the new orthogonalization method. Section 5 concerns the overflow and un-
derflow. Several corresponding pseudocodes are provided in the above sections. Section 6
shows some examples and numerical results. Finally, we discuss and assess the Modified
Inverse Iteration method in Section 7.

2. Compute Isolated Eigenvectors
2.1. Theoretical Background

Consider a n× n real unreduced ST matrix A (all the ST matrices discussed in this
paper are real and unreduced), which has eigenvalues λ1 ∼ λn in the increasing order
and the corresponding eigenvectors v1 ∼ vn. Once an accurate eigenvalue approximation
u→ λj is known, we have

(A− uIn×n)ṽj = Tṽj = 0, (1)

where ṽj is the eigenvector approximation and In×n denotes the n× n identity matrix.
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When u is the exact eigenvalue, T has a rank of n− 1 and (1) can be solved by ignoring
any one of its n rows. However, since u 6= λj, T is not singular and thus (1) has no nonzero
solution. If one still solves (1) by ignoring one of its n rows, say, the kth row, the actually
solved equation is

Tzk = ek, (2)

where ek is the kth column of In×n, and zk denotes the solution when ignoring the k row. It
is obvious that zk is the kth column of T−1. From [10], we have

zk = rjvj/
(
λj − u

)
+ ∑

i 6=j
rivi/(λi − u), (3)

where ri(i ∈ [1, n]) is the kth component of vi, which can also be denoted by vi(k).
The main idea of the Inverse Iteration is to solve (2), substitute the result into the right

side, and go on. As u → λj, zk will finally approach vj. If λj is an isolated eigenvalue,
(3) shows that the degree of approximation of zk and vj depends on the absolute value of
vj(k). For example, if |vj(k)| approximates to zero, zk has nearly no ingredient of vj. As a
consequence, the iterations hardly converge. Therefore, the traditional Inverse Iteration
method uses a vector with all components equal to 1 to be the original right side of (1).
Within about two or three steps, the traditional Inverse Iteration method calculates an
accurate eigenvector approximation ṽj.

2.2. One-Step Iteration

To accelerate the iteration process, our task is to find the biggest |vj(k)|(k ∈ [1, n]) and
to guarantee convergence in one step. From [9], we have

1
γk

= eT
k (A− uI)−1ek =

∣∣vj(k)
∣∣2

λj − u
+ ∑

i 6=j

|vi(k)|2
λi − u

(4)

where 1/γk is the kth component on the diagonal of (A− uI)−1, i.e., the kth component
of zk, and its absolute value reflects |vj(k)| (recall u → λj). The MRRR method finds
the smallest |γk| by the twisted triangular factorization, while we give a new method in
this section.

We denote the ith sequential principal minor of a ST matrix A by A1:i. The submatrix
of A in rows i through j is denoted by Ai:j and its determinant by det(A). We denote the
characteristic polynomial det(A− uI) by C1:n, C1:n(u), or CA

1:n(u) if necessary. ai and bi
denote the ith component on the diagonal and sub-diagonal of A, respectively. According
to [17], we have

zk =




Ck+1:n(
k−1
∏

t=1
−bt)

C1Ck+1:n(
k−1
∏

t=2
−bt)

. . .
C1:k−2Ck+1:n(−bk−1)

C1:k−1Ck+1:n
C1:k−1Ck+2:n(−bk)

. . .

C1:k−1Cn(
n−2
∏
t=k
−bt)

C1:k−1(
n−1
∏
t=k
−bt)




/C1:n (5)
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and
C1:n = det(A− uI)

= −b2
k−1C1:k−2Ck+1:n + (ak − u)C1:k−1Ck+1:n − b2

kC1:k−1Ck+2:n

= C1:k−1Ck+1:n(C1:k/C1:k−1 − b2
kCk+2:n/Ck+1:n).

(6)

Remark 1. (5) is also introduced in [9], but in an incorrect form as missing the negative sign
before each bi. Dhillion worried about the overflow and underflow issues when calculating zk by
(5) and thus did not discuss it further. This paper will give a more practical form of (5), reduce its
computational cost and solve the overflow or underflow problem (in Section 5).

By (5) and (6), we have
γk = qk − b2

k /pn−k (7)

where qi = Ci/Ci−1 and pi = Cn−i+1/Cn−i+2. As the sequential principal minors of an ST
matrix form a Sturm sequence, we have [18]

q0 = 1, q1 = a1 − u, qi = ai − u− b2
i−1/qi−1;

p0 = 1, p1 = an − u, pi = an+1−i − u− b2
n+1−i/pi−1.

(8)

(5) and (8) can be expressed as

zk = x1α + x2β =




1
q1/(−b1)

q1q2/((−b1)(−b2))
. . .

k−1
∏
i=1

qi/(−bi)

0
. . .
0
0




α +




0
0

. . .
0

n−k−1
∏
i=1

pi/(−bn−i)

. . .
p1 p2/((−bn−1)(−bn−2))

p1/(−bn−1)
1




β, (9)

where x1 and x2 are both n× 1 vectors, the (k + 1) ∼ nth components of x1 are zeros while
the 1 ∼ kth components of x2 are zeros. α and β are two coefficients to be determined.

It can be seen that (9) satisfies (2), except for the kth and (k+ 1)th rows. As we only care
about the direction of zk, only the (k + 1)th row needs to be considered when determining
α and β. Then, we have

αbk

k−1

∏
i=1

qi/(−bi) + β

(
(ak+1 − u)(

n−k−1

∏
i=1

pi/(−bn−i)) + bk+1(
n−k−2

∏
i=1

pi/(−bn−i))

)
= 0.

Therefore, our scheme is to calculate qi’s and pi’s by (8) first, then find the smallest
|γk| by (7). Note that (7) would not cost extra division operations if we save the b2

i /pn−i’s
when calculating pi’s by (8). Finally, we choose the corresponding k of the smallest |γk|
and obtain zk by (9). Our modified iteration method to calculate one isolated eigenvector is
shown by Algorithm 1.

If b2
i and 1/bi are calculated and stored in advance, Algorithm 1 costs 8n ∼ 8.5n

operations (note the cost of calculating a − u is shared in step 3 of Algorithm 1) per
eigenvector while the version in [9] costs 11n.

