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Abstract: Multitask emergency logistics planning is a complex optimization problem in practice.
When a disaster occurs, relief materials or rescue teams should be dispatched to destinations as
soon as possible. In a nutshell, the problem can be described as an optimization of multipoint-to-
multipoint transportation delivery problem in a given multimodal traffic network. In this study,
a multimodal traffic network is considered for emergency logistics transportation planning, and a
mixed-integer programming (MIP) formulation is proposed to model the problem. In order to solve
this model, we propose a two-layer solution method. The inner layer is to manage the single-task
route recommendation, for which we develop a shortest-path algorithm with the multimodal traffic
network. Here, the optimal substructure of the algorithm and its time complexity are presented. With
the route of each task calculated by the single-task solver, a general optimization algorithm based on
improved particle swarm optimization (PSO) is proposed at the outer layer to coordinate the execution
of each task constrained by the limited transportation capacity, so as to derive solutions for multi-
commodity emergency logistics planning. Extensive computational results show that the proposed
method can find solutions of good quality in reasonable time. Meanwhile, through the sensitivity
analysis of the algorithm, we find the appropriate parameters for general optimization algorithm
to solve the problem proposed in this paper. The proposed approach is effective and practical for
solving multitask emergency logistics planning problem under multimodal transportation, which
can find a satisfactory solution in an acceptable time.

Keywords: emergency logistics; multimodal transportation; mixed-integer programming; shortest-
path; particle swarm optimization

MSC: 90-10; 90-08

1. Introduction

Considering the severe impact of emergencies (e.g., natural hazards and outbreak of
epidemics), the timeliness and rationality of emergency logistics planning are critical to
reduce the loss caused by emergencies. Currently, emergency logistics is an important field
of research in emergency management, as the practice of prevention and rescue during all
major natural disasters are accompanied by many logistics activities, such as acquisition,
storage, deployment, transportation, distribution and recovery of emergency supplies. In a
broad sense, emergency logistics is the process of planning, organizing and controlling the
delivery of aid to victims. It also addresses the integration of social sciences and analytical
research, incorporating mathematical characterization and modelling of diverse aspects of
relief efforts, together with an intense field work [1,2].

Unfortunately, experience with natural disasters globally shows that the vast majority
of disaster management is not well planned in terms of logistics. Meanwhile, traffic
networks can be seriously damaged after disasters, but transportation route planning is
typically neglected.

One of the early works related to emergency logistics management was promoted
by Sheu [3]. Based on this, a recent survey of emergency logistics indicates that most
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of the relevant research focuses on the transportation of supplies and wounded people,
applying models such as Dynamic Network Flow (DNF), Static Network Flow (SNF),
Route Enumeration (RE), Location-Routing Problem (LRP), Vehicle Routing Problem (VRP),
Multimodal Transportation System (MTTS) and many more [4]. However, to the best of
our knowledge, there is a lack of research on multitask emergency logistics planning under
multimodal transportation. The optimization of emergency logistics as a post-disaster
decision-making activity also has a lot of value in practice and thus deserves further
investigation.

In essence, the optimization problem of multi-commodity emergency logistics plan-
ning can be abstracted as a multipoint-to-multipoint transportation planning problem
in a given multimodal traffic network. The characteristic of multimodal transportation
is to transport supplies through two or more different modes of transportation, such as
highway, railway, aviation, inland waterways, and short-distance or long-distance maritime
transportation. An illustration of the emergency logistics planning problem is shown in
Figure 1. With an increasing attention to emergency logistics, emergency logistics un-
der multimodal transportation has also been a heated research field, extending to many
real-world applications [5–7].

Figure 1. Illustration of the emergency logistics planning problem.

The focus of this study is emergency logistics planning for multi-commodity delivering
under multimodal transportation. Many studies regard emergency logistics as a complex
nonlinear network planning problem involving multiple constraints and multiple objec-
tives [8–13]. Based on the existing literature, we take into account several characteristics
that are crucial in multitask emergency logistics planning as follows:

• Limited available infrastructure capacity: emergency logistics rely on transportation
routes with limited capacity, and the capacity of loading and unloading nodes is
typically limited, which can easily lead to traffic network congestion in mass trans-
portation;

• Insufficient available transport capacity: when performing emergency logistics tasks,
we are usually faced with a relatively fragile traffic network and cannot undertake
large-scale air transportation missions. For example, the design of the load and size
of the bridges, culverts, railway beds and highway beds restrict the passage of some
heavy rescue equipment;

• Many tasks involved: emergency logistics typically involve multiple emergency tasks,
and these tasks are scattered with different destinations, which incur great difficulties
to model and solve the emergency logistics planning problem.

Based on the above realistic difficulties, this paper conducts research on multitask
emergency logistics planning under multimodal transportation. In this study, we first
develop a mixed-integer programming (MIP) model for the emergency logistics planning
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problem. Considering the complexity of this model, we decompose the solution procedure
into two layers. The inner layer is the route planning for a single task, and a shortest-path
algorithm under a multimodal traffic network is devised. After the route of each task is
calculated, the alternative route set is obtained. In the outer layer, multi-task emergency
logistics planning should be optimized according to the information of each task and its
multiple alternative routes, and the limited capacity in the multimodal transportation
network. Based on the mathematical model, a multi-modal optimization algorithm based
on the particle swarm optimization (PSO) algorithm is proposed. Through this work, good
quality solutions can be found and the multitask emergency logistics planning problem
can be solved effectively.

The remainder of this paper is organized as follows. In Section 2, we review the
related literature. In Section 3, we present a MIP model for the multitask emergency
logistics problem. In Section 4, a shortest-path algorithm under a multimodal traffic
network is proposed to solve the single-task model. We also construct the real transport
time calculation algorithm to recalculate the shortest-path with the minimum weighted
time obtained by the previous algorithm. In Section 5, we propose a general optimization
algorithm of multitask emergency logistics planning to coordinate the execution of each task
constrained by the limited transportation capacity. Computational results are presented
and discussed in Section 6. Finally, in Section 7, we conclude the work and point out some
directions for future research.

2. Literature Review

Since its introduction in the early 1980s [14], emergency logistics has drawn a lot of
attention and many mathematical models have been developed to solve related problems.
Many extensions have also been made to incorporate various characteristics of real-world
problems, and the primary research directions have been optimization modelling, algorithm
design and model evaluation.

Based on the MTTS, the mathematical model that we present for multitask emergency
logistics has its roots in the work that first established a multicommodity and multimodal
emergency supply distribution model based on a time-space network [15]. In his work, the
large-scale disaster relief transportation problem was described as a multicommodity and
multimodal network flow model with a single objective function. Since then, the relevant
research had focused on the mixed integer programming model and the programming
problem under uncertainty.

Ransikarbum and Mason [16] presented a multiobjective optimization model in an
integrated network for making strategic decisions in the supply distribution and net-
work restoration phases of humanitarian logistics operations. To use the scarce resources
efficiently and achieve the best possible emergency relief, Najafi et al. [17] proposed a
multi-objective, multi-mode, multi-commodity, and multi-period stochastic model for man-
aging the logistics of both commodities and injured people in earthquake response. Yoon
and Albert [18] formulated a Markov decision process model that dispatches multiple
types of ambulances to multiple patient priorities in emergency medical services, which
determines the type of ambulances to be deployed for patients in real-time. Barbarosoǧlu
and Arda [19] proposed a scenario-based two-stage stochastic programming model to plan
disaster relief transportation, and developed a multi-commodity, multi-mode network flow
formula to describe logistics on urban transportation networks. Gao et al. [20] proposed a
bi-objective stochastic optimization model to rebalance and transport commodities with the
multi-modal transportation system, aiming at solving the multi-commodity rebalancing
issue for humanitarian logistics.

At the same time, some scholars also studied the problem of planning and scheduling
in emergency logistics. Ding et al. [21] put forward an emergency material scheduling
model with multiple logistics supply points to multiple demand points based on the grey
interval number, aiming at addressing the problem of post-disaster emergency material
dispatching from multiple supply points to multiple demand points. Song et al. [22]
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designed a multi-stage emergency logistics scheduling model for multi-supply points and
multi-demands points, aiming at minimizing total dispatching cost and emergency points’
satisfaction.

