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Abstract: The past decade has seen an increase in the number of satellites in orbit and in highly
dynamic satellite requests, making the control by ground stations inefficient. The traditional man-
agement composed of ground planning with separate onboard execution is seriously lagging in
response to dynamically incoming tasks. To meet the demand for the real-time response to emergent
events, a multi-autonomous-satellite system with a central-distributed collaborative architecture
was formulated by an integer programming model. Based on the structure, evolutionary rules were
proposed to solve this problem by the use of sequence solution construction and a constructed
heuristic method based on gene expression programming evolution. First, the features of the problem
are extracted based on domain knowledge, then, the problem-solving rules are evolved by gene ex-
pression programming. The simulation results reflect that the evolutionary rule completely surpasses
the three types of heuristic rules with adaptive mechanisms and achieves a solution effect close to
meta-heuristic algorithms with a reasonably fast solving speed.

Keywords: task allocation; agile satellite; cooperative task planning; GEP method
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1. Introduction

In recent years, the development of satellite systems has entered a new phase where
the demand is becoming increasingly higher in terms of autonomous satellite management,
online decision-making, and inter-satellite collaboration, thanks to the growth of satellite
capability. It is difficult for solely ground management to give full play to the efficiency
of new autonomous satellites, and impossible to achieve a rapid allocation of real-time
response tasks. Based on this information, the advantages of onboard autonomous mission
planning, including independent online planning ability and quick response capability,
make it an inevitable trend for the future. The enhancement of onboard computing capabil-
ities and the development of AI technology provide a prerequisite for onboard autonomous
intelligence, bringing opportunities to solve shortcomings. In this situation, novel and
effective frameworks and algorithms need to be more fully utilized with onboard resources.

The Multi-Satellite Collaborative Task Assignment Problem (MSCTAP) aims to achieve
the efficient coordination of task planning and fast response to the dynamic environment
through rapid onboard task assignment and has attracted the attention of many researchers.
In addition, the structure of a multi-satellite constellation is also an important issue to
consider where three structural types have been used, including a centralized structure,
distributed structure, and centralized-distributed structure. The centralized approaches are
the most widely used and typically require one central controller to determine the mission
assignment for each team member and consider the problem as an integer programming
model solved by a precise solution. Kennedy [1] adopted a two-layer scheduling method
for the joint planning problem of the Walker constellation, which is composed of 18 Cube
satellites, and solved the resource allocation problem with mixed integer programming
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with a depth-first search. However, it is difficult to achieve large-scale collaboration
due to the high computational complexity. He [2] considered the problems of satellite
online decision-making and task planning under uncertain and dynamic environments
and proposed a linear programming model based on the Multi-agent Markov process. The
satellite made autonomous decisions based on its state and improved the total benefits using
periodic communication, which improved the response-ability to an uncertain environment.
However, the solving process relied on a precise solution, which is difficult to solve in
large-scale instances. As for the above centralized satellite task scheduling, the allocation
mechanism is heavily dependent on the main controller, which makes it vulnerable to the
failure of the main controller and leads to a heavy computation load.

For the distributed structure, the majority of works focus on the multi-agent-based
negotiation assignment method. Most researchers use a contract network to resolve the
conflict of task assignment so the computation load of the main controller of the central-
ized structure can be distributed to other agents. Compared with the main controller,
the computational power requirement of the information hub is lower. However, the
efficiency of the distributed multi-satellite mission cooperation architecture depends on
the inter-satellite communication delay, which determines the effectiveness of allocation
and the feasibility of task execution. However, it is not often considered in multi-satellite
task allocation. Schetter [3] addressed the collaborative planning problem of the TechSat
constellation. According to the autonomous capabilities in the formation, satellites were
divided into agents of four intelligence levels. This partition is used to organize satellites
of different intelligence levels to collaborate on tasks. Van [4,5] adopted a market-based
behavior mechanism when considering multi-satellite collaboration, enabling the satellite
with the highest bid to perform corresponding tasks. Wu [6] considered the dynamic topol-
ogy of inter-satellite communication and proposed a method to predict communication
links to carry out multi-satellite collaboration. Li [7] studied the problem of multi-satellite
autonomous mission planning and proposed a multi-autonomous satellite collaborative
mission planning framework. The multi-satellite system based on JADE (Java Agent Devel-
opment Framework, TILAB, State of California, United States) was designed under this
framework and was composed of a single-satellite autonomous layer and a multi-satellite
collaborative layer. On the whole, distribution is relatively robust, but distribution relies
heavily on communication networks because planning needs to capture global information
as completely as possible.

Based on the defects of centralized and distributed architectures, a central-distributed
collaborative architecture is proposed to solve the MSCTAP. In other words, a centralized
task allocation based on global information is adopted in the multi-satellite coordina-
tion layer to improve the effect of allocation, and distributed collaborative architecture
is adopted in the single-satellite autonomous scheduling layer. Meanwhile, the global
information of centralized task allocation can utilize the distributed computing capability
to reduce the computing load of the primary satellite allocation. Yao [8] considered the
task allocation problem of multi-autonomous satellite cooperative task planning, approved
a central-distributed cooperative architecture, proposed 10 allocation strategies based on
this architecture, and adopted the Support Vector Machine (SVM) to realize the selection of
allocation strategies in different scenarios. However, only two strategies are included in the
study. Yang [9] studied the problem of online collaboration and scheduling of autonomous
satellites under uncertain conditions and proposed a dynamic distributed collaboration
architecture for this problem. On this basis, an improved contract network method and the
blackboard model were adopted to achieve the onboard task allocation.

