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Abstract: The past decade has seen an increase in the number of satellites in orbit and in highly 
dynamic satellite requests, making the control by ground stations inefficient. The traditional man-
agement composed of ground planning with separate onboard execution is seriously lagging in re-
sponse to dynamically incoming tasks. To meet the demand for the real-time response to emergent 
events, a multi-autonomous-satellite system with a central-distributed collaborative architecture 
was formulated by an integer programming model. Based on the structure, evolutionary rules were 
proposed to solve this problem by the use of sequence solution construction and a constructed heu-
ristic method based on gene expression programming evolution. First, the features of the problem 
are extracted based on domain knowledge, then, the problem-solving rules are evolved by gene 
expression programming. The simulation results reflect that the evolutionary rule completely sur-
passes the three types of heuristic rules with adaptive mechanisms and achieves a solution effect 
close to meta-heuristic algorithms with a reasonably fast solving speed.  
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1. Introduction 
In recent years, the development of satellite systems has entered a new phase where 

the demand is becoming increasingly higher in terms of autonomous satellite manage-
ment, online decision-making, and inter-satellite collaboration, thanks to the growth of 
satellite capability. It is difficult for solely ground management to give full play to the 
efficiency of new autonomous satellites, and impossible to achieve a rapid allocation of 
real-time response tasks. Based on this information, the advantages of onboard autono-
mous mission planning, including independent online planning ability and quick re-
sponse capability, make it an inevitable trend for the future. The enhancement of onboard 
computing capabilities and the development of AI technology provide a prerequisite for 
onboard autonomous intelligence, bringing opportunities to solve shortcomings. In this 
situation, novel and effective frameworks and algorithms need to be more fully utilized 
with onboard resources. 

The Multi-Satellite Collaborative Task Assignment Problem (MSCTAP) aims to 
achieve the efficient coordination of task planning and fast response to the dynamic envi-
ronment through rapid onboard task assignment and has attracted the attention of many 
researchers. In addition, the structure of a multi-satellite constellation is also an important 
issue to consider where three structural types have been used, including a centralized 
structure, distributed structure, and centralized-distributed structure. The centralized ap-
proaches are the most widely used and typically require one central controller to deter-
mine the mission assignment for each team member and consider the problem as an inte-
ger programming model solved by a precise solution. Kennedy [1] adopted a two-layer 
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scheduling method for the joint planning problem of the Walker constellation, which is 
composed of 18 Cube satellites, and solved the resource allocation problem with mixed 
integer programming with a depth-first search. However, it is difficult to achieve large-
scale collaboration due to the high computational complexity. He [2] considered the prob-
lems of satellite online decision-making and task planning under uncertain and dynamic 
environments and proposed a linear programming model based on the Multi-agent Mar-
kov process. The satellite made autonomous decisions based on its state and improved 
the total benefits using periodic communication, which improved the response-ability to 
an uncertain environment. However, the solving process relied on a precise solution, 
which is difficult to solve in large-scale instances. As for the above centralized satellite 
task scheduling, the allocation mechanism is heavily dependent on the main controller, 
which makes it vulnerable to the failure of the main controller and leads to a heavy com-
putation load. 

For the distributed structure, the majority of works focus on the multi-agent-based 
negotiation assignment method. Most researchers use a contract network to resolve the 
conflict of task assignment so the computation load of the main controller of the central-
ized structure can be distributed to other agents. Compared with the main controller, the 
computational power requirement of the information hub is lower. However, the effi-
ciency of the distributed multi-satellite mission cooperation architecture depends on the 
inter-satellite communication delay, which determines the effectiveness of allocation and 
the feasibility of task execution. However, it is not often considered in multi-satellite task 
allocation. Schetter [3] addressed the collaborative planning problem of the TechSat con-
stellation. According to the autonomous capabilities in the formation, satellites were di-
vided into agents of four intelligence levels. This partition is used to organize satellites of 
different intelligence levels to collaborate on tasks. Van [4,5] adopted a market-based be-
havior mechanism when considering multi-satellite collaboration, enabling the satellite 
with the highest bid to perform corresponding tasks. Wu [6] considered the dynamic to-
pology of inter-satellite communication and proposed a method to predict communica-
tion links to carry out multi-satellite collaboration. Li [7] studied the problem of multi-
satellite autonomous mission planning and proposed a multi-autonomous satellite collab-
orative mission planning framework. The multi-satellite system based on JADE (Java 
Agent Development Framework, TILAB, State of California, United States) was designed 
under this framework and was composed of a single-satellite autonomous layer and a 
multi-satellite collaborative layer. On the whole, distribution is relatively robust, but dis-
tribution relies heavily on communication networks because planning needs to capture 
global information as completely as possible. 