Note that (8) computes p and q with no time cost savings per se. The two main
contributors are: first, (7) reduces the cost of searching min |γk|; second, (9) divides the
eigenvector computation into two parts, and even under the most adverse condition of
k = n/2, (9) can still reduce the multiplication operations by half compared to (5).
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Algorithm 1: Compute one isolated eigenvector.
Input : a, b, n, u

1 // a is the diagonal of A, b is the sub-diagonal, n is the size and
u is the approximation to λi

Output : z
2 // z is the approximation to vi

3 calculate q and p by (8);
4 calculate |γi|(i ∈ [1, n]) by (7);
5 find the smallest |γi| and save the corresponding i;
6 k← i, construct a k× 1 vector x1 and a (n− k)× 1 vector x2;
7 x1(1)← 1, x2(1)← 1;
8 for each i ∈ [2, k] do
9 x1(i)← x1(i− 1)qi−1/− bi−1;

10 end
11 for each i ∈ [2, n− k] do
12 x2(i)← x2(i− 1)pi−1/− bn+1−i;
13 end
14 flip x2;
15 if x1(k) = 0 then
16 P← 1;
17 else
18 if k == n then
19 P← −ak+1x2(1)/(bkx1(k))
20 // to satisfy the k + 1th row of (2)
21 else
22 P← −(ak+1x2(1) + bk+1x2(2))/(bkx1(k))
23 // to satisfy the k + 1th row of (2)
24 end
25 end
26 z← [Px1; x2];
27 z← z/‖z‖ // if normalization is needed

2.3. Accuracy Analysis of Algorithm 1

Let R denote the residual norm, i.e., Rk =
∥∥∥Tzk

∥∥∥/
∥∥∥zk
∥∥∥, then we have

Rk =

∥∥∥Tzk
∥∥∥

∥∥zk
∥∥ =

|γk|∥∥zk
∥∥

=

√√√√ γ2
k

γ2
k eT

k (A− uI)−1(A− uI)−1ek

=

(
∑

v2
i (k)

(λi − u)2

)−1/2

=

∣∣λj − u
∣∣

∣∣vj(k)
∣∣

(
1 + ∑

(
λj − u

)2

(λi − u)2
v2

i (k)
v2

j (k)

)−1/2

≤
∣∣λj − u

∣∣
∣∣vj(k)

∣∣ .

(10)

As Algorithm 1 ensures that |vj(k)| is the biggest one among all the |vj(i)|(i ∈ [1, n]),
it is guaranteed that |vj(k)| ≥

√
1/n. Then, according to (10), we have Rk ≤

√
nε where ε

is the machine precision.
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3. Computing Severely Clustered Eigenvectors

Now consider the case when eigenvalues clusters severely, for example, p eigenvalues
that are equal in finite precision arithmetic. We will define “severely clustering” later in
this section.

First, we introduce the two following lemmas from [13] to state our theorems.

Lemma 1 (The Envelope Vector). Define S = span{v1, v2, . . ., vp}, and the envelope vector of
S is E given by

Ei = max{Vi : V ∈ S , ‖V‖ = 1}.
For p clustered eigenvalues, the envelope vector will undulate with p high hills separated by

p− 1 low valleys.

Lemma 2. For an ST matrix A that has p clustered eigenvalues λ1 ∼ λp, divide A into p
submatrices: A1:η1 , Aηl

2 :ηr
2
, . . . , Aηl

p−1 :ηr
p−1

and Aηp :n. Note that these submatrices can have

overlaps. Then, for each submatrix, there exists at least one Asub, among all the possibilities of
divisions that satisfies:

1. Asub has an isolated sub-eigenvalue κ ∈ [λ1, λp];
2. For the 2nd to (p− 1)th submatrices, the corresponding sub-eigenvector si(i ∈ [2, p− 1])

(with respect to κ) has small components at both its ends. For A1:η1 , s1(η1) → 0 and for
Aηp :n, sp(1)→ 0.

Supplement zero components to obtain ṽs = [s; 0], [0; s; 0], or [0; s], which has the size of
n× 1. Then, the p ṽs’s are approximations to vt(t ∈ [1, p]). These eigenvector approximations are
numerical orthogonal and satisfy ‖Tvs‖ <

√
n/p(λp − λ1)/p.

See the proofs and more details in [13].
Let us take a typical example of clustered eigenvalues to illustrate. Let α0 be a 200× 1

vector and α0(i) = i(i ∈ [1, 200]) and then construct α ← [ f lip(α0); 0; α0]. Then, repeat
α ← [α; α0] by eight times totally. Finally, we obtain a 2001× 1 vector α. Consider an ST
matrix Φ, which has the diagonal equal to α and all the components on its sub-diagonal
equal to 1. Φ is similar to the glued Wilkinson matrices in [11] and its biggest eight
eigenvalues (λ1 ∼ λ8) cluster severely. Let u1 ∼ u8 denote the approximations of the biggest
eight eigenvalues of Φ; it shows u8 − u1 = 0 in Matlab, i.e., λ1 ∼ λ8 severely clusters.

Let u = u1 and calculate |γk|(k ∈ [1, 2001]) of Φ. The results are shown in Figure 1.
According to Lemma 1, the low valley entries of the envelope vector correspond to small
components of vi(i ∈ [1, p]). Note that this means all the p eigenvectors have small
components at this entry, thus the corresponding |γk|must be a big value according to (4).
The case of high hills is similar. In other words, the |γk| curve undulates with p low valleys
separated by p− 1 high hills. Note these extreme points may not be exactly the same as the
envelope vector. We show |γk|(k ∈ [1, 2001]) of Φ in Figure 1. A logarithmic scale on the
y-axis has been used to emphasize the small entries. The results confirm our point.

We give a method to find the applicable submatrices of Lemma 2 by Theorem 1.

Theorem 1. If a submatrix satisfies Lemma 2, then the corresponding entries contain and only
contain one low valley of the |γk| curve.

Proof. Take the first submatrix A1:η1 (which is assumed to satisfy Lemma 2) as an example
because the proofs of the others are similar.

Let X denote the eigenvector approximation from Lemma 2, and we have X =

∑
p
t=1 xtvt = [s; 0]. Thus, the corresponding entries of A1:η1 must contain at least one

low valley, if not all the xt’s will be small values and violate the equation ∑
p
t=1 x2

t = 1.
If the corresponding entries of A1:η1 contain more than one low valley, say, two, it will

also contain one high hill of the |γk| curve. This means X has a small component at the
corresponding entry of the hill. In addition, X contains at least two major ingredients of vi
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that has big components at the two valleys, respectively, or X contains one major ingredient
of vi that has big components at both entries. According to [10], if an eigenvector has one
part that has both small ends, the corresponding eigenvalue must have a close neighbor.
Therefore, if the corresponding entries of A1:η1 contain more than one low valley, A1:η1 has
clustered sub-eigenvalues that ∈ [λ1, λp].

With the above conclusions, the proof is completed.

Entry of the matrix (k)

The |
k
| curve

|
k
|

Figure 1. The |γk| curve of Φ.