Among the central-distributed collaborative architecture, multi-satellite collaborative
task planning still needs to consider task scheduling, in which high-quality task allocation
strategies are needed. However, many offline-based algorithms cannot support this due
to their limited onboard computing resources. Therefore, it is necessary for the algorithm
to achieve a fast and efficient response to emergency tasks. At the same time, we have
noticed that, in recent years, machine learning methods have become popular in many
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research fields due to the improvement in computing power. Machine learning is widely
used and can obtain better solution results compared with the traditional heuristic algo-
rithm; in addition, it has a higher solution efficiency compared with the precise solution
algorithm. Compared with the meta-heuristic algorithm, it not only has advantages in
solving efficiency but also does not weaken the solution quality. It can better meet the
needs of the actual working environment, especially for onboard autonomous mission
planning, because the machine learning model can quickly provide the scheduling scheme.
Chong [10] took the inter-satellite communication delay into consideration when studying
multi-satellite autonomous collaboration, adopting the Markov model for modeling, and
designed a method based on multi-agent reinforcement learning. Du [11] proposed a
data-driven parallel scheduling framework for large-scale multi-agile satellite scheduling
which consists of the scheduling probability prediction model, task allocation strategy,
and parallel scheduling algorithm. The model was used to predict the probability of the
task being completed on different satellites by means of Cooperative Neuro-Evolution of
Augmenting Topologies (C-NEAT) and assigns the task to the satellite with the highest
probability. The given model can transform the multi-satellite planning problem into a
multi-single satellite planning problem to solve it quickly. However, this method is also
based on supervised learning data and has limited applicability as well as problem ap-
plicability as it is also a kind of supervised learning. Ren [12] proposed a hierarchical
reinforcement learning method to improve the response speed and stability of autonomous
satellites to urgent tasks. The base layer is used to learn and train the network, while the
top layer uses the network to assign tasks. However, this method greatly simplifies the
time-dependent transition time constraints and is difficult to apply in engineering.

The above machine learning methods can achieve the rapid assignment of cen-
tralized tasks, but the solving process is regarded as the black box and is difficult to
explain. Using neural networks to solve a problem is more similar to predicting than
explaining. Meanwhile, another interesting machine learning approach, Genetic Pro-
gramming (GP), and its variant, Gene Expression Programming (GEP), [13] can evolve
explicable dispatching rules by adopting classical evolutionary algorithm architecture.
Different from individuals in the evolutionary algorithm population, individuals do
not represent a solution but some kind of dispatching rule, which can be used to give
the fitness evaluation for training scenes. The rules of GP and GEP evolution can be
transformed into expression trees to help find problem features more intuitively. GP
and GEP are essentially the evolution of problem-solving rules andcan be classified as
unsupervised learning in a sense. In addition, GEP adopts a linear coding method that
is more efficient than classical GP. Zhu [14] used GEP to solve the TSP problem and
obtained better results. Zhu [15] also adopted GEP to solve the task assignment problem.
Deng [16] used GEP to solve the problem of grid resource allocation. Sabar [17] discussed
the application of GEP to construct a super-heuristic solving framework, which achieved
good results for a variety of combinatorial optimization problems. Zhang [18] studied
the dynamic shop scheduling problem and proposed a dynamic scheduling framework
based on improved GEP to build scheduling rules, which achieved good solving re-
sults. Ozturk [19] highlighted the application in the dynamic multi-objective flexible
shop scheduling problem and used GEP to extract the composite priority rules of the
scheduling problem. Zhang [20] provided an analysis of the mixed-model multi-manned
assembly line balancing problem where GEP evolution rules were adopted to generate
line configurations quickly. Experiments show that the scheduling rules based on GEP
evolution are better than other heuristic rules for large instances.

In this paper, in order to better solve MSCTAP, a satellite cooperation framework is
first presented. Based on the limitations of centralized and distributed cooperation, the
central-distributed collaborative architecture is first presented. According to the actual
working environment of the satellite, a GEP-based satellite allocation algorithm is proposed
which can meet the requirements of calculation speed and calculation effect.
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The rest of this paper is organized as follows: In Section 2, the cooperative architecture
of multi-autonomous satellites is presented; based on this, a multi-satellite autonomous
task allocation model is established. In Section 3, the online single satellite scheduling
algorithm is presented. Section 4 illustrates the performance of these methods through
experiments, and finally, Section 5 summarizes the work.

2. Problem Formulation

To introduce MSCTAP in detail, we divide it into two sub-problems, i.e., the satellite co-
ordination problem and the task allocation problem. In this section, the central-distributed
collaborative architecture is first presented and its collaborative process is explained. Then,
the multi-satellite autonomous task assignment problem is modeled based on the given
architecture following the complexity analysis.

2.1. Organizational Architecture

In this paper, a central-distributed collaborative architecture is proposed according
to the current situation of onboard satellite hardware and inter-satellite communication.
Centralized task allocation based on global information is adopted in the multi-satellite
coordination layer to improve the effect of allocation, and distributed collaborative architec-
ture is adopted in the single-satellite autonomous scheduling layer. The framework for this
combination possesses the advantage of combining the powerful ability of constellation
distributed computing with the ability of centralized task allocation on the satellite to
achieve global optimization.

The satellite constellation consists of multiple types of autonomous satellites, namely,
master satellites and slave satellites. The master satellite is responsible for the planning
of cooperative missions and the slave satellites can generate their own observation plan.
The corresponding collaborative process is shown in Figure 1. Firstly, satellite TT & C
telecommunication can share the target mission information with the satellite, and the
satellite with the longest transit time acts as the master satellite. Then, the master satellite
distributes the tasks to each slave satellite. Combined with their own state and orbit
information, each satellite can quickly calculate the observation information and feed it
back to the master satellite. According to the feedback information, the assignment can
be conducted on the master satellite. Finally, after obtaining the tasks assigned by the
master satellite, each slave satellite conducts independent scheduling, maximizes the sum
of observation benefits, and feeds the observation results back to the master satellite.
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Figure 1. The Multi-satellite collaborative process in centralization-distributed collaborative architecture.