Based on the defects of centralized and distributed architectures, a central-distrib-
uted collaborative architecture is proposed to solve the MSCTAP. In other words, a cen-
tralized task allocation based on global information is adopted in the multi-satellite coor-
dination layer to improve the effect of allocation, and distributed collaborative architec-
ture is adopted in the single-satellite autonomous scheduling layer. Meanwhile, the global 
information of centralized task allocation can utilize the distributed computing capability 
to reduce the computing load of the primary satellite allocation. Yao [8] considered the 
task allocation problem of multi-autonomous satellite cooperative task planning, ap-
proved a central-distributed cooperative architecture, proposed 10 allocation strategies 
based on this architecture, and adopted the Support Vector Machine (SVM) to realize the 
selection of allocation strategies in different scenarios. However, only two strategies are 
included in the study. Yang [9] studied the problem of online collaboration and schedul-
ing of autonomous satellites under uncertain conditions and proposed a dynamic distrib-
uted collaboration architecture for this problem. On this basis, an improved contract net-
work method and the blackboard model were adopted to achieve the onboard task allo-
cation. 
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Among the central-distributed collaborative architecture, multi-satellite collabora-
tive task planning still needs to consider task scheduling, in which high-quality task allo-
cation strategies are needed. However, many offline-based algorithms cannot support this 
due to their limited onboard computing resources. Therefore, it is necessary for the algo-
rithm to achieve a fast and efficient response to emergency tasks. At the same time, we 
have noticed that, in recent years, machine learning methods have become popular in 
many research fields due to the improvement in computing power. Machine learning is 
widely used and can obtain better solution results compared with the traditional heuristic 
algorithm; in addition, it has a higher solution efficiency compared with the precise solu-
tion algorithm. Compared with the meta-heuristic algorithm, it not only has advantages 
in solving efficiency but also does not weaken the solution quality. It can better meet the 
needs of the actual working environment, especially for onboard autonomous mission 
planning, because the machine learning model can quickly provide the scheduling 
scheme. Chong [10] took the inter-satellite communication delay into consideration when 
studying multi-satellite autonomous collaboration, adopting the Markov model for mod-
eling, and designed a method based on multi-agent reinforcement learning. Du [11] pro-
posed a data-driven parallel scheduling framework for large-scale multi-agile satellite 
scheduling which consists of the scheduling probability prediction model, task allocation 
strategy, and parallel scheduling algorithm. The model was used to predict the probability 
of the task being completed on different satellites by means of Cooperative Neuro-Evolu-
tion of Augmenting Topologies (C-NEAT) and assigns the task to the satellite with the 
highest probability. The given model can transform the multi-satellite planning problem 
into a multi-single satellite planning problem to solve it quickly. However, this method is 
also based on supervised learning data and has limited applicability as well as problem 
applicability as it is also a kind of supervised learning. Ren [12] proposed a hierarchical 
reinforcement learning method to improve the response speed and stability of autono-
mous satellites to urgent tasks. The base layer is used to learn and train the network, while 
the top layer uses the network to assign tasks. However, this method greatly simplifies 
the time-dependent transition time constraints and is difficult to apply in engineering. 