It can be seen that problems have been investigated from different perspectives. How-
ever, there is a lack of general description and mathematical modeling for multitask emer-
gency logistics planning under multimodal transportation.

In this study, we investigate the optimization problem of emergency logistics. Solution
algorithms of such problems can be categorized as either exact and heuristic. The multitask
emergency logistics planning optimization problem investigated in this study is a typical
NP-hard problem [23,24]. Due to the complexity of mathematical models of such practical
problems, the exact algorithm cannot find the optimal solution in a limited time. Then
many scholars had focused on designing and improving heuristic optimization algorithms
to find corresponding problems’ satisfactory solutions. Yi and Kumar [25] first proposed
an ant colony optimization (ACO) heuristic algorithm for disaster relief operations. Since
then, many scholars have tried to use the optimization algorithm combining PSO and
ACO to solve the multimodal transportation scheme, and achieved good results [26–28].
Li and Su [29] solved the route selection problem in multimodal transportation mainly by
using improved genetic algorithm. Fazayeli et al. [30] gave a presentation of a two-part
genetic algorithm for addressing the distribution problem in multimodal transport network.
Das et al. [31] modified genetic algorithm with an in-vitro-fertilization-based crossover
as well as a generation-dependent mutation, and the numerical results obtained by this
algorithm are superior to other heuristic algorithms. To deal with the heterogeneous fleet
vehicle routing problem, Subramanian et al. [32] proposed a hybrid algorithm composed
by an Iterated Local Search based heuristic and a Set Partitioning formulation.

3. Problem Description and Mathematical Formulation

To minimize the impact of a disaster, a critical issue in emergency logistics is to
provide rescue materials and perform rescue operations correctly and in a timely manner.
Wang et al. [33] mentioned that the occurrence of natural disasters or accidents, such as
COVID-19, can obstruct or interrupt traffic connectivity and may affect the transportation
of essential materials. Therefore, the problem to be solved by multitask emergency logistics
planning optimization can be described as follows: using limited traffic resources, on
the premise of meeting all types of real situations and superior requirements, choose the
appropriate route and time, and complete the delivery of each task from its departure point
to the destination point in the shortest time possible.

Most importantly, it is necessary to clarify all types of key information required in the
optimization process:

• Traffic network (i.e., the topology of the emergency logistics transportation system):
the traffic network is composed of nodes and arcs, where nodes are typically cities,
stations and transfer stations; and arcs are typically transportation lines between
two nodes;

• Loading and unloading capacity (i.e., the maximum periodic loading and unloading
capacity of a node for a specified transportation mode);

• Transport capacity: the transport capacity refers to the periodic maximum number of
batches passing arcs between two nodes, which is jointly determined by the type of
route, logistics support capacity and other factors;

• Transportation routes (i.e., the collection of routes that connect the departure point
and destination point of each task);

• Periodic delivery quantity (i.e., the number of batches delivered periodically for each
task): if the number of task batches is greater than the maximum single-day transport
capacity of its transportation route, it will likely take several periods to complete the
delivery. The maximum single-day transport capacity is determined by the loading
and unloading capacity of the departure point, destination point and transfer node as
well as the transport capacity of its transportation route.
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Constraints that must also be considered in the optimization process should be clarified.
The problem investigated in this study is essentially a type of complex optimization problem
that must find the optimal solution according to the optimization objective under various
constraints. The main constraints considered are as follows:

• Traffic resource constraints: these constraints primarily include the maximum capacity
of each route, the maximum loading and unloading capacity of each node, and the
requirements of each task on the type of transportation mode;

• Emergency principle constraints: these constraints primarily include the last arrival
time of each task, arrival order of the batches in different tasks, batch continuity in
time and space during transportation;

• Natural environment Constraints (e.g., logistic requirements of high-altitude areas
and the transport time limitations of severe weather);

• Transfer condition constraints: these constraints primarily include the maximum
capacity of each node and the priority requirements for different modes of transport.
In theory, transfer is possible between any two modes of transportation. However, in
the real transport process, we consider that emergency logistics should take the time
benefit as the first goal. The transport time is faster with the mode of transportation
with higher priority, and the transport distance should be as far as possible with a high
priority without transfer. Therefore, we assume that priority exists between different
traffic networks and stipulate that transfer can only occur from a high-priority to a
low-priority traffic network.

The traffic capacity, transport route selection and schedule of tasks must be considered
to avoid congestion at key routes or nodes. To model the optimization problem of multitask
emergency logistics planning, we first must clarify the task list information and transport
capacity data of the traffic network. This list is a general emergency logistics planning
list that is used to transport the given task list from the designated departure point to
the designated destination point in the existing traffic network, with the shortest total
completion time as the goal.

To describe the model clearly, Table 1 shows the notations of the related parameters
used in the models, and Table 2 shows the notations of the decision variables used in
the models.

The topology of an emergency logistics transportation system can be described by
a directed network consisting of the set of vertices and the set of arcs. The vertices in
the network may denote terminals and the junctions between two arcs, and the arcs
represent the pathways connecting two vertices. We consider different transportation
modes, which are often jointly used in emergency logistics. The transportation network can
be denoted as N = (V, E), and the subnetwork of transportation mode f can be abstracted
as N f = (Vf , E f ), where the index of node is i ∈ Vf and (i, j) ∈ E f represents the arc from i
to j under transportation mode f . The node set is V =

{
V1 ∪V2∪. . .∪V|F|

}
, and the arc set

is E =
{

E1 ∪ E2∪. . .∪E|F|
}

.
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Table 1. Notations of related parameters used in the models.

Notations Definition

F The set of transportation modes
f The index of transportation modes and f ∈ F
T The set of planning horizon
t The index of time and t ∈ T
N f Subnetwork of transportation mode f
l f
i Periodic loading capacity of node i under transportation mode f

ul f
i Periodic unloading capacity of node i under transportation mode f

r f
ij Periodic traffic capacity of arc (i, j) under transportation mode f

tr f
ij Transportation time of arc (i, j) under transportation mode f

M The set of tasks
m The index of tasks and m ∈ M
um The number of batches in task m
um Minimum number of batches in task m transported in a period
sw f1, f2

m Whether task m can transfer from transportation mode f1 to f2
( f1 has a higher priority than f2)

sm The departure point of task m
qm The destination point of task m
esm The earliest departure time of task m
l fm The last arrival time of task m
U A large constant

Table 2. Notations of decision variable used in the model.

Notations Definition

Zt
Binary variable indicating whether there is any task being executed
on period t and Zt ∈

{
0, 1
}

sta f
mt

Binary variable indicating whether task m begins delivering from
departure point sm on period t under the transportation mode f and
sta f

mt ∈
{

0, 1
}

f in f
mt

Binary variable indicating whether task m finishes delivering from
departure point sm on period t under the transportation mode f and
f in f

mt ∈
{

0, 1
}

mask f
mij

Binary variable indicating whether task m chooses the arc (i, j) to
transport under the transportation mode f and mask f

mij ∈
{

0, 1
}

x f
mijt

Binary variable indicating whether task m chooses the arc (i, j)
to transport on period t under the transportation mode f and
x f

mijt ∈
{

0, 1
}

y f
mijt

The number of batches in task m transport in arc (i, j) on period t
under the transportation mode f

swit f1, f2
mi

Whether task m transfer from transportation mode f1 to f2 at node i
( f1 has a higher priority than f2)

auxl f
mit

Task m’s auxiliary variable of loading capacity at node i on period t
under the transportation mode f

auxul f
mit

Task m’s auxiliary variable of unloading capacity at node i on period
t under the transportation mode f

Xmt
Binary variable indicating whether there are any batches in task m
deliver from departure point sm on period t and Xt ∈

{
0, 1
}
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According to the problem description, a general multitask emergency logistics plan-
ning optimization model is established in this section. Several relevant assumptions should
be considered as follows:

• Each task to be delivered can be split into batches. Each batch in each task cannot be
split during transportation, and a batch is the smallest unit;

• The transportation of each task must be continuous, in terms of both time and space;
• Transfer can be made instantaneous and can only be carried out from a transportation

mode of a higher priority to that of a lower priority.