As the name implies, central-distributed collaborative architecture combines the global
information advantage of centralized task allocation with the efficiency of distributed
scheduling computing. This paper focuses on the task assignment under centralized and
distributed collaborative architecture with limited resources, multi-type constraints, and a
short timeframe, aiming to maximize the sum of all single-satellite scheduling benefits.
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2.2. Mathematical Model

In this paper, we underline the complexity of the activity planning problem for MSC-
TAP when trying to consider all the real problem aspects for the agile Earth-observing
satellite. In our model, variables are rounded off as integers. Thus, MSCTAP can be mod-
eled as a kind of integer programming problem with a nonlinear optimization objective
function. The problem is actually a kind of multi-constraint problem which contains all con-
straints of single-satellite autonomous task scheduling. The interpretation of the relevant
symbols appearing in the MSCTAP is shown in Table 1.

nsat−1
max
j=0

Φ
(
Sj, Ωj, Cj, Ψj

)
(1)

nsat−1

∑
j=0

xij ≤ 1, ∀i = 0, 1, 2, . . . , ntsk − 1 (2)

xij = 0, ∀vij = 0 (3)

Ωj =
{

tski
∣∣xij = 1

}
(4)

Table 1. Variables.

Variables Descriptions

ntsk Number of tasks to be allocated

i Index of tasks, i = 0, 1, 2, . . . , ntsk − 1

tski The ith task that contains in the problem

Tsk Set of tasks

prii The priority level of tski , which measures the reward earned by fulfilling it

θi,t The roll angle of the satellite for tski on time t

ϕi,t The pitch angle of the satellite for tski on time t

ψi,t The yaw angle of the satellite for tski on time t

wbi The start time of the visible time window for tski

wei The end time of the visible time window for tski

tbi The selected begin time for tski

tei The selected end time for tski

bai The start attitude angle for tski

eai The end attitude angle for tski

pij Attitude change angle between tski and tsk j

trans(tei , tbj) The translation time needed from the former ending attitude angle for tei to begin a new observing process for tbj

Egymax Satellite total energy

ute The energy consumption per unit of time while performing attitude maneuvers

uie The energy consumption per unit of time while taking images

nsat Number of satellites to be allocated

j Index of satellites, j = 0, 1, 2, . . . , nsat − 1

Sj The State property of unallocated satellite j, including attitude, remaining battery, etc.

Ωj A collection of tasks assigned by satellite j

Cj The constraint collection of satellite j

Ψj The object of satellite j

Φ(·) The scheduling function of satellite j, which return scheduling scheme revenue

xij 0-1 variable, 1 denotes that tski is allocated to satellite j, while 0 not.

vij 0-1 parameter, 1 denotes that there exists visible time windows between tski and satellite j, while 0 not.
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Objective (1) is to maximize the total planning revenue, where Φ
(
Sj, Ωj, Cj, Ψj

)
refer

to the single satellite scheduling constraints. Constraint (2) represents each task that can
only be assigned to one satellite at most. Constraint (3) indicates that the task must be
assigned to a satellite with a visible window to it. Constraint (4) defines the assigned task
set of satellite j, which is also the solution of the problem.

To give a further explanation of Φ
(
Sj, Ωj, Cj, Ψj

)
, the single-satellite scheduling prob-

lem follows the following constraints:

max
ntsk

∑
i=0

ntsk

∑
j=0

xij prij (5)

wbi ≤ tbi ≤ tei ≤ wei, ∀i ∈ {0, 1, 2, . . . , ntsk} (6)

tbi + cti = tei, ∀i ∈ {0, 1, 2, . . . , ntsk} (7)

tei + trans
(
eai, baj

)
− tbj ≤ 0, ∀xij = 1 (8)

ntsk

∑
i=0

ntsk

∑
j=0

xij
(
ctj · uie + ute · trans

(
eai, baj

))
≤ (1− ζ) · Egymax (9)

ntsk

∑
i=0

xij ≤ 1, ∀j ∈ {0, 1, 2, . . . , ntsk} (10)

ntsk

∑
j=0

xij ≤ 1, ∀i ∈ {0, 1, 2, . . . , ntsk} (11)

xii = 0, ∀i ∈ {0, 1, 2, . . . , ntsk} (12)

xij ∈ {0, 1}, ∀i, j ∈ {0, 1, 2, . . . , ntsk} (13)

trans
(
eai, baj

)
=


b0, pij ≤ z0

b1 + pij/a1, z0 < pij ≤ z1
b2 + pij/a2, z1 < pij ≤ z2
b3 + pij/a3, z2 < pij ≤ z3
b4 + pij/a4, pij > z3

(14)

ρij =
∣∣∣θi,tei − θj,tbj

∣∣∣+ ∣∣∣ϕi,tei − ϕj,tbj

∣∣∣+ ∣∣∣ψi,tei − ψj,tbj

∣∣∣, ∀xij = 1 (15)

Objective (5) is to maximize the sum of priorities of completed tasks. Constraint (6)
represents the hard time window constraint of the satellite, that is, the target must be ob-
served within the visible time window of the satellite. Constraint (7) gives the equation re-
lationship between imaging start and end and duration of the task. Constraint (8) indicates
the time-dependent transition time constraints between tasks. Constraint (9) shows that
the satellite energy consumption cannot exceed the power threshold. Constraints (10)–(12)
limit the number of precursor and successor tasks corresponding to each task. Constraint
(13) defines the decision variables. Constraints (14) and (15) give the calculation for the
shortest transition time and transition angle between two attitude angles.

2.3. Problem Analysis

The MSCTAP can be classified as a classical node matching problem that has expo-
nential spatial complexity. Given the MSCTAP with ntsk tasks and nsat satellites, there are
also nsat matching selections for each task, regardless of constraints such as visible time
windows. So, the spatial complexity of this problem is O

(
nntsk

sat
)
. The spatial complexity of

the problem increases exponentially with the growth of mission and satellite scale. It is
difficult to obtain the optimal solution in a short time with accurate algorithms. For the
current metaheuristic method, the timeliness of the solution is still not high. Heuristic



Mathematics 2022, 10, 3608 7 of 21

solutions have high timeliness and poor quality, but those with domain knowledge will
bring better benefits.