The above machine learning methods can achieve the rapid assignment of centralized 
tasks, but the solving process is regarded as the black box and is difficult to explain. Using 
neural networks to solve a problem is more similar to predicting than explaining. Mean-
while, another interesting machine learning approach, Genetic Programming (GP), and 
its variant, Gene Expression Programming (GEP), [13] can evolve explicable dispatching 
rules by adopting classical evolutionary algorithm architecture. Different from individu-
als in the evolutionary algorithm population, individuals do not represent a solution but 
some kind of dispatching rule, which can be used to give the fitness evaluation for training 
scenes. The rules of GP and GEP evolution can be transformed into expression trees to 
help find problem features more intuitively. GP and GEP are essentially the evolution of 
problem-solving rules andcan be classified as unsupervised learning in a sense. In addi-
tion, GEP adopts a linear coding method that is more efficient than classical GP. Zhu [14] 
used GEP to solve the TSP problem and obtained better results. Zhu [15] also adopted 
GEP to solve the task assignment problem. Deng [16] used GEP to solve the problem of 
grid resource allocation. Sabar [17] discussed the application of GEP to construct a super-
heuristic solving framework, which achieved good results for a variety of combinatorial 
optimization problems. Zhang [18] studied the dynamic shop scheduling problem and 
proposed a dynamic scheduling framework based on improved GEP to build scheduling 
rules, which achieved good solving results. Ozturk [19] highlighted the application in the 
dynamic multi-objective flexible shop scheduling problem and used GEP to extract the 
composite priority rules of the scheduling problem. Zhang [20] provided an analysis of 
the mixed-model multi-manned assembly line balancing problem where GEP evolution 
rules were adopted to generate line configurations quickly. Experiments show that the 
scheduling rules based on GEP evolution are better than other heuristic rules for large 
instances. 
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In this paper, in order to better solve MSCTAP, a satellite cooperation framework is 
first presented. Based on the limitations of centralized and distributed cooperation, the 
central-distributed collaborative architecture is first presented. According to the actual 
working environment of the satellite, a GEP-based satellite allocation algorithm is pro-
posed which can meet the requirements of calculation speed and calculation effect. 

The rest of this paper is organized as follows: In Section 2, the cooperative architec-
ture of multi-autonomous satellites is presented; based on this, a multi-satellite autono-
mous task allocation model is established. In Section 3, the online single satellite schedul-
ing algorithm is presented. Section 4 illustrates the performance of these methods through 
experiments, and finally, Section 5 summarizes the work. 

2. Problem Formulation 
To introduce MSCTAP in detail, we divide it into two sub-problems, i.e., the satellite 

coordination problem and the task allocation problem. In this section, the central-distrib-
uted collaborative architecture is first presented and its collaborative process is explained. 
Then, the multi-satellite autonomous task assignment problem is modeled based on the 
given architecture following the complexity analysis. 

2.1. Organizational Architecture 
In this paper, a central-distributed collaborative architecture is proposed according 

to the current situation of onboard satellite hardware and inter-satellite communication. 
Centralized task allocation based on global information is adopted in the multi-satellite 
coordination layer to improve the effect of allocation, and distributed collaborative archi-
tecture is adopted in the single-satellite autonomous scheduling layer. The framework for 
this combination possesses the advantage of combining the powerful ability of constella-
tion distributed computing with the ability of centralized task allocation on the satellite to 
achieve global optimization. 

The satellite constellation consists of multiple types of autonomous satellites, namely, 
master satellites and slave satellites. The master satellite is responsible for the planning of 
cooperative missions and the slave satellites can generate their own observation plan. The 
corresponding collaborative process is shown in Figure 1. Firstly, satellite TT & C tele-
communication can share the target mission information with the satellite, and the satel-
lite with the longest transit time acts as the master satellite. Then, the master satellite dis-
tributes the tasks to each slave satellite. Combined with their own state and orbit infor-
mation, each satellite can quickly calculate the observation information and feed it back 
to the master satellite. According to the feedback information, the assignment can be con-
ducted on the master satellite. Finally, after obtaining the tasks assigned by the master 
satellite, each slave satellite conducts independent scheduling, maximizes the sum of ob-
servation benefits, and feeds the observation results back to the master satellite. 
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Figure 1. The Multi-satellite collaborative process in centralization-distributed collaborative archi-
tecture. 

As the name implies, central-distributed collaborative architecture combines the 
global information advantage of centralized task allocation with the efficiency of distrib-
uted scheduling computing. This paper focuses on the task assignment under centralized 
and distributed collaborative architecture with limited resources, multi-type constraints, 
and a short timeframe, aiming to maximize the sum of all single-satellite scheduling ben-
efits. 