The problem can be modelled as follows:

minimise ∑
t∈T

Zt (1)

subject to ∑
t∈T

∑
f∈F

∑
(i,qm)∈E f

y f
m,i,qm ,t = um, ∀m ∈ M (2)

∑
f∈F

∑
j:(sm ,j)∈E f

mask f
m,sm ,j = 1, ∀m ∈ M (3)

∑
f∈F

∑
i:(i,qm)∈E f

mask f
m,i,qm

= 1, ∀m ∈ M (4)

∑
f∈F

∑
j:(i,j)∈E f

mask f
mij = ∑

f∈F
∑

j:(j,i)∈E f

mask f
mji, ∀m ∈ M, ∀i ∈ V\

{
sm, qm

}
(5)

x f
mijt ≤ mask f

mij, ∀m ∈ M, ∀ f ∈ F, ∀(i, j) ∈ E, ∀t ∈ T (6)

x f
mijt · um ≤ y f

m,i,j,t ≤ x f
mijt · um, ∀m ∈ M, ∀ f ∈ F, ∀(i, j) ∈ E, ∀t ∈ T (7)

∑
f∈F

∑
j:(i,j)∈E f

y f

m,i,j,t−tr f
ji

= ∑
f∈F

∑
k:(j,k)∈E f

y f
m,j,k,t, ∀m ∈ M, ∀(i, j) ∈ E, ∀t ∈ T (8)

∑
f∈F

∑
t∈T

sta f
mt = 1, ∀m ∈ M (9)

∑
f∈F

∑
t∈T

f in f
mt = 1, ∀m ∈ M (10)

∑
t∈T

sta f
mt = ∑

t∈T
f in f

mt, ∀m ∈ M, ∀ f ∈ F (11)

t

∑
k=1

sta f
mk ≥

t

∑
k=1

f in f
mk, ∀m ∈ M, ∀ f ∈ F, ∀t ∈ T (12)

t

∑
k=1

sta f
mk −

t

∑
k=1

f in f
mk = ∑

(sm ,j)∈E f

x f
m,sm ,j,t, ∀m ∈ M, ∀ f ∈ F, ∀t ∈ T (13)

(
t

∑
k=1

sta f
mk −

t

∑
k=1

f in f
mk) · um ≤ ∑

(sm ,j)∈E f

y f
m,sm ,j,t, ∀m ∈ M, ∀ f ∈ F, ∀t ∈ T (14)

∑
(sm ,j)∈E f

y f
m,sm ,j,t ≤ (

t

∑
k=1

sta f
mk −

t

∑
k=1

f in f
mk) · um, ∀m ∈ M, ∀ f ∈ F, ∀t ∈ T (15)

esm−1

∑
t=1

∑
f∈F

∑
(sm ,j)∈E f

y f
m,sm ,j,t = 0, ∀m ∈ M (16)

|T|

∑
t=l fm+1

∑
f∈F

∑
(i,qm)∈E f

y f
m,i,qm ,t = 0, ∀m ∈ M (17)

swit f1, f2
mi ≤ sw f1, f2

m , ∀i ∈ V\
{

sm, qm
}

, ∀ f1, f2 ∈ F, ∀m ∈ M (18)
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∑
j:(j,i)∈E f1

mask f1
mji ≥ swit f1, f2

mi , ∀i ∈ V\
{

sm, qm
}

, ∀m ∈ M, ∀ f1, f2 ∈ F (19)

∑
j:(i,j)∈E f2

mask f2
mij ≥ swit f1, f2

mi , ∀i ∈ V\
{

sm, qm
}

, ∀m ∈ M, ∀ f1, f2 ∈ F (20)

∑
j:(j,i)∈E f1

mask f1
mji = ∑

f2∈F\ f1

swit f1, f2
mi + ∑

k:(i,k)∈E f1

mask f1
mik, ∀i ∈ V

∀ f1, f2 ∈ F, ∀m ∈ M

(21)

∑
m∈M

y f
m,i,j,t ≤ r f

ij, ∀ f ∈ F, ∀(i, j) ∈ E, ∀t ∈ T (22)

x f
mijt ≤ Zt, ∀m ∈ M, ∀ f ∈ F, ∀(i, j) ∈ E, ∀t ∈ T (23)

auxl f2
mit + U · (1− ∑

f1∈F\ f2

swit f1, f2
mi ) ≥ ∑

j:(i,j)∈E f2

y f2
m,i,j,t, ∀m ∈ M,

∀ f1, f2 ∈ F, ∀i ∈ V, ∀t ∈ T

(24)

auxl f2
mit + U · ∑

f1, f2∈F
swit f1, f2

mi ≥ 0, ∀m ∈ M, ∀ f1, f2 ∈ F, ∀i ∈ V, ∀t ∈ T (25)

∑
m∈M

auxl f
mit + ∑

m:sm=i
∑

j:(j,i)∈E f

y f
m,i,j,t ≤ l f

i , ∀ f ∈ F, ∀i ∈ V, ∀t ∈ T (26)

auxul f1
mit + U · (1− ∑

f2∈F\ f1

swit f1, f2
mi ) ≥ ∑

j:(j,i)∈E f1

y f1
m,j,i,t, ∀m ∈ M,

∀ f1, f2 ∈ F, ∀i ∈ V, ∀t ∈ T

(27)

auxul f1
mit + U · ∑

f1, f2∈F
swit f1, f2

mi ≥ 0, ∀m ∈ M, ∀ f1, f2 ∈ F, ∀i ∈ V, ∀t ∈ T (28)

∑
m∈M

auxul f
mit + ∑

m:qm=i
∑

j:(j,i)∈E f

y f
m,j,i,t ≤ ul f

i , ∀ f ∈ F, ∀i ∈ V, ∀t ∈ T (29)

Zt + 1 ≤ Zt, ∀t ∈ T (30)

Objective function (1) minimizes the total completion time of multitask emergency
logistics, i.e., the arrival time of the last task. Constraints (2) state that all tasks have been
transported. Constraints (3)–(5) guarantee that the transportation route of each task is
physically continuous. Constraints (6)–(7) limit the number of batches of each task that can
be delivered on period t, and Constraints (8) define the continuity of the transportation
in the traffic network. Constraints (9)–(12) state that each task should be delivered in a
continuous period of time. Constraints (13) stipulate that delivery can only be implemented
within the selected period. Constraints (14) and (15) define the upper and lower bounds of
the number of batches transported from departure point sm on period t.

Regarding the constraint description for the transport time window, Constraints (16)
and (17) enforce the transportation of each task within the time window. Constraints (18)
state that transfer occurs only on node i with transfer capability. Then, Constraints (19)–(21)
ensure the connectivity between transfer node i and the transport route of task m.

To describe the traffic capacity, Constraints (22) stipulate that the number of batches
transported in the route should be no larger than the periodic traffic capacity of each arc
of task m’s transport line, and Constraints (23) determine whether there is any task being
executed on period t. Constraints (24)–(26) also limit the loading capacity of transport node
i, and Constraints (27)–(29) limit the unloading capacity of transport node i. Constraints (30)
ensure the early delivery of each task.

4. Solution Method for Single-Task Route Planning

Single-task route planning, as a simple variant of the problem investigated, is also
a very common problem in practice; thus, it is necessary to devise an efficient solution
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method for this basic problem. On the other hand, the multitask emergency logistics
planning problem is highly complex, thus we base its solution algorithm on the solution of
the single-task planning problem, which is discussed in detail in Section 5. In this section,
we first describe the single-task path planning problem and establish a route planning
model in Section 4.1. Then, we propose a shortest-path algorithm under a multimodal
traffic network in Section 4.2 to solve the route planning model. Extensions of the algorithm
to incorporate more timing aspects are discussed in Section 4.3, and an algorithm to retrieve
the real transport time is proposed.