The MSCTAP is modeled as a sequential decision-making problem by referring to
heuristic ideas. The optimal allocation scheme is gradually constructed through the sequen-
tial decision of the optimal satellite allocation for each mission. The idea of the serialization
decision to solve the MSCTAP problem is shown in Figure 2. Tasks are sorted and the
assignment of tasks is considered one by one. In the decision-making of each step, the set
of assignable satellites is first screened by constraints (as shown in the dotted line), optimal
allocation rules are adopted to allocate tasks considering the current allocation status,
and matching relationships are established (as shown in the solid line). The most critical
problem is how to make the optimal allocation rules and describe the current allocation
state. In the next section, we first introduce an adaptive mechanism to improve the quality
of general heuristic methods to serve as a comparison template for the algorithms proposed
in the subsequent research. Then, we will design a heuristic algorithm based on GEP
evolution and train decision rules through examples of different sizes, finally evolving a
nearly perfect rule.
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3. Proposed Algorithms

A Constructed Heuristic Method for multi-satellite collaborative task assignment
based on GEP evolution (CHMGEP) is proposed in this paper, inspired by the idea of the
hyper-heuristic algorithm. Technically, GP is a special evolutionary algorithm (EA) where
different individuals represent different heuristic algorithms composed of various attributes.
The fitness of each individual is evaluated by mapping the mathematical function to a
dispatching rule. Attribute features represent the essential characteristics of the problem,
and the rule training method determines the quality of the results of evolutionary rules,
which are the key points of this study.

3.1. Algorithm Framework

The general framework of CHMGEP is shown in Figure 3. First, the feature vectors are
extracted based on the transformation of the problem instance to the problem model. Then,
the evolution method based on gene expression programming is used to train the multi-
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satellite task assignment rules. Finally, the optimal multi-satellite task assignment rule
obtained by training is selected and used to generate the optimal scheme from instances.
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The flow chart of the CHMGEP evolutionary method is shown in Figure 4 and is the
core of the algorithm. In the chart, the main body and two sub-bodies are introduced to
show the details for operators. The procedure starts with population initialization. The
evolution operators and fitness evaluation are then used to realize the individual selection
mechanism and the diversification of rules individually. In the fitness evaluation module,
individuals are converted into dispatching rules for task allocation, following the single
satellite scheduling using CPLEX. Each evaluation of a single instance is a task allocation
decision-making process based on the dispatching rule of the individual.Mathematics 2022, 10, 3608 10 of 24 
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3.2. Feature Definition and Normalization

To describe the characteristics of the problem more comprehensively, we consider
three sets of features: satellite status-related features (No. 1–8), task-related features
(No. 9–10), and satellite-task correlation features (No. 11–16) which indicate the relationship
between the unallocated task and allocated tasks on a satellite. All of the features are from
time window attributes or scheduling system states. In addition to the normalization of
features, (No. 3–16) is considered to improve the applicability and scale generalization of
the evolution rules. The features are described as Table 2:

Table 2. Feature definition.

No. Feature Description Definition

1 TNj
The proportion of allocated tasks on satellite j to allocated tasks
on all satellites

TNj =

∣∣∣Ωassigned
j

∣∣∣
nsat−1

∑
j=0

∣∣∣Ωassigned
j

∣∣∣
2 REj

The proportion of the satellite’s remaining energy to its
maximum energy REj =

Egyj
Egymax

3 APj Average priority of allocated tasks on satellite j
ÂPj =

1∣∣∣Ωassigned
j

∣∣∣∗primax
∑

tskl∈Ωassigned
j

pril

4 SPj The standard deviation of allocated tasks priority on satellite j
ŜPj =

1
primax

∗
√

1∣∣∣Ωassigned
j

∣∣∣ ∑
tskl∈Ωassigned

j

(
pril − APj

)2

5 ARj
The average ratio of priority to imaging time for allocated tasks
on satellite j

ÂRj =
ctmin∣∣∣Ωassigned

j

∣∣∣∗primax
∑

tskl∈Ωassigned
j

pril
ctl

6 SRj
The standard deviation of the ratio of priority to imaging time for
allocated tasks on satellite j

ŜRj =
ctmin

primax
∗
√√√√ 1∣∣∣Ωassigned

j

∣∣∣ ∑
tskl∈Ωassigned

j

(
pril
ctl
− APj

)2

7 AOj The average overhead time of allocated tasks on satellite j
ÂOj =

1
Tplan
∗ 1∣∣∣Ωassigned

j

∣∣∣ ∑
tskl∈Ωassigned

j

tside
l

8 SOj
The standard deviation of allocated tasks’ overhead time on
satellite j

ˆSOj =
1

Tplan
∗
√√√√ 1∣∣∣Ωassigned

j

∣∣∣ ∑
tskl∈Ωassigned

j

(
tside
l − AOj

)2

9 WPi
The priority of the unassigned task i which is used to describe the
task’s importance ŴPi = prii/primax

10 WRi The ratio of priority to imaging time for the unassigned task i ŴRi =
ctmin

primax
∗WRi

11 WOij The overhead time of unallocated tasks i on satellite j ŴOij =
1

Tplan
∗ tside

ij

12 WLij The time window length of unassigned tasks i on satellite j ŴLij =
1

Tplan
∗
(
weij − wbij

)
13 WCij

The Conflict degree between unassigned tasks i and scheduled
plans on satellite j

ŴCij =
1

nsat−1
∑

j=0

∣∣∣Ωassigned
j

∣∣∣ ∗WCij

14 WVij

Non-overlapping length of the assigned task i to the scheduled
plan, describing the length of time periods that do not conflict
with the tasks in the scheduled plan