To illustrate Theorem 1 more intuitively, and as a complementary argument to the
above proof, we performed the following numerical test. We calculated the distances
between λ2001 of Φ and the last two sub-eigenvalues of Φ1:η(η ∈ [2, 2000]). Because by
the Interlacing Property from [17], the close sub-eigenvalues to λ2001 must be the last
ones. The result is shown in Figure 2. A logarithmic scale on the y-axis has been used to
emphasize the small entries. In Figure 2, Φ1:η starts to have one close eigenvalue when
η > 400, which is the first low valley of the |γk| curve, and two close eigenvalues when
η > 600, which is the second valley. We also present the results of the last eight sub-
eigenvalues of Φ1:η(η ∈ [8, 2000]) in Figure 3. It can be seen that, whenever Φ1:η “crosses”
a low valley of |γk|, the clustered sub-eigenvalues are one more. Figures 2 and 3 confirm
Theorem 1 well. See more and detailed numerical examples and results for accuracy in
Section 6.

Size of the submatrix ( )

Distance of the last two sub-eigenvalues

Figure 2. The distances of the last two sub-eigenvalues.
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Size of the submatrix ( )

Distance of the last eight sub-eigenvalues

Figure 3. The distances of the last eight sub-eigenvalues.

According to [13], we have that (recall E is the envelope vector from Lemma 1)

bj|s1(j)|E(j + 1) ≈ V,

where V is independent of j. This means that a big E(j + 1) corresponds to a small |s1(j)|.
Therefore, our computation strategy of clustered eigenvalues is shown as follows:

1. Every submatrix has one low valley of the |γk| curve.
2. The ends of the submatrix are the closest entries to the adjacent valleys.
3. According to Lemma 2, (λp − λ1) < p

√
p‖A‖ε ensures ‖Tṽs‖ <

√
nε, thus it can be

used as the “clustering” threshold.

We show the method for computing severely clustered eigenvalues by the following
pseudocode Algorithm 2.

Algorithm 2: Compute severely clustered eigenvalues.
Input : a, b, n, d

1 // d is a p× 1 vector where p severely clustered eigenvalues are
its components

Output : z
2 // z is the approximation to v(:,1:p) where the subscripts denote the

1 ∼ p columns of v

3 u← mean(d);
4 calculate |γi|(i ∈ [1, n]) by (7) and (8);
5 find the p low valleys of |γi| and save the corresponding entries in K;
6 // K is a p× 1 vector
7 K ← [K; n + 1], l ← 1;
8 for each i ∈ [1, p] do
9 r ← K(i + 1)− 1;

10 call Algorithm 1⇐ a(l : r), b(l : r), r− l + 1, u;
11 then get z(:,i);

12 z(:,i) ← z(:,i)/
∥∥∥z(:,i)

∥∥∥ // if normalization is needed

13 l ← K(i) + 1;
14 end
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Assume that the p valleys are arranged uniformly. The cost calculation of p severely
clustered λ’s by Algorithm 2 is twice as large as the cost of one isolated λ by Algorithm 1,
while the Inverse Iteration method needs p times cost and a reorthogonalization. This
means that Algorithm 2 saves time compared to the Inverse Iteration method even when
disregarding its expensive orthogonal cost.

For the matrix Φ, we calculated R’s (recall R = ‖Tz‖/‖z‖, the residual norm) and the
dot products of its last eight eigenvector approximations obtained by Algorithm 2. We show
the mean and maximal results in Table 1 and compare them to the results of the Inverse
Iteration method and the MRRR method. The results were collected on an Intel Core i5-4590
3.3-GHz CPU and a 16-GB RAM machine. All codes were written in Matlab2017a and
executed in IEEE double precision. The machine precision is ε ≈ 2.2× 10−16. It can be seen
that all the eight eigenvector approximations are accurate and numerically orthogonal. See
more examples and numerical results in Section 6.

Table 1. Accuracy and orthogonality.

Method Mean R(×ε‖Φ‖) Max R(×ε‖Φ‖) Mean Dot Product
(×ε−1)

Max Dot Product
(×ε−1) Time Cost (×10−2 s)

Algorithm 2 1.5 1.5 0 0 0.1
Inverse Iteration 1.2 1.2 0 0.05 2.9

MRRR 1.2 1.2 0 0 4.2

4. Reorthogonalization
4.1. General Q Iteration

For severely clustered eigenvalues, Algorithm 2 saves considerable time and avoids re-
orthogonalization. However, if the group of clustering p eigenvalues has a close eigenvalue
neighbor or another group of clustering eigenvalues with the distance ∈ ( p

√
pε, 10−3)‖A‖

(note p
√

p‖A‖ε is the threshold of severely clustering), Algorithm 2 can not ensure the
orthogonality between them. Therefore, a reorthogonalization is needed. This is quite
frustrating, not only because of the high cost of orthogonalization but also because using
the modified Gram–Schmidt method for orthogonalization destroys the orthogonality of
the eigenvectors obtained by Algorithm 2. In other words, the method we proposed in
the previous section is meaningless. For example, two groups of severely eigenvalues
have approximations u1 and u2, respectively, while u1 − u2 < 10−3‖A‖. Each group’s
eigenvectors are orthogonal, but Algorithm 2 can not ensure the orthogonality of two from
different groups. If one uses the modified Gram–Schmidt method to reorthogonalize them,
it makes no difference whether the original vectors are orthogonal in groups. Therefore, we
give a new reorthogonalization method in this section.

In [9], Dhillon introduced the twisted Q factorization. For an n× n ST matrix T =
A− λ1(λ1 is one eigenvalue of A) and a certain number k(k ∈ [1, n]), implement the Givens
rotation to its columns to eliminated 1 ∼ (k− 1)th components on its super-diagonal and
k ∼ (n− 1)th components on the sub-diagonal. Finally, a singleton in the kth column is left.
The process is shown in Figure 4 (from [9]), where n = 5 and k = 3.

58

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x x©
x x x

x x x

x x x

x© x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

x x x©
x x x x x

x x x

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

x x

x x x x x

x x© x x

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

x x

x x x x x

x x x

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.2: Twisted Q Factorization at k = 3 (the next elements to be annihilated are
circled): forming Nk.

compute mutually orthogonal eigenvectors may skip to the next chapter.

We define a twisted orthogonal or Q factorization at position k as

J = NkQ
∗
k (3.5.38)

where Qk is an orthogonal matrix and Nk is such that Nk(i, j) = 0 for i,j such that j > i

when i < k and k ≤ j < i when i ≥ k. Note that Nk is a “permuted” triangular matrix,

since there exists a symmetric permutation of Nk that is a triangular matrix. Figure 3.2

illustrates how to compute such a factorization — it may be obtained by starting an LQ

factorization from the left of the matrix stopping it at column k, and then doing an RQ

factorization from the right of the matrix till there is a singleton in the kth column (note

that we are doing column operations here in contrast to row operations in Section 3.1 —

hence we refer to the left and right of the matrix rather than the top and bottom). Using the

fact that Nk is “essentially” triangular and assuming that J is of full rank, we can show that

the twisted Q factorization (3.5.38) is unique, modulo the signs of the diagonal elements

of Nk. We could have done row operations instead and looked at twisted Q factorizations

that are obtained by doing QR from the top of the matrix, and QL from the bottom to

obtain a singleton in the kth row. We have chosen instead to look at column twisted Q

factorizations in order to make a direct connection with the twisted triangular factorizations

of Section 3.1.