2.2. Mathematical Model 
In this paper, we underline the complexity of the activity planning problem for 

MSCTAP when trying to consider all the real problem aspects for the agile Earth-observ-
ing satellite. In our model, variables are rounded off as integers. Thus, MSCTAP can be 
modeled as a kind of integer programming problem with a nonlinear optimization objec-
tive function. The problem is actually a kind of multi-constraint problem which contains 
all constraints of single-satellite autonomous task scheduling. The interpretation of the 
relevant symbols appearing in the MSCTAP is shown in Table 1. 

( )sat 1

0
max , , ,
n

j j j jj
S C

−

=
Φ Ω Ψ  (1) 

sat 1

tsk
0

1, 0,1,2,..., 1
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j

x i n
−

=

≤ ∀ = −  (2) 

0, 0ij ijx v= ∀ =  (3) 

{ }1j i ijtsk xΩ = =  (4) 

Objective (1) is to maximize the total planning revenue, where ( ), , ,j j j jS CΦ Ω Ψ  re-

fer to the single satellite scheduling constraints. Constraint (2) represents each task that 
can only be assigned to one satellite at most. Constraint (3) indicates that the task must be 
assigned to a satellite with a visible window to it. Constraint (4) defines the assigned task 
set of satellite j, which is also the solution of the problem. 

To give a further explanation of ( ), , ,j j j jS CΦ Ω Ψ , the single-satellite scheduling 

problem follows the following constraints: 

0 0
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tsk tskn n

ij j
i j

x pri
= =
  (5) 

{ } 0,1, 2,...,,i i i i tskwb tb te we i n≤ ≤ ≤ ∀ ∈  (6) 
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0 0
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Objective (5) is to maximize the sum of priorities of completed tasks. Constraint (6) 
represents the hard time window constraint of the satellite, that is, the target must be ob-
served within the visible time window of the satellite. Constraint (7) gives the equation 
relationship between imaging start and end and duration of the task. Constraint (8) indi-
cates the time-dependent transition time constraints between tasks. Constraint (9) shows 
that the satellite energy consumption cannot exceed the power threshold. Constraints 
(10)–(12) limit the number of precursor and successor tasks corresponding to each task. 
Constraint (13) defines the decision variables. Constraints (14) and (15) give the calcula-
tion for the shortest transition time and transition angle between two attitude angles. 

Table 1. Variables. 

Variables Descriptions 

tskn  Number of tasks to be allocated 

i  Index of tasks， tsk0,1, 2,..., 1i n= −  

itsk  The thi  task that contains in the problem 

Tsk  Set of tasks 

ipri  The priority level of itsk , which measures the reward earned by 
fulfilling it 

,i tθ  The roll angle of the satellite for itsk  on time t  

,i tϕ  The pitch angle of the satellite for itsk  on time t  

,i tψ  The yaw angle of the satellite for itsk  on time t  

iwb  The start time of the visible time window for itsk  

iwe  The end time of the visible time window for itsk  

itb  The selected begin time for itsk  

eit  The selected end time for itsk  
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iba  The start attitude angle for itsk  

iea  The end attitude angle for itsk  

ijp  Attitude change angle between itsk  and jtsk  

( , )i jtrans te tb  
The translation time needed from the former ending attitude angle 
for eit  to begin a new observing process for jtb  

maxEgy Satellite total energy 

ute  
The energy consumption per unit of time while performing attitude 
maneuvers 

uie  The energy consumption per unit of time while taking images 

satn  Number of satellites to be allocated 

j  Index of satellites， sat0,1,2,..., 1j n= −  

jS  The State property of unallocated satellite j , including attitude, re-
maining battery, etc 

jΩ  A collection of tasks assigned by satellite j  

jC  The constraint collection of satellite j  

jΨ  The object of satellite j  

( )Φ ⋅  
The scheduling function of satellite j , which return scheduling 
scheme revenue 

ijx  0-1 variable, 1 denotes that itsk  is allocated to satellite j , while 0 
not. 

ijv  
0-1 parameter, 1 denotes that there exists visible time windows be-
tween itsk  and satellite j , while 0 not. 