WVij = weij − wbij −

‖

 ∪
tskl∈Ωassigned

j

[
wbl j, wel j

] ∩ [wbij, weij
]
‖

ŴVij =
1

weij−wbij
∗WVij

15 ASij

Statistical mean of observation slope between the unallocated
task i and the allocated tasks on satellite j; the observation slope
is defined as spil and is used to describe the difficulty of
attitude conversion

spil =

∣∣∣∣ θside
i −θside

l
tside
i −tside

l

∣∣∣∣
ÂSij =

1
2θmax

∗

 1
Ωassigned

j
∑

tskk∈Ωassigned
j

spil


16 SSij

The standard deviation of the observation slope between the
unallocated task i and the allocated tasks on satellite j

ŜSij =
1

2θmax
∗
√

1
Ωassigned

j
∑

tskk∈Ωassigned
j

(
spil − ASij

)2

The above features are selected as the components of the feature vector FVij to charac-
terize MSCTAP. In each generation, the heuristic functions are evolved with GP with the
inputs of the feature vector. It should be noted that when the above features violate the
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operation rules during calculation (for example, when the assigned task of the satellite is 0,
it violates the calculation rules of division), zero will be set without special instructions.

FVij =
{

TNj, REj, ÂPj, ŜPj, ÂRj, ŜRj, ÂOj, ˆSOj, ŴPi, ŴRi, ŴOij, ŴLij, ŴCij, ŴVij, ÂSij, ŜSij
}

(16)

3.3. Chromosome Design

In GEP, each chromosome corresponds to a dispatching rule which leads to a solution.
The dispatching rules, which are expressed as trees of expressions, assign heuristic values
to visible time windows and can be considered constructive heuristics. Chromosomes
are decoded by mapping the mathematical functions to a single satellite task scheduling
problem solution produced by a timeline-based construction heuristic algorithm. The
details of the program encoding and decoding schemes are shown in Figure 5.
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During the evolution of GEP, the algorithm maintains a fixed-size population npop,
in which each individual corresponds to a chromosome ξu, u = 1, 2, . . . , npop. Each chro-
mosome ξu contains coding genes ηu,v, and each gene contains coding bits ωu,v,w. The
corresponding encoding in each encoding bit ωu,v,w is a function set or a terminal set. The
encoding scheme is formed once the terminals and functions are determined.

The function sets include:

• Arithmetic operators, such as +, −, *, and /.
• Mathematical functions, such as sin, cos, and max.
• Relational operators, such as >, <, and =.
• Logical operators, such as And, Or, Nor, and Xor.
• Conditional operators, such as if.

The terminal sets include:

• Variable values that correspond to attribute variables with weights.
• Constant values that correspond to a constant, such as π.
• Nonparametric functions, such as random number generation function rand().

Each gene ηu,v can be divided into two parts: the head and the tail. The head can
contain both functions and terminals, while the tail and the first element in the head
can only contain terminals. Each gene corresponds to a tree of expressions in which the
function set is the non-leaf nodes and the terminal set is the leaf nodes. Given the maximum
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parameter number n in the function, the number of encoding bits in the head hd, and the
number of encoding bits in the tail tl, Formula (17) must be satisfied in order to meet the
validity of the expression tree conversion.

tl = hd ∗ (n− 1) + 1 (17)

According to the above coding rules, each population contains npop chromosomes,
and each chromosome has nv genes, which can be expressed as

ξu = {ηu,v|v = 1, 2, . . . , nv } =
{

ωu,l |l = 1, 2, . . . , nv ∗ (hd + tl)
}

(18)

ηu,v = {ωu,v,w|w = 1, 2, . . . , (hd + tl)} (19)

In the process of chromosome decoding, each gene in the chromosome corresponds to
an expression tree and is generated in width first order according to the encoded bit. The
expression trees corresponding to multiple genes are connected by gene connectors (+, −,
*, /, etc.). Finally, the expression tree corresponding to chromosomes can be transformed
into an arithmetic expression through bottom-up order, so as to realize the decoding of
chromosomes.

The encoding and decoding parameters, in which the random parameter rc is intro-
duced to produce scalability compensation for attributes, are shown in Table 3. The length
of the gene head is set to 12 because each gene with a length of 25 (hd = 12, tl = 13) can
carry 7 function sets and 17 terminal sets. In addition, the number of genes in a chromosome
nv is set to 16, which is expected to support the evolution of 16 independent rules for each
chromosome.

Table 3. The variables in the chromosome.

Parameter Value

Function set +, −, *, sin, cos, max, and min

Terminal set 16 attributes in FVij and random parameter rc

Random variable rc rand(−5, 5)

Gene connector +

Gene head length hd 12

Number of genes in chromosome nv 16

3.4. Fitness Evaluation

Fitness is an index that evaluates chromosomes from the perspective of problem opti-
mization objectives. In the calculation of specific functions, the object of evaluation is the
corresponding dispatching rules of chromosomes. The function EvRule(·) is used to de-
scribe the arithmetic expression of the dispatching rule corresponding to each chromosome,
which outputs the matching score between task i and satellite j. In each decision step, the
match with the highest matching score is selected as follows.

xij = 1, jassigned = argmax
j

EvRule
(

FVij
)

(20)

For nsc test scenarios, the assignment is constructed using sequence matching as
shown in Figure 6. The scheduling benefits Φkj(·) of each satellite j obtained based on
single-satellite scheduling. For the fitness of the rule u, the fitness fu of the rule defined by
the average profit of test scenarios is shown in Formula (21).

fu =
1

nsc

nsc

∑
k=1

nsat−1

∑
j=0

Φkj(·) (21)
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3.5. Population Initialization and Selection

Population initialization is used to generate npop chromosomes on the basis of satisfy-
ing coding rules. In Formula (22), Γ represents the function set, Λ represents the terminal
set, p = rand(0, 1) is to classify the generated code bits, and the method of generating
genes is given in the initialization of the population. Each chromosome is made up of
multiple genes, and the population is made up of npop chromosomes.