We now develop some theory about twisted Q factorizations along the lines of

Section 3.1.

Theorem 3.5.1 Let J be a nonsingular tridiagonal n× n complex matrix with the column

twisted Q factorization at k given by (3.5.38) for 1 ≤ k ≤ n. Let δk be the singleton in the

Figure 4. The twisted Q factorization.
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Let W denote the final form of the twisted Q factorization, and we have

TQ = W;

T = WQT ;

Q = G1G2. . .Gn−1,

where G1 ∼ Gn−1 are Givens rotation matrices. Obviously, Wk,k = Rk. Therefore, at least
one k satisfies ζ = Wk,k ≤

√
nε according to Section 2.3.

Now, we introduce our so-called general Q iteration. For such a k that satisfies
ζ ≤ √nε, we implement the corresponding Givens rotations to the rows of W. Using the
example from Figure 4, the process is shown by

GT
1 TQ =




× ×
× ×
× × ζ × ×
× × ×

×



⇒ GT

2 . . .TQ =




× ×
× × s2ζ × ×
× c2ζ × ×
× × ×

×




⇒ GT
3 . . .TQ =




× ×
× × s2ζ × ×

s2ζ c3c2ζ × ×
× −s3c2ζ × ×
× ×




⇒ GT
4 . . .TQ =




× ×
× × s2ζ × ×

s2ζ c3c2ζ −c4s3c2ζ s4s3c2ζ
× −c4s3c2ζ × ×
× s4s3c2ζ × ×



= QTTQ

(11)

where ci and si constitutes Gi, i.e.,

Gi :=
[

ci −si
si ci

]
.

Note that, in the last rotation of (11), the components on (3, 4) and (3, 5) have not
changed. We obtain their values according to symmetry.

Finally, we have
A1 = QTTQ + λ1

and complete one step of the general Q iteration. Obviously, A1 has the same eigenpairs to
A. As all |ci|’s and |ci|’s are less than 1, all the rest components of the kth rows and columns
of A1 are less than ζ. Therefore, deflation can arise as

A1 =




× ×
× × × ×

λ1
× × ×
× × ×



⇒




× ×
× × × ×
× × ×
× × ×


 = B.

Thus, B has the numerical equal eigenvalues to λ2 ∼ λ5 and the corresponding eigen-
vectors can be calculated similarly to the QR method. For example, if s2 = [x1, x2, x3, x4]

T is
the eigenvector of B with respect to λ2, then v2 = Qs2. These vi’s are certainly orthogonal.
Note that B can be transferred to an ST matrix by chasing and eliminating its bulge (for
example, the (2, 4) and (4, 2) components of B) with Givens rotations. Therefore, it costs at
most 1.5 times operations compared to the QR (or QL) iteration, which is the exceptional
case when k = n or 1.
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Therefore, the general Q iteration is to fulfill a deflation of a certain λ by QR-like
transformation. For a normal ST matrix and one accurate approximation to λ, k = 1 or
n is enough. Thus, the cost of chasing the bulge can be saved. However, in some special
cases, |γ1| or |γn| can both be small, which means it costs numerous QR-like iterations to
converge. This is similar to the solution of (2) by inverse iterations, considering the strong
relationship between the Inverse Iteration method and the QR (or QL) method [7]. Recall
that we give the one-step inverse iteration in Section 2, and the general Q iteration can be
regarded as a one-step QR-like iteration. In our numerical experience, the case that several
QR iterations (which use an accurate eigenvalue approximation as the shift) can not obtain
convergence is not rare. For example, for a random 2000× 2000 ST matrix, its most λi’s can
ensure one-step converges by QR iteration, but some λi’s may cost more than 50 steps. In
addition, this case almost arises in every random matrix.

Mastronardi and Van Dooreen discovered this instability when obtaining an ST eigen-
vector and solved the problem by a modified implicit QR decomposition method [12]. Their
method can ensure an accurate calculation. However, this paper uses a modified inverse
iteration method to calculate the eigenvector. The implicit QR decomposition in our paper
is used for deflation and guarantee of orthogonality in the case that the eigenvalues cluster
generally.

The corresponding pseudocode for computing generally clustered eigenvectors is
given in Algorithm 3. The generally clustering denotes that the span of the p clustered
eigenvalues is not big enough to guarantee orthogonality of its corresponding eigenvectors
(calculated by the Inverse Iteration method or Algorithms 1 and 2), i.e., λp− λ1 ≤ 10−3‖A‖.

Algorithm 3: Computing generally clustered eigenvectors.
Input : a, b, n, d

1 // d is a p× 1 vector where p generally clustered eigenvalues are
its components

Output : z

2 for each i ∈ [1, p] do
3 if i = p then
4 v← e1 // e1 is the first column of the n× n identity matrix
5 else
6 call Algorithm 1⇐ a, b, n, d(i);
7 then get v;
8 implement the deflation by the general Q iteration with the shift of d(i);
9 then get ā, b̄ // the length of ā is n− i and b̄ is n− 1− i

10 save all the Givens rotation matrices in G(i);
11 a← ā, b← b̄, n← n− 1;
12 end
13 if i > 1 then
14 for each j ∈ [1, i− 1] do
15 implement every Givens rotation in G(j) to v
16 end
17 end
18 z:,i = v;
19 end

4.2. Cost of Reorthogonalization

This subsection concerns the cost of reorthogonalization in Algorithm 3. For k clustered
eigenvalues, the last obtained v (line 7 in Algorithm 3) is a (n + 1− k)× 1 vector. v has
to be premultiplied n− k Givens rotation matrices to transfer to (n + 2− k)× 1. Repeat
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this process until the length reaches n. For every Givens rotation, the cost is six operations.
Therefore, the total cost is

6× ((n− k)× 1 + (n + 1− k)× 2 + (n + 2− k)× 3 + . . . + (n− 2)× (k− 1))

= 6× n× (1 + 2 + . . . + k− 1)− 6× (k× 1 + (k− 1)× 2 + . . . + 2× (k− 1))

= 3nk2 −
(

k3 + 3k2 − 4k + 3n
)

.

(12)

At first sight, (12) is hardly satisfactory, as the modified Gram–Schmidt method costs
only 4n× (1 + 2 + 3 + . . . + k) = 2nk2 operations. Only when k is close to n, our method
matches the efficiency of the modified Gram–Schmidt method. Moreover, those cases
where we need to use the general Q iteration (the QR-like iterations cannot converge at one
step) have not been considered. However, the cost will slump for cases with many severely
clustered eigenvalues within groups.