4.1. Single-Task Route Planning Model

For an emergency logistics planning problem with one transportation task, the key
problem is to optimize the transportation route from its departure point to the destination
point. In practice, factors such as the batches of tasks, route transport time, transport capac-
ity, transport continuity of tasks and transfer time should be considered comprehensively
to recommend the optimal transport route to arrive and perform in the fastest time.

We now develop a single-task route planning model. For simplicity, the index m in the
model has been neglected. For the single task, the problem can be modelled as:

minimise ∑
f∈F

∑
(i,j)∈E f

tr f
ij ·mask f

ij + (∑
t∈T

Xt − 1) (31)

subject to ∑
f∈F

∑
(s,j)∈E f

mask f
s,j − ∑

f∈F
∑

(j,s)∈E f

mask f
j,s = 1 (32)

∑
f∈F

∑
(q,j)∈E f

mask f
q,j − ∑

(j,q)∈E f

∑
f∈F

mask f
j,q = −1 (33)

∑
f∈F

∑
(i,j)∈E f

mask f
ij − ∑

f∈F
∑

(j,i)∈E f

mask f
ji = 0, ∀i ∈ V\

{
s, q
}

(34)

∑
j:(j,i)∈E f1

mask f1
ji ≥ swit f1, f2

i , ∀i ∈ V\
{

s, q
}

, ∀ f1, f2 ∈ F (35)

∑
j:(i,j)∈E f2

mask f2
ij ≥ swit f1, f2

i , ∀i ∈ V\
{

s, q
}

, ∀ f1, f2 ∈ F (36)

∑
f2∈F\ f1

swit f1, f2
i + ∑

j:(j,i)∈E f2

mask f2
ji = ∑

f3∈F\{ f1, f2}
swit f1, f2

i + ∑
k:(i,k)∈E f3

mask f3
ik ,

∀i ∈ V, ∀ f1, f2, f3 ∈ F (37)

∑
f∈F

∑
(j,i)∈E f

y f

j,i,t−tr f
ji

= ∑
f∈F

∑
(i,k)∈E f

y f
i,k,t, ∀t ∈ T, ∀i ∈ V\

{
s, q
}

(38)

y f
ijt ≤ mask f

ij · r
f
ij, ∀(i, j) ∈ E f , ∀ f ∈ F, ∀t ∈ T (39)

∑
(s,j)∈E f

y f
s,j,t ≤ l f

s , ∀t ∈ T, ∀ f ∈ F (40)

∑
(i,q)∈E f

y f
i,q,t ≤ ul f

q , ∀t ∈ T, ∀ f ∈ F (41)

∑
j:(i,j)∈E f1

y f1
ijt ≤ swit f1, f2

j · ul f1
j , ∀t ∈ T, ∀ f1, f2 ∈ F (42)

∑
j:(i,j)∈E f1

y f1
ijt ≤ swit f1, f2

j · l f2
j , ∀t ∈ T, ∀ f1, f2 ∈ F (43)

∑
t∈T

∑
f∈F

∑
(s,j)∈E f

y f
s,j,t = ∑

t∈T
∑
f∈F

∑
(i,q)∈E f

y f
i,q,t = u (44)

swit f1, f2
i ≤ sw f1, f2 , ∀i ∈ V, ∀ f1, f2 ∈ F (45)
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∑
j:(i,j)∈E f

y f1
i,j,t−t f · swit f1, f2

j = ∑
j:(j,k)∈E f

y f2
j,k,t · swit f1, f2

j , ∀t ∈ T, ∀ f1, f2 ∈ F (46)

∑
f∈F

∑
(s,j)∈E f

y f
s,j,t ≥ ∑

f∈F
∑

(s,j)∈E f

y f
s,j,t+1, ∀j ∈ V (47)

Xt ·U ≥ ∑
f∈F

∑
(s,j)∈E f

y f
s,j,t, ∀t ∈ T (48)

The objective function (31) minimizes the total transport time of a single task consisting
of transport time on the route and the number of periods required to deliver all the batches.
Constraints (32)–(34) state that the selected route is physically continuous from departure
point s to destination point q. Specifically, when mask f

ij = 1, the corresponding arc (i, j)
under transportation mode f is selected as the transport route. Otherwise, the arc (i, j) will
not appear on the selected route. Constraints (35)–(37) ensure the connectivity between
transfer node i and the selected route. When swit f1, f2

i = 1, the transfer from transportation
mode f1 to f2 is completed at node i. Then, Constraints (38) ensure that the number of
batches transported on the selected routes is continuous and consistent. The number of
batches transported per period is limited by Constraints (39)–(41), which must be less than
the periodic traffic capacity of each selected arc, the periodic loading capacity of departure
point s and the unloading capacity of destination point q. Concurrently, Constraints (42)
and (43) limit the number of batches transported in route less than the periodic loading and
unloading capacity of the transfer node i. Constraint (44) guarantees that all batches in task
m have been transported. Constraints (45) and (46) ensure that transfer occurs only when
the conditions are met and the number of batches is consistent before and after transfer.
Finally, Constraints (47) state that the task should be finished as early as possible, and
Constraints (48) are used to calculate the number of periods needed to complete delivering
all batches.

4.2. Shortest-Path Algorithm under Multimodal Traffic Networks

The Dijkstra algorithm was first proposed by [34], which has been a classic algorithm
for solving the shortest-path problem. The algorithm can effectively solve the single-modal
shortest-path problem and it takes the starting point as the centre point to extend outward
until the end point has been reached, then the shortest-path between two points is obtained.

So far, the literature regarding solution methods for finding the shortest-path on a
multimodal traffic network is sparse. Based on the traditional Dijkstra algorithm, we
propose a shortest-path path algorithm under multimodal traffic networks according to the
characteristics of emergency logistics. The traffic networks are based on the descriptions in
Section 3.

In our shortest-path algorithm under a multimodal traffic network, network splitting
is used to depict various traffic networks. An illustration of network splitting in a double
modal (rail-highway) network is shown in Figure 2. The connection lines refer to the
transfer between different transportation modes. The nodes in the high-priority network
are connected only in one direction to the nodes in the low-priority network, and the
reverse connection time is infinite, which prohibits the transfer.

When we only need to consider the first part of objective (31) in Section 4.1 (i.e.,
the transport time on the route), an exact algorithm can be achieved using the Dijkstra
algorithm based on the aforementioned transformation of the multimodal network. The
primary idea of the minimum time path algorithm is described as follows. Firstly, we need
to determine the highest priority subnetwork N f where departure point s is located and
mark the index as i, then the departure point goes to si. We thus introduce two sets P and
H, where P records the nodes where the minimum time has been found, and H records
the nodes where the minimum time has not been found. Considering the split networks,
the nodes are assigned with indices related to their traffic subnetworks. Then we traverse
the node with the minimum time from H, add this node to P, and update the paths of
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nodes in H. We loop through this process until the destination point qj(j ≥ i) is reached
(destination point may exist in different subnetworks), and then compare the times of
different destination points qj(j ≥ i). Finally, the shortest-path with minimum time can be
identified.

A
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C D
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B
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E

F

Road

Rail
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The split rail-highway network 

Rail network

Highway network

Transfer

Figure 2. Network splitting in a multimodal traffic network, considering a rail-highway network as
an example.

The pseudocode of the proposed shortest-path algorithm under a multimodal traffic
network is shown in Algorithm 1.

We also now demonstrate the correctness of the algorithm by proving the optimal
substructure of the shortest-path.

Proposition 1. Given that SP(s, q, f s, f q) is the shortest-path from s to q using transportation
modes with priority levels from f s to f q, with f i denoting the transportation mode selected to reach
node i. Assuming that SP(s, q, f s, f q) =

{
v f s

s ,. . . , v f k

k ,. . . , v f j

j ,. . . v f q

q

}
, and

{
v f k

k ,. . . , v f j

j

}
is an

arbitrary segment along the SP(s, q, f s, f q), there must be SP(k, j, f k, f j) =
{

v f k

k ,. . . , v f j

j

}
, which

is shortest-path from node k to j using transportation modes with priority levels from f k to f j. So
the shortest-path has the property of an optimal substructure.