ωu,v,w =


Γ(rand(0, |Γ| − 1)), w = 1

Γ(rand(0, |Γ| − 1)), p < 0.5∧ 1 < w ≤ hd
Λ(rand(0, |Λ| − 1)), p > 0.5∨ w > hd

(22)

As for the population selection, in each generation, both elite individuals and a certain
number of inferior individuals should be reserved to avoid falling into the local optimum.
In this study, the classic tournament ranking algorithm is adopted. When constructing
the new generation, the elite individual is retained according to the proportion proel of
population size npop. Then, ntour individuals are randomly selected from the population,
and the individual with maximum fitness is put into the new generation, as shown in
Figure 7.
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4. Experiments

This section presents numerical results via experiments to evaluate the effectiveness of
CHMGEP and demonstrate its superiority to existing methods. A set of well-designed test
scenarios will be introduced first since there are no existing well-recognized benchmarks
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for the MSCTAP. Then, the analysis of the training process and training results will be given
to illustrate the convergence and feasibility, respectively. Finally, comparisons and results
will be presented with a detailed discussion.

4.1. Design of Scenarios

The test scenarios are generated by the orbit characteristics of satellite resources.
Targets obey specific distribution (mainly uniform distribution, U( )), which makes the
conflict between tasks greater and can better test the efficiency of the algorithm in terms
of resource scheduling. The parameter distributions of the scenarios are shown in Table 4,
and the satellite capability parameter settings are shown in Table 5. In this experiment,
three training scene scales are set, sc100-s4-t160, sc100-s7-t280, and sc100-s10-t400, where
sc represents the number of example samples, s represents the number of satellites, and
t represents the number of tasks to be assigned. The experimental environment is the
Windows 7 Intel(R) core i5-4460 processor (3.20 GHz), 12 G RAM.

Table 4. The distribution of the test scenarios.

Items Distribution Parameter

Task overhead yaw angle θside U(−θmax, θmax) θmax = 45◦

Centric position of task distribution
interval χ U

(
λntsk + twmax/2, Tplan − λntsk − twmax/2

)
twmax = 300 s, Tplan = 5400 s

Task overhead time tside U(χ− λntsk, χ + λntsk) λ = 12

Task duration ct U(ctmin, ctmax) ctmin = 5 s, ctmax = 20 s

Task priority pri U(1, primax) primax = 10

Task time window length tw U(twmax/4, twmax/2) twmax = 300 s

Table 5. The parameter distribution of the satellite capability.

Items Value

Maximum pitch angle of the satellite θmax 45◦

Maximum roll angle of the satellite ϕmax 45◦

Maximum yaw angle of the satellite ψmax 90◦

Maximum electricity of the satellite Egymax 10,000 unit

Initial satellite electricity Egy Egymax ∗U(0.3, 0.9) unit

Threshold of remaining satellite electricity ζ 0.05

Initial pitch angle θ0 U(−θmax, θmax)

Initial roll angle ϕ0 U(−ϕmax, ϕmax)

Initial yaw angle ψ0 U(−ψmax, ψmax)

Initial time of scenario t 0 s

Unit of electricity consumption of attitude
maneuver ute 2 unit

Unit of electricity consumption of imaging
maneuver uie 2 unit

4.2. Evolution Process Analysis

Evolution process analysis mainly checks the convergence and evolution results of the
GEP evolution process. In evolution, this experiment conducts rule evolution for the three
task scale scenarios described in the previous section, representing small, medium, and
large-scale scenarios, respectively. Table 6 shows the parameter settings of the evolution.



Mathematics 2022, 10, 3608 14 of 21

Table 6. The parameter settings of the evolution.

Items Value Items Value

Population size npop 50 maximum number of iterations niter 600

Number of scenarios for fitness
evaluation nsc

100 Single-point intersection
probability pc1 0.7

Two-point intersection
probability pc2 0.7 Gene intersection probability pge 0.7

Single-point variation
probability 0.05 Fragment inversion probability pmi 0.1

IS transposition probability pis 0.1 RIS transposition probability pris 0.1

Proportion of elite individuals
retained proel 0.1 Extracted Number of sorted

individuals ntour
3

The maximum, minimum, and average fitness of the individuals of each generation in
the evolutionary process of the three scenarios are shown in Figure 8. The fitness values
rise very quickly in the first 50 generations, indicating that the algorithm has an obvious
effect on improving rule evolution in the early stage. For small-scale scenarios, it gradually
slows down after the evolution generation reaches 50, converges around 200 generations,
and then remains steady. Although the medium scale and large scale tend to be stable
after 100 generations, they increase slightly after 350 and 300 generations, respectively, then
stop growing and are stable. In the whole evolution process, the average fitness of the
population keeps the same trend as the maximum fitness, while the minimum fitness is
basically in the stage of fluctuation, which is also conducive to maintaining the diversity of
the population and avoiding falling into the local optimum. In general, the fitness of rules
under the three scenarios converges during the evolution process.
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In addition to the convergence of evolution, the final evolution rules are obtained
through rule evolution under the three scenarios, as shown in Table 7, and the correspond-
ing expression tree is shown in Figure 9. From the perspective of the rules, there is no
overly complex rule, which indicates that the algorithm tends to be simplified as far as
possible in the evolution process. Additionally, rules represent only order relations in
which individual constant terms can be removed. From the expression tree, it can be found
that WR is an important attribute and has obtained the multiplier of coefficient 4 in the
medium and large-scale scenario and positive feedback of coefficient 1 in the small-scale
scenario. In addition, during the evolution, attribute AS presents negative feedback. From
the perspective of scale, the three rules all have their applicability to the scenario scale, but
the rules themselves are universal in the model, and the trend of guiding order relationship
is also consistent.
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Table 7. The results of optimal evolution rules.