For example, if m eigenvalues are severely clustered among the k eigenvalues, the cost is

3n(k−m)2 −
(
(k−m)3 + 3(k−m)2 − 4(k−m) + 3n

)
+ 6(n−m)m, (13)

which decreases from O(nk2) to O(nk) if m is close to k. In addition, the cost for the modified
Gram–Schmidt method, in this case, is 4n(m + m + 1 + . . . + k) = 2n(m + k)(k−m).

If the k eigenvalues can be divided into two severely clustering groups, the cost is

6(n−m)m, (14)

which decreases from O(nk2) to O(nm). In addition, the cost for the modified Gram–
Schmidt method, in this case, is 2n(m + k)(k−m).

Therefore, Algorithm 3 calls the deflation method with the general Q iteration or
the modified Gram–Schmidt method according to an advanced prediction by (12)–(14).
However, both methods are time-consuming in cases where k is very close to n, and the
eigenvalues have few severely clustering groups. In this case, the best method is the MRRR
method. See more examples and numerical details in Section 6.

4.3. Modification of QR-Like Iteration

The general Q iteration can be seen as starting a QL iteration from the left of the matrix,
stopping it at column k, and then doing a QR iteration from the right of the matrix till there
is a singleton in the kth column. We give a subtle modification to the QR or QL iteration
with the implicit shift to save some operations. Take the QR iteration as an example, and the
traditional process is shown in Algorithm 4.

One step of QR iteration implemented into a 4× 4 ST matrix is shown as follows:
[

c1 s1
−s1 c1

] 


a1 b1
b1 a2 b2

b2 a3 b3
b3 a4




[
c1 −s1
s1 c1

]

⇒




× × s1b2
−s1δ π2 + c1δ c1b2

b2 a3 b3
b3 a4




[
c1 −s1
s1 c1

]

⇒




ā1 s1π2 s1b2
s1π2 c1π2 + δ c1b2
s1b2 c1b2 a3 b3

b3 a4




(15)
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Algorithm 4: QR iteration with the implicit shift.
Input : a, b, n, δ

1 // δ is the shift
Output : ā, b̄

2 // ā is the diagonal after transformation and b̄ is the diagonal

3 ω ← a1 − δ, N ←
√

ω2 + b2
1, c← ω/N, s← b1/N;

4 π ← c(a2 − δ)− sb1, π̄ ← cπ;
5 a1 ← ω + a2 − π̄;
6 ω ← π̄;
7 for each i ∈ [2, n− 1] do

8 N ←
√

π + b2
i , bi−1 ← Ns, s← bi/N;

9 bi ← cbi, c← π/N;
10 π ← c(ai+1 − δ)− sbi, π̄ ← cπ;
11 ai ← ω + ai+1 − π̄;
12 ω ← π̄;
13 end
14 bn−1 ← sπ, an ← cπ + δ;
15 ā← a, b̄← b;

In (15), πi+1 is updated by πi+1 = ci(ai+1 − δ)− sibi, which corresponds to line 10 in
Algorithm 4. This equation can be rewritten as

πi+1/ci = (ai+1 − δ)− sibi/ci

= (ai+1 − δ)− bici−1bi/πi

= (ai+1 − δ)− b2
i /(πi/ci−1)

Without loss of generality, assume that c0 = 1, then π1/c0 = a1 − δ = q1 (recall qi is
the Sturm sequence from (8)). Finally, we have

πi+1/ci = qi+1(i ∈ [0, n− 1]). (16)

Note all the qi’s have been calculated in advance when searching the smallest |γk|
in our methods; thus, we can use (16) to update π’s instead. We show the modified QR
iteration algorithm in Algorithm 5.

Algorithm 5 costs 6n multiplications, 2n divisions, and (n− 1) square roots while
Algorithm 4 costs 9n multiplications, 2n divisions, and (n− 1) square roots. Thus, our
modification saves 3n multiplications.
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Algorithm 5: Modified QR iteration with the implicit shift.
Input : a, b, n, δ, q

1 // q is the Sturm sequence from (8)
Output : ā, b̄

2 // ā is the diagonal after transformation and b̄ is the diagonal

3 ω ← q1, N ←
√

ω2 + b2
1, c← ω/N, s← b1/N;

4 π ← cq2, π̄ ← cπ;
5 a1 ← ω + a2 − π̄;
6 ω ← π̄;
7 for each i ∈ [2, n− 1] do

8 N ←
√

π + b2
i , bi−1 ← Ns, s← bi/N;

9 bi ← cbi, c← π/N;
10 π ← cqi+1, π̄ ← cπ;
11 ai ← ω + ai+1 − π̄;
12 ω ← π̄;
13 end
14 bn−1 ← sπ, an ← cπ + δ;
15 ā← a, b̄← b;

5. Avoiding Overflow and Underflow

Our new method obtains an eigenvector essentially by the cumulative products of q’s,
as shown in lines 9 and 12 of Algorithm 1. As is well known, the products can grow or
decay rapidly; hence, the recurrences to compute them are susceptible to severe overflow
and underflow problems. This section gives a relatively cheap algorithm to avoid overflow
and underflow.

Let f denotes the overflow threshold, for example, f = 21023 in IEEE double precision
arithmetic. Whenever one intermediate product during the recurrences exceeds f , multiply
it by f−1 to normalize and continue the iteration. Similarly, whenever one ≤ f−1, multiply
it by f . At the same time, we save the corresponding entry and mark 1 for overflow and
−1 for underflow.

Assume y positions, which divide the eigenvector approximation ṽ into y+ 1 parts, are
marked when the iteration is completed. Then, we have a y× 1 vector Y, with components
of 1’s and −1’s. For any certain position, the mark 1 means the components of ṽ from it
to the end are shrunk by a factor of f compared to v. In addition, the mark −1 means
amplification by f . The mark before the first component of ṽ is zero. Thus, we have
Y ← [0; Y].

Calculate the cumulative sums of Y from the first component to everyone and save the
results at each entry. In this way, each component of Y corresponds to each part of ṽ, and its
value represents the specific degree to which the corresponding part has been enlarged or
reduced. A positive value of m means that this part has been reduced by f m times, while a
negative value means enlarged. The corresponding part is not enlarged or reduced when
the value is zero.

Revisiting ṽ, all the components have not overflowed but are just to be restored to
their true values. In addition, the biggest part after restoration corresponds to the biggest
component of Y (recall each component of Y corresponds to each part of ṽ) because it is
reduced by the most significant times. Since ṽ is ultimately normalized, we take the biggest
part as the benchmark. Thus, the second biggest component of Y corresponds to the second
biggest part of ṽ after restoration, which should be divided by f . The rest parts, if they
exist, need to be divided by f 2 or more, thus directly taking zeros as its components.