Proof of Proposition 1. We already know that the shortest-path from node s to q is
SP(s, q, f s, f q), so SP(s, q, f s, f q) = SP(s, k, f s, f k)+SP(k, j, f k, f j)+SP(j, q, f j, f q). If SP(k,
j, f k, f j) is not the shortest path from k to j using transportation modes with priority levels
from f k to f j, there must exist another shortest-path named SP(k, j, f k, f j). In this case,
SP(s, q, f s, f q) = SP(s, k, f s, f k) + SP(k, j, f k, f j) + SP(j, q, f j, f q) is the new shortest-path
from node s to q with a lower transportation cost, which leads to a contradiction.

Therefore, the shortest-path algorithm under the multimodal traffic network proposed
in this study must be able to provide the shortest-path with the minimum time from the
departure point to the destination point if the destination point is reachable.
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Algorithm 1: Shortest-Path Algorithm under Multimodal Traffic Network
Data: Traffic network N, departure point s, destination point q, the total number

of batches R
Result: Shortest-path and minimum time mt

1 for i = 1 : |F| do
2 if s in Ni then
3 a = i;
4 break;
5 end
6 end
7 Set P =

{
sa
}

, H = V\P;
8 Let Ck(k∈H) = ∞, Csi(i>a) = 0;
9 while qj(j ≥ a) in set H do

10 Select k from set H with the minimum time;
11 Remove k from set H and add k to set P;
12 for e = a : |F| do
13 if k in Ne then
14 break;
15 end
16 end
17 for v in set H do
18 for o = a : |F| do
19 if v in No then
20 break;
21 end
22 end
23 if v and k is the same node in different subnetworks then
24 if o > e then
25 Ckv = 0;
26 Csav = min

{
Csav, Csak + Ckv

}
;

27 else
28 Ckv = ∞;
29 Csav = min

{
Csav, Csak + Ckv

}
;

30 end
31 else if v and k is the different node then
32 if o = e then
33 Ckv = tr fo

kv;
34 Csav = min

{
Csav, Csak + Ckv

}
;

35 else
36 Ckv = ∞;
37 Csav = min

{
Csav, Csak + Ckv

}
;

38 end
39 end
40 end
41 update the paths of nodes in set H;
42 end
43 Let mt = ∞;
44 for j = a : |F| do
45 if mt > Cqj then
46 mt = Cqj ;
47 end
48 end
49 Output the shortest-path and minimum time mt.
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For the shortest-path algorithm under a multimodal traffic network, we assume that
the number of nodes is |V1|, |V2|. . . , |V|F|| and the number of arcs is |E1|, |E2|. . . , |E|F|| in
subnetwork N1, N2. . . , N|F|, respectively. We also let the average number of arcs per node

be k = ∑
|F|
i=1 Ei/ ∑

|F|
i=1 Vi. The calculation formula of the time complexity based on the small

root binary heap operation is given as follows:

Time Complexity

= (
|F|

∑
i=1

Vi − 1) · (TExtract−min + TDelete + TDecrease−key · k)

= (
|F|

∑
i=1

Vi − 1) · (2 · log(
|F|

∑
i=1

Vi) + k · log(
|F|

∑
i=1

Vi))

=
|F|

∑
i=1

Vi · (2 + k) · log(
|F|

∑
i=1

Vi)

= (2 ·
|F|

∑
i=1

Vi +
|F|

∑
i=1

Ei) · log(
|F|

∑
i=1

Vi)

= (
|F|

∑
i=1

Vi +
|F|

∑
i=1

Ei) · log(
|F|

∑
i=1

Vi)

(49)

4.3. Extensions of the Algorithm

In Section 4.2, the transport time is used as the objective function to obtain the optimal
transport path for the single task. However, the time that we consider in the objective can
still be extended to incorporate different timing aspects in practice, from the departure
point to the destination point.

In practical route planning for a single task, the transfer time between different trans-
portation modes should be taken into account. Given the transfer time TF f1, f2 ( f1 has a
higher priority than f2), the algorithm can be directly modified as follows: line 25 in Algo-
rithm 1 must be modified to Ckv = TF fo , fe . Therefore, even with transfer time considered,
the complexity and optimality of Algorithm 1 do not change.

In most cases, the available transportation resources in emergency logistics are not
enough to complete the transportation of each task at once. Therefore, the number of
periods required to deliver all the batches should also be considered in addition to transport
time on the route. The problem coincides with the arc-dependent shortest-path problem
that has been proved to be NP-complete [35,36].

To approximately solve this problem, the minimum weighted time path algorithm
under multimodal traffic networks is proposed based on the shortest-path algorithm. The
algorithm should be modified as follows: line 33 in Algorithm 1 must be modified to
Ckv = tr fo

kv + R/r fo
kv. As a weighted amount of transport time, R/r fo

kv states that if its value is

smaller (i.e., r fo
kv is larger), the probability of selecting this route to transport is higher. Then,

we can obtain the optimal path with this minimum weighted time.
Therefore, after obtaining the minimum weighted time path, we must recalculate the

transportation time according to the traffic time on the road, traffic capacity and the number
of batches. To this end, an algorithm to calculate the real transport time is proposed.

The primary idea of the algorithm is described as follows. After the minimum
weighted time path is obtained, the threshold value on the path (i.e., the minimum number
of batches that can pass per period) is calculated and is considered to be the number of
batches that can be delivered per period for the task. The continuous transport periods
and total route transport time are also calculated, and the sum of these two parts is the real
transport time.
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The pseudocode of the real transport time calculation algorithm is shown in
Algorithm 2.

Algorithm 2: Real Transport Time Calculation Algorithm
Data: Traffic network N, transport path p, departure point s, destination point q,

the total number of batches R
Result: Real transportation time Y

1 Let Y = 0;
2 Split the transport path p into n arcs;
3 let i = 1;
4 while i < n do
5 let pi is the arc between node k and j under transportation mode fo;

6 Y = Y + tr fo
kj ;

7 if y < r fo
kj then

8 y = r fo
kj ;

9 end
10 if transfer has occurred in node j then
11 let the transportation mode from fo transfer to fe;

12 y = min
{

y, l fe
j , ul fo

j

}
;

13 Y = Y + TF fo , fe ;
14 end
15 i = i + 1;
16 end
17 Y = Y + b(R− 1)/yc;

5. Solution Method for the Optimization Model of Multitask Emergency
Logistics Planning

In Section 4, we design a solution method to effectively solve the single-task route
planning problem. In practice, multitask emergency logistics planning is more general
and complex problem. The general multitask emergency logistics planning optimization
model is proposed in Section 3. To address this problem in this section, we design a
general optimization algorithm for multitask emergency logistics planning aiming at the
shortest task completion time, based on routes recommended for each task using algorithm
discussed in Section 4. Based on the general framework of PSO discussed in detail in
Section 5.1, we improve the model with a two-dimensional array encoding method and
introduce the crossover operation of the genetic algorithm (GA) in Section 5.2. Finally, the
steps of the general optimization algorithm for multitask emergency logistics planning are
presented in Section 5.3.

5.1. Particle Swarm Optimization

PSO was first proposed by [37] and is an evolutionary computing or bionic opti-
mization algorithm that is inspired by the foraging of birds. The basic idea of PSO is
as follows:

• for the solution space of the optimization problem, a group of particles are randomly
initialized as the feasible solution of the objective function, and the fitness function is
defined to describe the advantages and disadvantages of each solution;

• then, each particle moves randomly in the solution space, while the particle’s position
is determined by the particle’s velocity. The incumbent solution found by the particle
itself and found by the particle swarm will affect the particle velocity, respectively;

• all particles are searched step-by-step in this manner to find a high-quality solution in
the solution space.
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We let the vector pi = (p1, p2. . . , pn) represent the position and the vector vi =
(v1, v2. . . , vn) represent the velocity of particle i in space. Each particle will have an adaptive
value determined by the objective function, and the particle itself will know its current
position as well as the incumbent solution that it has found to date. Each particle also
knows where the other particles in the swarm have found the incumbent best position, and
the particle compares its own experience with the best experience of the other particles to
determine the next direction of movement.