Scenarios Optimal Evolution Rules

sc100-s4-t160

SO ∗WP + SO + WR + 5 ∗WV + sin(Min(−2.17, WR)) + cos(SS)
+ cos(Min(SP, WC, (−WR + Min(SS, TN)) ∗Min(SO ∗WR,

cos(SR)))) + Min(AR, AS ∗ (WR + cos(WV))) ∗Min(WP,
cos(AS) + 3.65) + 8.16

sc100-s7-t280
2 ∗WP + 4 ∗WR–sin(AS) + 2 ∗ cos(SS) + cos(Min(−AS,

cos(cos(AS)))) + cos(Min(sin(WL)–Min(−3.67, AO),
cos(AS–WL))) + Min(AO, WP)–9.68

sc100-s10-t400
−3 ∗ AS + SS ∗Min(SR, AO ∗ SP) + TN ∗WL + 4 ∗WR + 2 ∗
sin(WP) + sin(WR) + sin(cos(WR)) + cos(SO) + cos(sin(SS)) +

Max(WR, cos(TN))–4.02
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In general, both convergence and trend consistency of evolution rules are guaranteed
in the GEP algorithm. The GEP has a relatively good effect on the evolution of solving rules
for MSCTAP.

4.3. Comparation with Heuristic Algorithms

Assignment results cannot be evaluated by the task assignment algorithm alone. It
is also dependent on single satellite scheduling results. Therefore, the total scheduling
revenue SP (average scheduling revenue ASP in multiple scenarios), scheduling time ST
(average scheduling time AST in multiple scenarios), and the percentage of CHMGEP’s
revenue over other algorithms’ PSPs are mainly used in the comparison process.

To validate the effect of the algorithm, comparative results between CHMGEP and
heuristic algorithms are presented. The heuristic algorithm allocates based on the value of the
heuristic rules. At each assignment, all satellites and the remaining tasks are given a matching
index. After selecting the match with the best index, the new allocation is started again.

Heuristic algorithms are selected including heuristic multi-satellite task assignment
rules based on NATA (Number of Assigned Task Ascending), LVTD (Length of Visible
time-window Descending), and CDTA (Conflict Degree of Assigned Task ascending). They
are the three heuristic rules. NATA gives assignment priority to the satellite with the least
number of assigned tasks, LVTD gives assignment priority to the satellite with the longest
visible time window, and CDTA gives assignment priority to the satellite with the least
conflict degree of the assigned task. In the experiment, 50 test examples are generated
for the s4-T160, S7-T280, and S10-T400 scenarios, and the scheduling benefit (SP) and
scheduling time (ST) of each scenario are counted. The test results of 50 examples of the
three scenarios are shown in Figure 10.
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From Figure 10, it can be seen that in the case of three scenarios of the small, medium,
and large scales, the CHMGEP algorithm has comprehensively surpassed the other three
heuristic algorithms on SP. The three heuristic algorithms have their own advantages and
disadvantages in solving the problem quality, while CHMGEP stands out. In order to
further evaluate the advantages, the indexes of ASP (Average Scheduling Profit) and AST
(Average Scheduling Time) are calculated according to the test results of 50 examples of
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each scale. The index of PSP (Profit Surpass Percentage) is also given to show the percentage
of CHMGEP’s profit over other algorithms. The results are shown in Table 8.

Table 8. The comparative results of CHMGEP with heuristic algorithms.

Scenarios
CHMGEP NATA LVTD CDTA

ASP AST PSP ASP AST PSP ASP AST PSP ASP AST PSP

s4-t160 669.38 7.434 0.00% 629.94 5.059 5.89% 653.90 5.076 2.37% 646.64 4.764 3.52%
s7-t280 1180.10 16.713 0.00% 1106.18 12.266 6.26% 1161.36 10.732 1.61% 1131.64 8.961 4.28%
s10-t400 1693.20 28.260 0.00% 1584.82 16.383 6.40% 1669.46 17.855 1.42% 1612.82 17.575 4.98%

It can be seen from Table 8 that CHMGEP has the best performance in the three scale
scenarios and the highest ASP index. The LVTD algorithm is the best among the heuristic
algorithms, followed by CDTA and NATA.

In terms of the PSP index, the advantage of CHMGEP over the heuristic algorithm is
not obvious. For the best heuristic LVTD, the scheduling profit overruns are only about 2%,
and for the worst NATA algorithm, the overruns are about 6%. However, in terms of the
solution time AST, the four algorithms remain in the same order of magnitude with little
difference. Therefore, it is confirmed that CHMGEP can achieve efficiency beyond the best
heuristic algorithm without consuming too much time cost.

4.4. Comparation with Meta-Heuristic Algorithms

Compared with the exact algorithm, the meta-heuristic algorithm can obtain satisfac-
tory solutions and its solving efficiency is much higher. For example, Simulated Annealing
(SA) and Variable Neighborhood Search (VNS), which are random search algorithms, can
accept poor solutions with a certain probability in the process of searching. This strategy
prevents the algorithm from falling into the local optimum. Compared with the population-
based evolutionary algorithm, the local search algorithm is characterized by searching on
the basis of a single solution, which has lower memory consumption and does not require
complex crossover and mutation operations within the population. The algorithm flow
charts are given as Figure 11.
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Based on the classical SA and VNS algorithm, this experiment introduces the best
heuristic rule LVTD to generate the initial solution of SA and VNS. Thus, ISA (Improved
Simulated Annealing) and IVNS (Improved Variable Neighborhood Search) are obtained
and are used as representatives of meta-heuristic algorithms for comparison.

The solutions of the two algorithms are coded by integers, with each encoded bit
representing the index of the assigned satellite. Tables 9 and 10 show the parameters of ISA
and IVNS, respectively.