We give the corresponding pseudocode in Algorithm 6, which corresponds to the
details of lines 9 and 12 of Algorithm 1.
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Algorithm 6: Compute ∏ q without overflow and underflow.
Input : n, q

1 // q is a n× 1 vector
Output : x

2 // xi = ∏i
t=1 qt

3 x ← zeros(n, 1), y← zeros(n, 1);
4 // zeros(n, 1) is a vector constituted by n zeros
5 f1 ← 22013, f2 ← 2−2013;
6 // We set two f’s to avoid divisions when scaling
7 x1 ← 1, y← 0;
8 for each i ∈ [2, n] do
9 T ← qi−1xi− 1, T2 ← |T|;

10 if T2 > f1 then
11 s← s + 1, xi ← T f2;
12 ys = i;
13 else if T2 < f1 then
14 s← s + 1, xi ← T f1;
15 ys = −i;
16 else
17 xi ← T;
18 end
19 end
20 if s = 1 then
21 i← ys;
22 if ys > 0 then
23 x1:(i−1) ← f2 × x1:(i−1);
24 else
25 xi:n ← f2 × xi:n;
26 end
27 else if s > 1 then
28 χ← [1; |y1:s|; (n + 1)];
29 y← the cumulative sum of sign(y1:s);
30 y← ([0; y]−maxs

i=1 yi);
31 for each part of x corresponded by yi < −1(i ∈ [1, (s + 1)]) do
32 x(y<−1) ← zeros(length(x(y<−1)), 1) ;
33 end
34 for each part corresponded by yi = −1(i ∈ [1, (s + 1)]) do
35 x(y=−1) ← f2 × x(y=−1) ;
36 end
37 end
38 x ← x/‖x‖// if normalization is needed

Finally, we give the complete modified Inverse Iteration method by Algorithm 7.
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Algorithm 7: Modified Inverse Iteration method.
Input : a, b, n, d

1 // d is a vector contains the eigenvalues
Output : v

2 // v is the eigenvectors with respect to d

3 F ← maxn
i=1(|ai|+ 2|bi|) // F = ‖A‖∞, the substitution of ‖A‖

4 r ← length(d);
5 compare every di+1 − di(i ∈ [1, n− 1]) to 10−3F, then
6 distribute d into isolated and clustered parts;
7 for every clustered parts of d, mark the severely clustered groups by

(λp+j − λj+1) < p
√

pFε;
8 if r ≥ 0.9n && the number of generally clustered eigenvalues is close to r then
9 call the MRRR method to compute all the eigenpairs;

10 save the corresponding eigenvectors (with respect to d) in v;
11 return;
12 end
13 for every isolated part of d do
14 call Algorithm 1 to calculate the corresponding eigenvectors;
15 call Algorithm 6 to avoid overflow and underflow;
16 save the results in v;
17 end
18 for every clustered part of d do
19 call Algorithm 2 and 3 to calculate the corresponding eigenvectors;
20 call Algorithm 6 to avoid overflow and underflow;
21 save the results in v;
22 end

6. Numerical Results

In this section, we present a numerical comparison among the modified Inverse
Iteration method and four other widely used algorithms for computing eigenvectors:

1. the Inverse Iteration method, by calling subroutine “dstein” from LAPACK in Matlab;
2. the MRRR method, by calling subroutine “dstegr” from LAPACK in Matlab;
3. the QR method, by calling subroutine “dsteqr” from LAPACK in Matlab;
4. the DC method, by calling subroutine “dstedc” from LAPACK in Matlab.

Since the MRRR, QR, and DC methods compute the eigenpairs instead of only eigen-
vectors, we compared the total cost for eigenpairs in this section. To obtain eigenvalues
for Algorithm 7 and the Inverse Iteration method, we use the PWK version of the QR
method (by calling subroutine ‘dsterf’ from LAPACK in Matlab) when calculating more
than 5% eigenpairs, otherwise use the Bisection method (by calling subroutine ‘dstebz’ from
LAPACK in Matlab). Note the QR and DC methods are only available when computing
all the eigenpairs and thus will not be compared in the cases when computing parts of
the eigenpairs.

We use the following five types of n× n matrices for tests:

1. Matrix Φ1, which is constructed similarly to Φ in Section 3 with α0 = (1:200). We
change the repeat times of α← [α; α0] to adjust the size of Matrix Φ1. Note this matrix
has many groups of clustered eigenvalues (severely and generally clusterings both
exist) and has overflow issues if calculated directly.

2. Matrix Φ2, which is constructed similarly to Φ1 with α0 = (1:80). This matrix also has
many groups of clustered eigenvalues (severely and generally clusterings both exist)
but has no overflow issue if calculated directly.
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3. Matrix W1, the famous Wilkinson matrix, which has the ith diagonal component
equal to |(n + 1)/2− i|(n is odd) and all off-diagonal components equal to 1. All its
eigenvalues severely cluster in pairs.

4. Matrix W2, another form of the Wilkinson matrix, which has the ith (i ∈ [1, (n + 1)/2])
diagonal component equal to |(n + 1)/2− i|(n is odd), the ith (i ∈ [(n + 1)/2 + 1, n])
diagonal component equal to −|(n + 1)/2− i| and all off-diagonal components equal
to 1. Its eigenvalues do not cluster if the size is less than 2000.

5. Random Matrix with both diagonal and off-diagonal elements being uniformly dis-
tributed random numbers in [−1, 1]. Note that all the Random Matrix results in this
section are mean data of 20 times tests.

The results were collected on an Intel Core i5-4590 3.3-GHz CPU and 16-GB RAM
machine. All codes were written in Matlab2017a and executed in IEEE double precision.
The machine precision is ε ≈ 2.2× 10−16.

6.1. Accuracy Test

Figures 5–9 present the results of the residual norms, i.e., R = Tṽ/‖v‖, where the
Average Errors denote the means of R’s of all the calculated eigenvectors and the Maximal
Errors denote the maximum. The results of dot products of the calculated eigenvectors are
also presented to show orthogonality. Different sizes are used in our test, from 400× 400
to 2000× 2000. We denote the corresponding 2-norm of the tested matrix, for example,
F = ‖Φ1‖ in Figure 5. The results confirm that Algorithm 7 computes accurate and
numerical orthogonal eigenvectors.
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Figure 5. The accuracy results of Matrix Φ1: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.