The position of the incumbent solution found by the particle so far is:

Pbesti = (Pbesti1, Pbesti2, . . . , Pbestin) (50)

The location of the incumbent solution of the entire particle swarm found up to now
is denoted as:

Gbest = (Gbest1, Gbest2, . . . , Gbestn) (51)

When iterated to the k + 1 generation, the position of each particle is updated by the
following formulae:

vk+1
id = ω · vk

id + c1 · r1 · (Pbestk
id − pk

id) + c2 · r2 · (Gbestk
d − pk

id) (52)

pk+1
id = pk

id + vk+1
id (53)

where c1, c2 are learning factors, ω is the inertia factor, and r1, r2 are random numbers
between [0, 1].

5.2. Two-Dimensional Array Encoding and Cross Operation

The crossover operation is a common strategy in GA. Because the optimization of
multitask emergency logistics planning is a complex combinatorial optimization problem,
it is necessary to introduce an exchange operator into PSO to further enhance the search
capability of the algorithm.

We assume that emergency tasks on the task list have a starting transport order, and
each task has n alternative transport routes; thus, we construct the solution as a two-
dimensional array Sol(order, route), where Sol(order) denotes the starting transport order
for each task (i.e., taski begins transport in ith among all tasks); and Sol(route) represents
the route number chosen for taski and routei ∈

{
1, 2. . . , n

}
. The array of solutions can be

expressed as:

Sol =
{

Sol(order) = (task1, task2,. . . , task|M|)
Sol(route) = (route1, route2,. . . , route|M|)

(54)

Now, we introduce the concepts of commutators and commutator series. The commu-
tator is defined as s = Swap(i, j), indicating that the commutator s acts on the sequence p to
interchange elements at position i with position j. In PSO, the commutator can be viewed
as the velocity of the particle, which can change the position of p. The commutator series ss
is defined as a sequential set of commutators (ss = (Swap1, Swap2,. . . )), which represents
multiple operations on the sequence p. We also introduce three different operators 	, ⊕
and ⊗ as follows:

• operator	 retrieves the commutator series ss required to transform the latter sequence
into former sequence. For instance, given that sequence a = (a1, a2,. . . , an−1, an)
and a′ = (a1, an−1,. . . , an, a2), then ss = (Swap1, Swap2,. . . ) = a	 a′ means that an
obtained commutator series ss can transfer sequence a′ to sequence a;

• operator ⊕ merges two commutator series into one commutator series, e.g.,
(Swap1, Swap2)⊕ (Swap3) = (Swap1, Swap2, Swap3);

• operator ⊗ operates on a sequence according to the commutator series ss.

According to the above definition, the particle velocity and the update formula are
modified as follows:
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vk+1
id = c1 · r1 · (Pbestk

id 	 pk
id)⊕ c2 · r2 · (Gbestk

d 	 pk
id) (55)

pk+1
id = pk

id ⊗ vk+1
id (56)

where the velocity update formula (55) indicates that there is a commutator series ss that
transforms pk

id into Pbestk
id after ss. The position update formula (56) means that pk

id obtains
a new sequence vk+1

id after the action of the commutator series pk+1
id . r1 and r2 represent

the probability of performing a commutator, equivalent to the operation of randomly
discarding a portion of the commutators. Because Sol(order, route) is a two-dimensional
array, the crossover operation must operate on the starting transport order array and the
route number array.

5.3. General Optimization Algorithm for Multitask Emergency Logistics Planning

The primary goal of the general optimization algorithm for multitask emergency
logistics planning is to initialize the population parameters and positions, including the
size of the population and the velocity and position of each particle (i.e., randomly generate
the starting transport order array and route number array of tasks). Then, the particle
fitness value is calculated. Next, the velocity vector and position vector of each particle
are updated. Finally, the local position vector and global position vector are updated. We
loop through this process until a certain number of iterations are reached, and then we
terminate the algorithm.

The pseudocode of the general optimization algorithm of multitask emergency logis-
tics planning is shown in Algorithm 3.

Algorithm 3: General Optimization Algorithm of Multitask Emergency Logistics
Planning

Data: Traffic network N, task list
Result: The optimum multitask emergency logistics planning

1 Initialize particle Sol(order, route) and population size S;
2 Set maximum iteration count gmax, let gcur = 1;
3 for i=1:S do
4 Calculate the fitness value f itold(i) of particle Soli(orderi, routei);
5 Pbesti = f itold(i)
6 end
7 Gbest = min

{
Pbest1, Pbest2. . . , PbestS

}
;

8 while gcur < gmax do
9 gcur = gcur + 1;

10 for i=1:S do
11 Update vi and xi of Soli(orderi, routei);
12 Calculate the fitness value f itnew(i) of particle Soli(orderi, routei);
13 if f itold(i) < f itnew(i) then
14 Pbesti = f itnew(i)
15 end
16 end
17 Gbestnew = min

{
Pbest1, Pbest2. . . , PbestS

}
;

18 if Gbestnew < Gbest then
19 Gbest = Gbestnew
20 end
21 end
22 Output the optimum Gbest and the corresponding multitask emergency logistics

planning
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6. Computational Results

To verify the efficacy of the model and algorithm, the computational results of the
instances are reported in this section. We implemented the single-task route planning
approach and multitask emergency logistics planning approach in Python 3.8. All com-
putations were performed on a computer with an Intel(R) Core(TM) i7-1065G7 running at
1.50 GHz and 16.0 GB RAM.

6.1. Test Set

Due to the novelty of the problem and the complexity of the problem setting, there are
no benchmark instances available in the literature, and we generate instance sets randomly
to test the algorithms. In each instance of the test set, the following elements are included:

• city node information contains the periodic loading and unloading capacity in different
transportation modes of each city node. We consider the different numbers of nodes
in the test set, ranging from 20 to 65. The periodic loading and unloading capacity
range from [1, 10], [5, 15], [5, 10] in air, rail and highway, respectively;

• primary arcs data describe the structure of different traffic networks; the periodic
transport capacity; time consumption; and distance of each arc. We primarily consider
air, rail and highway three modes of transportation networks and generate these three
modes of transportation network topologies based on the number of nodes |V| in each
instance. The number of arcs |E| in the air, rail and highway modes of transportation
network ranges from [1, 0.5|V|], [0.6|V|, 0.9|V|], [|V|, 1.5|V|], respectively. The distance
of each arc ranges from [200 km, 400 km], [150 km, 300 km], and [50 km, 200 km] by
air, rail and highway, respectively. the time consumption of each arc is the ratio of
distance to the speed of its mode of transportation. The periodic transport capacity of
each arc ranges from [1, 5], [5, 20], and [4, 15] by air, rail and highway, respectively;

• task lists include the specific information of each task, including its designated trans-
portation mode, departure point, destination point, higher priority task and alterna-
tive paths. The three alternative routes for each task are obtained under different
circumstances using the solution method presented in Section 4. Some tasks, such as
specifying air transport, are point-to-point transport and have only one path; thus,
multiple alternative paths cannot be recommended. |M| ranges from [|V| − 2, |V|+ 10]
in the first 20 instances, and from [2|V|, 3|V|] in the last 10 instances.

The results include the transportation route, departure time, arrival time, transfer
node, periodic transport batches, the objective value Z and CPU runtime. The objective
value Z refers to the transportation completion time of the last task.

6.2. Results and Comparison
6.2.1. Results of Instances with Small |M|

In the first experiment, we set the population size parameter to size = 100, the number
of iterations is iternum = 50, and the learning factors are c1 = c2 = 1 and r1 = 0.7, r2 = 0.8.
We set the loading time and unloading time of each node to 6 hours. To achieve the smallest
objective value, the calculation results for instances 1 to 20 are shown in Table 3. |M| in
instance 1 to 20 ranges from 34 to 84, which is small compared to the number of nodes
|V|. The detailed result of each instance is an emergency logistic plan and includes a lot
of details; thus, we do not list the results of each instance. Instead, we show instance 1’s
results in Table 4 as an example.