Table 9. The parameters in ISA.

Parameters Value

Initial temperature 100

Termination temperature 1

Sub-iteration on each temperature 3

Rate of reduction 0.9

Coding mode Integer encoding

Local search operator Single point mutation, two-point exchange,
and fragment inversion

Table 10. The parameters in IVNS.

Parameters Value

Iteration number 30

Termination temperature 5

Coding mode Integer encoding

Neighborhood solution selection Roulette according to individual profit

Number of neighborhood operators 3

Neighborhood operator Single point mutation, two-point exchange,
and fragment inversion

To analyze the effect of CHMGEP, another 7 scenarios varying from S4-T160 to S10-
T400, with an increment step of one satellite and 40 tasks, are also proposed. Scenarios of
each size contain 10 test cases. In the test, the ASP and AST indicators of each scale scenario
were counted, as shown in Table 11. Results illustrate that CHMGEP does not always
find the best solution. IVNS had the 4 best out of 7 scenarios, followed by CHMGEP with
2 and ISA with only 1 best. Moreover, CHMGEP also surpassed ISA in scenarios S7-T280.
In terms of PSP index, the gap between CHMGEP and ISA and IVNS is as large as −1.47%,
and even achieves 2% (S6-T240) in some small and medium scale scenarios, indicating that
CHMGEP can approach the performance of meta-heuristic in solving the MSCTAP. From
the perspective of the AST index, the CHMGEP algorithm can be controlled within 20 s in
small and medium-scale scenarios, while the ISA algorithm is on the order of magnitude
of hundreds of seconds. The IVNS algorithm achieves an amazing AST of thousands of
seconds, although most of the new solutions are very good. While the iteration number
of IVNS is only set for 30 times, its mechanism of breaking out of the loop is determined
by the quality of the solution. When a local solution can find a better solution, its iteration
counter does not increase, which leads to a large increase in algorithm time. In terms of
algorithm efficiency, CHMGEP is obviously much higher than the latter two.
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Table 11. The comparison of metaheuristic algorithms on scheduling profit.

Scenarios
CHMGEP ISA IVNS

ASP AST PSP ASP AST PSP ASP AST PSP

s4-t160 690.9 9.282 0.00% 696.4 203.487 −0.79% 696.8 1680.919 −0.85%

s5-t200 858.6 12.511 0.00% 844.1 248.384 1.72% 852.9 2123.959 0.66%

s6-t240 1076.7 16.895 0.00% 1055.6 329.488 2.00% 1062.6 2570.510 1.31%

s7-t280 1169.2 21.497 0.00% 1163.0 383.620 0.53% 1184.9 3092.066 −1.34%

s8-t320 1386.5 24.960 0.00% 1392.7 430.670 −0.45% 1406.9 3490.173 −1.47%

s9-t360 1486.7 41.137 0.00% 1504.0 454.257 −1.15% 1506.4 3906.438 −1.33%

s10-t400 1648.9 36.348 0.00% 1661.5 526.829 −0.76% 1657.7 4254.568 −0.53%

In order to further analyze the influence of scenarios on the timeliness of algorithm
calculation, the results of AST were obtained as shown in Figure 12. As can be seen from
Figure 12, the slope of the calculation timeliness curve corresponding to ISA and IVNS
is larger than that of CHMGEP, and the increase in calculation time is faster than that
of the CHMGEP algorithm. Notably, the CHMGEP algorithm is better than the general
meta-heuristic algorithm in the large-scale scenario of MSCTAP. To sum up, although the
CHMGEP algorithm proposed in this study can only surpass the meta-heuristic algorithm
in a small number of examples, the algorithm has good solving efficiency and quality and
the solving time does not show explosive growth with the scenario size.
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5. Conclusions and Future Work

This paper first discusses the structural design and cooperative process of a satellite
constellation consisting of multiple autonomous satellites and provides a model based
on this structure. After discussing the computing complexity of the problem, this study
proposes a GEP-based construction heuristic method to solve the multi-satellite task as-
signment problem. On the basis of extracting 16 features of the problem, GEP is used to
realize the evolution of the dispatching rules. Experimental results show that the proposed
algorithm can completely surpass heuristic algorithms, outperform the meta-heuristic algo-
rithm in a few cases, and has a higher solving efficiency than the meta-heuristic algorithm.
In the future, we will enhance the effect of task assignment solving rules by evaluating
more task assignment features, and, at the same time, more scenarios will be designed to
evaluate the models. The allocation algorithm has both timeliness and technical feasibility,
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and future research needs to be oriented toward application and deployment. We will then
study the cooperation scenario of the fully distributed autonomous satellite constellation
which has higher robustness and intellectual abilities.

Author Contributions: Conceptualization, L.X. and F.Y.; Funding acquisition, L.X.; Methodology,
W.Q., W.Y. and F.Y.; Software, W.Y.; Validation, W.Q.; Writing—original draft, W.Q.; Writing—review
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Nomenclature

Variables Descriptions
ASP Average Scheduling Profit
AST Average Scheduling Time
CDTA Conflict Degree of Assigned Task Ascending

CHMGEP
Constructed Heuristic Method for Multi-Satellite Collaborative
Task Assignment Based on GEP Evolution

C-NEAT Cooperative Neuro-Evolution of Augmenting Topologies
EA Evolutionary Algorithm
GP Genetic Programming
GEP Gene Expression Programming
ISA Improved Simulated Annealing
IVNS Improved Variable Neighborhood Search
JADE Java Agent Development Framework
LVTD Length of Visible Time-Window Descending
MSCTAP Multi-Satellite Collaborative Task Assignment Problem
NATA Number of Assigned Task Ascending
PSP The Percentage of CHMGEP’s Profit over other Algorithms
SA Simulated Annealing
SP Scheduling Profit
ST Scheduling Time
SVM Support Vector Machine
VNS Variable Neighborhood Search
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