6.2. Efficiency Test of Part Eigenpairs

Figures 10–14 show the time cost for computing 10%, 30%, 50%, and 70% eigenpairs
of the above five types of matrices in each size. Note the cost of the Inverse Iteration
method surges in Figure 12 because the eigenvalues start to cluster and need an expensive
reorthogonalization by the modified Gram–Schmidt method as the size of Matrix W1
rises. The MRRR method costs the most in every matrix because it needs more accurate
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eigenvalues and calls the Bisection method, while the Inverse Iteration and Algorithm 7
call the PWK version of the QR method to obtain all eigenvalues. Finally, the results show
that the modified Inverse Iteration method always costs the least time and has a surpassing
efficiency when eigenvalues severely cluster, which confirms our points in Section 3.
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Figure 6. The accuracy results of Matrix Φ2: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.
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Figure 7. The accuracy results of Matrix W1: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.
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Figure 8. The accuracy results of Matrix W2: (a) the average residual norm; (b) the maximal residual
norm; (c) the average dot product; (d) the maximal dot product.
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Figure 9. The accuracy results of Random Matrices: (a) the average residual norm; (b) the maximal
residual norm; (c) the average dot product; (d) the maximal dot product.
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Figure 10. The time cost for Matrix Φ1 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.
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Figure 11. The time cost for Matrix Φ2 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.
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Figure 12. The time cost for Matrix W1 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.
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Figure 13. The time cost for Matrix W2 when calculating part eigenpairs: (a) 10%; (b) 30%; (c) 50%;
(d) 70%.
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Figure 14. The time cost for Random Matrix when calculating part eigenpairs: (a) 10%; (b) 30%;
(c) 50%; (d) 70%.

6.3. Efficiency Test of Minor Eigenpairs

When it comes to a minor set of eigenpairs, it is inadvisable to calculate all the eigen-
values by the PWK version of the QR method for the Inverse Iteration and Algorithm 7. We
use the Bisection method instead, similar to the MRRR algorithm. Thus, the result is more
convictive in this case because all the methods obtain the eigenvalues at an identical cost.

We calculated 0.2%, 0.4%, 0.6%, 0.8%, and 1% eigenpairs of the above five types of
matrices and used two sizes: 2001× 2001 and 10001× 10001. The results are presented in
Figure 15 and 16. It can be seen that the cost of the MRRR method is close to the Inverse
Iteration method when computing clustered eigenpairs but higher in other cases. Once
again, the modified Inverse Iteration prevails in all cases.

6.4. Efficiency Test of All Eigenpairs

As discussed in previous sections, Algorithm 7 is not suitable for computing all the
eigenvectors because the DC method has a significant advantage in this case. Nevertheless,
we also performed the corresponding test and show the results in Figure 17. It can be
seen in Figure 17b,c that the modified Inverse Iteration method has a close time cost to
the DC method. The efficiency increase comes from the computation process for severely
clustered eigenvectors, which is recurrent in Matrix Φ2 and W1. The acceleration is not that
distinct in Figure 17a (where many eigenvectors also cluster severely) because it takes extra
operations to avoid overflows and underflows in Matrix ε1, which will not arise in Matrix
ε2. However, the DC method is still recommended when computing all the eigenpairs.

6.5. Comparing with Mastronardi’s Method

Mastronardi [3,12] developed a procedure for computing an eigenvector of a symmet-
ric tridiagonal matrix once its associate eigenvalue is known and gave the corresponding
Matlab codes in [12].

We tested the Matlab routine, collected the residual norm errors (denoted by R), dot
product errors, and time cost on the test matrices, and compared them with our new
method. The results are shown in Table 2. Note that Mastronardi’s method is for one
ST eigenvector; thus, we calculated the maximal eigenpairs of the test matrices. All the
matrices in Table 2 have a size of 2001. The residual norm data have been scaled by the
product of the machine precision and the 2-norm of the tested matrix.
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Figure 15. The time cost for minor eigenpairs in 2001× 2001: (a) Matrix Φ1; (b) Matrix Φ2; (c) Matrix
W1; (d) Matrix W2; (e) Random Matrix.
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Figure 16. The time cost for minor eigenpairs in 10001× 10001: (a) Matrix Φ1; (b) Matrix Φ2; (c) Matrix
W1; (d) Matrix W2; (e) Random Matrix.
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Figure 17. The time cost for all eigenpairs in: (a) Matrix Φ1; (b) Matrix Φ2; (c) Matrix W1; (d) Matrix
W2; (e) Random Matrix.
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Table 2. Comparing with Mastronardi’s method when calculating one eigenvector.

Matrix Method R(×ε‖A‖) Max Dot Product (×ε−1) Time Cost (s)

Φ1
Mastronardi’s - - -
Algorithm M 3.42 1.2 5.5× 10−4

Φ2
Mastronardi’s 2.86 1.5 0.24
Algorithm M 3.01 0.7 4.0× 10−4

W1
Mastronardi’s - - -
Algorithm M 0.27 1.4 4.6× 10−3

W2
Mastronardi’s 18.7 0 0.29
Algorithm M 0.27 1.2 4.8× 10−4

Random Mastronardi’s 24.6 2.1 0.30
Algorithm M 12.2 0 5.5× 10−4

Table 2 shows that Mastronardi’s method can provide a better result in Matrix W2 when
considering orthogonality. However, Algorithm 7 has a significant advantage in time cost.
In addition, Mastronardi seems unstable when computing the eigenvector (corresponding
to the maximal eigenvalue) of Matrix Φ1 and W1: the Matlab routine provided in [12] failed
to converge. The instability also arises in computing some eigenvectors of the random
matrices. As a consequence, we did not present the corresponding results of Matrix Φ1 and
W1 in Table 2.

The test for calculating all eigenvectors stuck because of the instability too. However,
the time cost of Mastronardi’s method is easy to conclude to be much more expensive than
Algorithm 7, as the costs for one eigenvector have such a significant difference as shown in
Table 2. In addition, Mastronardi’s method is unsuitable for computing all the eigenvectors,
as the deflation process costs O(2n3) operations [12] while it could not benefit from the
sub-diagonal “zero”s like the traditional QR method.

7. Discussion

Algorithm 7 is a modified version of the MRRR, certainly of the Inverse Iteration
method essentially, as the MRRR method implements inverse iterations in bidiagonal forms.
The key improvements are:

1. the one-step iteration method with Algorithm 6 to avoid overflow and underflow.
Although the MRRR method uses another version of one-step iteration, the accompa-
nying operations of square and square root slow down the routine.

2. computing severely eigenvectors by the envelope vector theory. The severely cluster-
ing eigenvalues, which make the cost of the MRRR and Inverse Iteration method surge,
bring a significant acceleration, on the contrary, for our new method. The scheme of
the MRRR method for clustered eigenvalues is ingenious with time complexity of
O(n2), but costs too many operations when searching the so-called “Relatively Robust
Representation”. In terms of results, it is even the slowest when severely clustering
eigenvalues arise.