Table 3 shows that the CPU runtime goes up with the increasing number of nodes |V|,
arcs |E| and |M|. Due to the complexity of the problem and algorithm, the CPU runtime is
large. Moreover, the objective value Z is not directly related to the number of nodes |V|,
arcs |E| and |M|.
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Table 3. Computational results of instances 1 to 20.

Instance |V | |E| |M| Z (Period) CPU
Runtime (s)

instance1 20 110 25 10 36.335
instance2 20 122 24 13 48.913
instance3 25 130 30 8 52.650
instance4 25 138 24 6 51.160
instance5 30 162 32 8 65.500
instance6 30 182 29 7 48.742
instance7 35 210 36 7 78.947
instance8 35 198 41 10 91.720
instance9 40 228 52 11 103.285
instance10 40 292 52 11 157.455
instance11 45 306 61 15 158.226
instance12 45 336 63 17 163.906
instance13 50 328 50 9 163.127
instance14 50 320 59 23 183.715
instance15 55 360 59 8 183.043
instance16 55 366 57 10 155.145
instance17 60 376 73 12 192.868
instance18 60 378 72 13 192.188
instance19 65 478 72 13 227.981
instance20 65 452 84 10 227.794

6.2.2. Results of Instances with Large |M|
In this experiment, the computational results for instances 21 to 30 are shown in

Table 5. The difference from the last experiment is that |M| in instances 21 to 30 ranges
from 52 to 158, which is relatively large compared to the number of nodes |V|. We also set
the population size parameter as size = 100, the number of iterations is iternum = 50, and
the learning factors are c1 = c2 = 1 and r1 = 0.7, r2 = 0.8.

Comparing Tables 3 and 5 shows that the CPU runtime is closely related to |M| with
the same number of nodes |V| and arcs |E|. Concurrently, an increase in |M| leads to more
conflicts between different tasks, and the objective value Z also increases.

6.2.3. Sensitivity Analysis

In this section, we discuss the impact of the different parameters on the performance
of the presented algorithm.

First, to improve computational efficiency, we also optimize the parameters of the
PSO. The parameters that have the greatest influence on CPU runtime of the algorithm
are population size and iteration times. With a fixed population size, we try to find a
value of iternum that leads to a satisfying solution without sacrificing the overall run time.
We set the population size parameter as size = 100 and the learning factors c1 = c2 = 1
and r1 = 0.7, r2 = 0.8. The CPU runtime and the objective value of each instance under
different numbers of iterations are shown in Table 6. From the results in Table 6, it is clear
that the solutions improve, and computation times increase, when iternum increases. With
the population size fixed at size = 100, we find that for some simple multimodal traffic
networks and fewer tasks, lowering iternum to 20 can still lead to solutions with the same
objective value. However, when we must manage a complex multimodal traffic network
with many transportation tasks, iternum need to be set over 50 to ensure convergence to
near the optimal value.
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Table 4. Emergency logistic plan of instance1.

Task
Name

Departure
Point

Arrival
Point

Departure
Day

Arrival
Day

Batch
Number

Periodic Batch
Arrangement Transport Route

task1 Node2 Node1 3 3 2 [2] Node2–C0(air)–Node1
task2 Node20 Node17 0 3 15 [4, 4, 4, 3] Node20–A0(air)–Node17
task3 Node14 Node13 0 10 10 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] Node14–A279(air)–Node13
task4 Node13 Node14 3 5 2 [1, 1] Node13–A279(air)–Node14
task5 Node16 Node11 3 4 4 [3, 1] Node16–A7(air)–Node11
task6 Node16 Node6 0 4 23 [6, 6, 6, 5] Node16–K545(rail)–Node19–G664(rail)–Node10–Y06(road)–Node6

task7 Node17 Node1 3 10 29 [5, 5, 3, 3, 3, 5, 5] Node17–K42(rail)–Node11–G3(rail)–Node3–G53(rail)–Node20–X411(road)–Node9–X8(road)–
Node1

task8 Node11 Node16 3 8 30 [1, 4, 8, 8, 8, 1] Node11–G3(rail)–Node3–G53(rail)–Node20–K344(rail)–Node15–G01(rail)–Node13–K4(rail)–
Node19–K545(rail)–Node16

task9 Node9 Node6 3 4 12 [8, 4] Node9–G6(road)–Node6
task10 Node13 Node2 0 4 21 [5, 5, 5, 5, 1] Node13–K4(rail)–Node19–G664(rail)–Node10–G749(rail)–Node2

task11 Node9 Node8 0 4 18 [3, 3, 3, 5, 4] Node9–K1(rail)–Node20–K344(rail)–Node15–G01(rail)–Node13–K4(rail)–Node19–K545(rail)–
Node16–K29(rail)–Node8

task12 Node10 Node11 2 6 20 [2, 7, 7, 4] Node10–G664(rail)–Node19–K4(rail)–Node13–G01(rail)–Node15–Y225(road)–Node20–
G6(road)–Node3–Z03(road)–Node11

task13 Node11 Node5 0 3 21 [7, 7, 7] Node11–G3(rail)–Node3–G53(rail)–Node20–K344(rail)–Node15–G01(rail)–Node13–S1(road)–
Node5

task14 Node8 Node5 3 8 22 [4, 4, 4, 4, 4, 2] Node8–S674(road)–Node12–Y566(road)–Node15–S7(road)–Node13–S1(road)–Node5

task15 Node11 Node6 0 4 17 [5, 5, 5, 2] Node11–G3(rail)–Node3–G53(rail)–Node20–K344(rail)–Node15–G01(rail)–Node13–K4(rail)–
Node19–K545(rail)–Node16–K29(rail)–Node8–G993(rail)–Node18

task16 Node7 Node16 0 0 5 [5] Node7–D60(rail)–Node19–K545(rail)–Node16

task17 Node8 Node9 3 7 24 [5, 5, 5, 5, 4] Node8–K29(rail)–Node16–K545(rail)–Node19–K4(rail)–Node13–G01(rail)–Node15–
K344(rail)–Node20–K1(rail)–Node9

task18 Node11 Node4 0 2 16 [6, 6, 4] Node11–S880(road)–Node17–Z786(road)–Node4

task19 Node2 Node11 3 5 27 [11, 11, 5] Node2–K2(rail)–Node1–D62(rail)–Node9–K1(rail)–Node20–G53(rail)–Node3–G3(rail)–
Node11

task20 Node20 Node17 0 3 10 [2, 2, 4, 2] Node20–G6(road)–Node3–Z03(road)–Node11–S880(road)–Node17

task21 Node4 Node1 0 5 30 [6, 6, 6, 6, 6] Node4–K15(rail)–Node7–D60(rail)–Node19–G664(rail)–Node10–Z601(road)–Node2–
S0(road)–Node1

task22 Node7 Node9 3 5 9 [6, 3] Node7–G466(rail)–Node13–G01(rail)–Node15–Y225(road)–Node20–X411(road)–Node9
task23 Node3 Node1 3 5 14 [6, 6, 2] Node3–G6(road)–Node20–X411(road)–Node9–X8(road)–Node1
task24 Node15 Node3 0 3 16 [5, 5, 3, 3] Node15–Y225(road)–Node20–G6(road)–Node3
task25 Node11 Node13 0 4 15 [2, 2, 4, 4, 3] Node11–G1(road)–Node18–Z5(road)–Node19–S08(road)–Node13
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Table 5. Computational results for instances 21 to 30.