3. the novel reorthogonalization method. Dhillion also tried the envelope vectors when
the MRRR method was stuck by the glued Wilkinson Matrices [11] but gave up
because of the general clustering of severely clustered groups. This paper solves the
problem by the general Q iteration. Note we also accelerate the QR-like iteration itself
by Algorithm 5.

The results in Section 6 show that the modified Inverse Iteration method is suitable
for computing part eigenpairs, especially the severely clustered ones. When computing a
minor set, our new method is significantly faster. As the computations for every eigenpair
are independent, our new method is flexible in calculating in any given order. However,
when eigenvalues generally cluster without severely clustering groups, one should use
the MRRR method. In addition, the DC method is absolutely the champion for computing
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all the eigenpairs in almost every type of matrix. Nevertheless, considering it is rare
to calculate all the eigenpairs of a large matrix in practice, this paper provides a novel,
practical, flexible, and fast method.

Algorithm 7 can be divided into roughly three steps: finding the smallest |γk|; com-
puting the isolated or clustered eigenvectors; reorthogonalizing by premultiplying Givens’
rotation matrices. The consumption of the other calculation parts is not comparable to
these three steps. Note that all these main steps can be implemented in parallel. Therefore,
Algorithm 7 is suitable for parallel computation. We will focus on the parallel version of
the modified Inverse Iteration method in our future research work.

Author Contributions: Formal analysis, W.C., Y.Z., and H.Y.; investigation, W.C. and Y.Z.; writing—
original draft, W.C.; writing—review and editing, H.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is funded by the Talent Team Project of Zhangjiang City in 2021 and the R &
D and industrialization project of the offshore aquaculture cage nets system of Guangdong Province
of China (Grant No. 2021E05034). Huazhong University of Science and Technology funds the APC.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and reviewers for their constructive
comments, which will improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ST (matrix) Symmetric Tridiagonal (matrix)
DC (algorithm) Divided and Conquer (algorithm)
MRRR (algorithm) Multiple Relatively Robust Representations (algorithm)

References
1. Xu, W.R.; Bebiano, N.; Chen, G.L. On the construction of real non-self adjoint tridiagonal matrices with prescribed three spectra.

Electron. Trans. Numer. Anal. 2019, 51, 363–386. [CrossRef]
2. Van Dooren, P.; Laudadio, T.; Mastronardi, N. Computing the Eigenvectors of Nonsymmetric Tridiagonal Matrices. Comput.

Math. Math. Phys. 2021, 61, 733–749. [CrossRef]
3. Laudadio, T.; Mastronardi, N.; Van Dooren, P. Computing Gaussian quadrature rules with high relative accuracy. Numer.

Algorithms 2022. [CrossRef]
4. Nesterova, O.P.; Uzdin, A.M.; Fedorova, M.Y. Method for calculating strongly damped systems with non-proportional damping.

Mag. Civ. Eng. 2018, 81, 64–72. [CrossRef]
5. Bahar, M.K. Charge-Current Output in Plasma-Immersed Hydrogen Atom with Noncentral Interaction. Ann. Phys. 2021, 533.

[CrossRef]
6. Gu, M.; Eisenstat, S.C. A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl.

1995, 16, 172–191. [CrossRef]
7. Parlett, B.N. The Symmetric Eigenvalue Problem; SIAM: Philadelphia, PA, USA, 1997.
8. Peters, G.; Wilkinson, J.H., The calculation of specified eigenvectors by inverse iteration. In Handbook for Automatic Computation;

Springer: Berlin/Heidelberg, Germany, 1971; pp. 418–439.
9. Dhillon, I.S. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem. Ph.D. Thesis, University

of California, Berkeley, CA, USA, 1997.
10. Wilkinson. The Algebraic Eigenvalue Problem. In Handbook for Automatic Computation, Volume II, Linear Algebra; Oxford University

Press: Oxford, UK, 1969.
11. Dhillon, I.S.; Parlett, B.N.; Vömel, C. Glued matrices and the MRRR algorithm. SIAM J. Sci. Comput. 2005, 27, 496–510. [CrossRef]
12. Mastronardi, N.; Taeter, H.; Dooren, P. On computing eigenvectors of symmetric tridiagonal matrices. Springer INdAM Ser. 2019,

30, 181–195. [CrossRef]
13. Parlett, B.N. Invariant subspaces for tightly clustered eigenvalues of tridiagonals. BIT Numer. Math. 1996, 36, 542–562. [CrossRef]
14. Parlett, B.; Dopico, F.M.; Ferreira, C. The inverse eigenvector problem for real tridiagonal matrices. SIAM J. Matrix Anal. Appl.

2016, 37, 577–597. [CrossRef]
15. Kovačec, A. Schrödinger’s tridiagonal matrix. Spec. Matrices 2021, 9, 149–165. [CrossRef]

http://doi.org/10.1553/etna_vol51s363
http://dx.doi.org/10.1134/S0965542521050080
http://dx.doi.org/10.1007/s11075-022-01297-9
http://dx.doi.org/10.18720/MCE.81.7
http://dx.doi.org/10.1002/andp.202100111
http://dx.doi.org/10.1137/S0895479892241287
http://dx.doi.org/10.1137/040620746
http://dx.doi.org/10.1007/978-3-030-04088-8_9
http://dx.doi.org/10.1007/BF01731933
http://dx.doi.org/10.1137/15M1025293
http://dx.doi.org/10.1515/spma-2020-0124


Mathematics 2022, 10, 3636 29 of 29

16. da Fonseca, C.M.; Kılıç, E. A new type of Sylvester–Kac matrix and its spectrum. Linear Multilinear Algebra 2021, 69, 1072–1082.
[CrossRef]

17. Chu, W.; Zhao, Y.; Yuan, H. A Novel Divisional Bisection Method for the Symmetric Tridiagonal Eigenvalue Problem. Mathematics
2022, 10, 2782. [CrossRef]

18. Barth, W.; Martin, R.; Wilkinson, J. Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection.
Numer. Math. 1967, 9, 386–393. [CrossRef]

http://dx.doi.org/10.1080/03081087.2019.1620673
http://dx.doi.org/10.3390/math10152782
http://dx.doi.org/10.1007/BF02162154

	Introduction
	Compute Isolated Eigenvectors
	Theoretical Background
	One-Step Iteration
	Accuracy Analysis of Algorithm 1

	Computing Severely Clustered Eigenvectors
	Reorthogonalization
	General Q Iteration
	Cost of Reorthogonalization
	Modification of QR-Like Iteration

	Avoiding Overflow and Underflow
	Numerical Results
	Accuracy Test
	Efficiency Test of Part Eigenpairs
	Efficiency Test of Minor Eigenpairs
	Efficiency Test of All Eigenpairs
	Comparing with Mastronardi's Method

	Discussion
	References