Instance |V | |E| |M| Z (Period) CPU
Runtime (s)

instance21 20 120 58 18 71.536
instance22 25 140 52 28 84.455
instance23 30 178 73 18 130.854
instance24 35 222 103 26 204.818
instance25 40 312 104 18 237.317
instance26 45 258 121 25 246.684
instance27 50 292 140 28 311.662
instance28 55 348 137 32 298.705
instance29 60 386 158 30 336.258
instance30 65 358 150 56 397.488

To demonstrate the impact of the learning factors c1 and c2, we consider instance
10 as an example. We set the population size parameter as size = 100, and the number
of iterations iternum = 20, r1 = 0.7 and r2 = 0.8. Table 7 shows the different results of
instance 10 with different learning factors. We find that different learning factors have a
strong impact on the calculation results. When c1, c2 are larger, the objective value Z of
the satisfactory solution is larger. The reason for this situation is that when the learning
factor is small, the particles will wander outside the target region. If the learning factor is
large, the particles will cross the target region and form a large adaptive value fluctuation.
However, for computing efficiency, the learning factor does not affect the CPU runtime.

6.3. Discussion

By considering multimodal traffic networks with different numbers of nodes V, arcs
E and different numbers of tasks, we demonstrate the efficacy of the proposed method
in solving multitask emergency logistics planning problems. However, there may be a
different plan for multitask emergency logistics with the same objective value Z. Even the
optimal solution may also not be unique, which also provides multiple references for the
plan-maker when making plans.

From the multitask emergency logistics planning experiment, we find that there are
three main factors affecting the computational efficiency and accuracy of calculation results.
The first factor is the arrival order of transportation. Considering the special needs of some
tasks in emergency logistics, and due to the different functions of each task, there is often a
certain arrangement. Therefore, in the task list, we consider the arrival order of different
tasks; thus, the final calculation result of objective value Z will also be affected by this issue.

The second factor that affects the computational results is the formulation of alternative
routes. In the formulation of alternative routes for each task, we use the solution method
for single-task route planning in Section 4 to provide three alternative routes considering
different conditions. Because the transportation routes given for individual task are optimal,
the diversity of route planning may be lost. If the alternative route is given artificially,
although it is not optimal with respect to single-task transportation, it may achieve a better
result in multitask emergency logistics planning.

The last factor is the different parameters of the proposed algorithm. Considering the
scale of the problem tackled in this study and the complexity of the proposed algorithm, we
reduce the number of iterations of the PSO algorithm to improve computational efficiency.
Although it is possible that the computational results will not converge to the optimal value,
it is still acceptable that the results will converge closer to the optimal value. Different
learning factors also strongly affect the results. To find a satisfactory solution in a reasonable
run time, the value of the learning factors should be c1 = c2 ≤ 1.
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Table 6. CPU runtime and objective value under different iteration times.

iternum = 50 iternum = 30 iternum = 20 iternum = 10 iternum = 5

Instance CPU Runtime (s) Z (Period) CPU Runtime (s) Z (Period) CPU Runtime (s) Z (Period) CPU Runtime (s) Z (Period) CPU Runtime (s) Z (Period)

instance1 36.335 10 21.398 10 20.265 10 13.247 10 7.631 10
instance3 52.650 8 27.013 8 19.951 8 13.618 9 11.956 9
instance5 65.500 8 53.363 8 30.317 8 22.275 10 17.18 10
instance7 78.947 7 48.231 7 33.194 7 21.05 9 15.035 9
instance9 103.285 11 74.073 11 55.746 11 31.584 12 22.711 13

instance11 158.226 15 95.339 15 66.237 15 41.694 15 29.536 18
instance13 163.127 9 98.162 9 70.314 9 43.009 9 29.239 12
instance15 183.043 8 116.62 8 76.799 10 45.784 10 30.998 9
instance17 192.868 12 115.921 12 85.789 13 50.901 13 35.105 14
instance19 227.981 13 145.831 13 102.033 14 60.927 14 45.779 14
instance21 71.536 18 58.663 18 32.347 18 21.355 18 14.512 20
instance23 130.854 18 83.617 18 53.516 18 34.96 19 23.624 20
instance25 237.317 18 164.489 21 115.582 22 66.999 21 45.646 22
instance27 311.662 28 196.318 34 136.812 35 86.469 35 59.745 38
instance29 336.258 30 228.203 31 176.163 33 107.372 33 76.182 37
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Table 7. CPU runtime and objective value of instance10 with different c1, c2.

c1, c2 Z (Period) CPU Runtime (s)

c1 = c2 = 0.5 11 60.203
c1 = c2 = 1 11 56.518

c1 = c2 = 1.5 12 57.916
c1 = c2 = 2 15 59.642

c1 = c2 = 2.5 17 58.53
c1 = c2 = 3 16 59.592

c1 = c2 = 3.5 18 57.509
c1 = c2 = 4 26 67.2

In related research, Ergün et al. [38] also equally committed to emergency logistics
planning in natural disasters. They solved the game theoretical model by cooperative
game theory. The experimental results show that it can improve the execution efficiency
of emergency logistics management after natural disasters. However, because it essen-
tially solves the problem of single-point to single-point multimodal transportation, its
practicability and generality is not ideal. In comparison to the work by Wang et al. [39],
they proposed a heuristic algorithm based on nested partitions to solve the deterministic
dynamic emergency logistics planning model. By solving linear programming relaxation
subproblems and iteratively fixing integer variables, a high-quality feasible solution is
finally obtained. However, the complexity of the model is relatively not high and the
descriptions of emergency logistics constraints are not sufficient. Sabouhi et al. [40] studied
the multi-point to multi-point emergency logistics planning problem. Compared with their
work, the advantages of ours are that our model considers multimodal transportation and
solves such problem through proposed algorithms. Although a lot of work has been done
in related research, the actual constraints of the model are different due to the different
problems considered. Moreover the case data used are also disparate, so it is tough to
compare the calculation results at different level.

Overall, the MIP model of multitask emergency logistics planning under multimodal
proposed in this paper is more general than the existing research, since it satisfies more
practical constraints such as transportation mode priority constraints, transport time and
space continuity constraints for each task, emergency principle constraints, etc. Through the
two-layer solution process is obviously easy to operate and can effectively solve practical
multitask emergency logistics planning problems as well. Although it may not be possible
to find the optimal solution in a limited time, we can find the satisfactory solution within
acceptable time to the decision maker, which is more in line with the actual needs of
emergency logistics.

7. Conclusions

Multitask emergency logistics planning under multimodal transportation is important
in emergency management. In this paper, we consider multitask emergency logistics plan-
ning under different modes of traffic networks. A MIP model for the multitask emergency
logistics planning problem is established. Considering the complexity of this model, we
decompose it into two layers for optimization. To manage the single-task route recommen-
dation as the inner layer, we develop a shortest-path algorithm with multimodal traffic
networks. We present the optimal substructure of the algorithm and its time complexity.
Then, with the routes of each task recommended by the single-task solver, a general op-
timization algorithm based on improved PSO is proposed to coordinate the execution of
each task constrained by the limited transportation capacity at the outer layer, which solves
the multitask emergency logistics planning problem.

Computational results demonstrate that the proposed approach is effective and practi-
cal for solving multitask emergency logistics planning problems, without costing too much
time and computing effort to struggle for the optimal solution. The two-layer solution
process we proposed can effectively solve multitask emergency logistics planning problems
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under multimodal transportation. The result of this research assists emergency logistics
management organizations, such as natural disaster management organization for a better
tactical and operational reaction in a critical situation. Furthermore we summarize three
main factors that affect the computational efficiency and accuracy of calculation results,
which can be helpful for practitioners when the proposed method is needed in this paper
to solve the emergency logistics planning in the future.

We believe that this study opens up several directions for future research. First of
all, an effective exact algorithm should be studied and developed, as the solution method
designed in this work is a heuristic procedure. On the other side, we consider a fixed
multimodal traffic network structure in emergency logistics during our work. However,
it can incur more difficulty if the network structure is dynamic or uncertain, which is
common and should be considered. So for future works, emergency logistics planning
under uncertainty such as interval, polyhedral, fuzzy or stochastic, can be further study in
these fields [40,41]. Refer to Li et al. [42] and Zhou et al. [43], the potential research areas
on the topic of COVID-19-induced emergency air transportation can also be considered.
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