2.3. Problem Analysis 
The MSCTAP can be classified as a classical node matching problem that has expo-

nential spatial complexity. Given the MSCTAP with tskn  tasks and satn  satellites, there are 
also satn  matching selections for each task, regardless of constraints such as visible time 

windows. So, the spatial complexity of this problem is ( )tsk
sat
nO n . The spatial complexity 

of the problem increases exponentially with the growth of mission and satellite scale. It is 
difficult to obtain the optimal solution in a short time with accurate algorithms. For the 
current metaheuristic method, the timeliness of the solution is still not high. Heuristic so-
lutions have high timeliness and poor quality, but those with domain knowledge will 
bring better benefits. 

The MSCTAP is modeled as a sequential decision-making problem by referring to 
heuristic ideas. The optimal allocation scheme is gradually constructed through the se-
quential decision of the optimal satellite allocation for each mission. The idea of the seri-
alization decision to solve the MSCTAP problem is shown in Figure 2. Tasks are sorted 
and the assignment of tasks is considered one by one. In the decision-making of each step, 
the set of assignable satellites is first screened by constraints (as shown in the dotted line), 
optimal allocation rules are adopted to allocate tasks considering the current allocation 
status, and matching relationships are established (as shown in the solid line). The most 
critical problem is how to make the optimal allocation rules and describe the current allo-
cation state. In the next section, we first introduce an adaptive mechanism to improve the 
quality of general heuristic methods to serve as a comparison template for the algorithms 
proposed in the subsequent research. Then, we will design a heuristic algorithm based on 
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GEP evolution and train decision rules through examples of different sizes, finally evolv-
ing a nearly perfect rule. 

Possible match Selected match
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Figure 2. The sequential decision-making model for MSCTAP. 

3. Proposed Algorithms 
A Constructed Heuristic Method for multi-satellite collaborative task assignment 

based on GEP evolution (CHMGEP) is proposed in this paper, inspired by the idea of the 
hyper-heuristic algorithm. Technically, GP is a special evolutionary algorithm (EA) where 
different individuals represent different heuristic algorithms composed of various attrib-
utes. The fitness of each individual is evaluated by mapping the mathematical function to 
a dispatching rule. Attribute features represent the essential characteristics of the problem, 
and the rule training method determines the quality of the results of evolutionary rules, 
which are the key points of this study. 

3.1. Algorithm Framework 
The general framework of CHMGEP is shown in Figure 3. First, the feature vectors 

are extracted based on the transformation of the problem instance to the problem model. 
Then, the evolution method based on gene expression programming is used to train the 
multi-satellite task assignment rules. Finally, the optimal multi-satellite task assignment 
rule obtained by training is selected and used to generate the optimal scheme from in-
stances. 
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Figure 3. The CHMGEP Algorithm framework. 

The flow chart of the CHMGEP evolutionary method is shown in Figure 4 and is the 
core of the algorithm. In the chart, the main body and two sub-bodies are introduced to 
show the details for operators. The procedure starts with population initialization. The 
evolution operators and fitness evaluation are then used to realize the individual selection 
mechanism and the diversification of rules individually. In the fitness evaluation module, 
individuals are converted into dispatching rules for task allocation, following the single 
satellite scheduling using CPLEX. Each evaluation of a single instance is a task allocation 
decision-making process based on the dispatching rule of the individual. 
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Figure 4. The CHMGEP evolutionary framework. 

3.2. Feature Definition and Normalization 
To describe the characteristics of the problem more comprehensively, we consider 

three sets of features: satellite status-related features (No. 1–8), task-related features (No. 
9–10), and satellite-task correlation features (No. 11–16) which indicate the relationship 
between the unallocated task and allocated tasks on a satellite. All of the features are from 
time window attributes or scheduling system states. In addition to the normalization of 
features, (No. 3–16) is considered to improve the applicability and scale generalization of 
the evolution rules. The features are described as Table 2: 

Table 2. Feature definition. 

No. Feature Description Definition 

1 jTN  
The proportion of allocated tasks on 
satellite j  to allocated tasks on all sat-
ellites 

sat

assigned

1
assigned

0

j
j n

j
j

TN −

=

Ω
=

Ω
 

2 jRE  
The proportion of the satellite's re-
maining energy to its maximum en-
ergy max

j
j

Egy
RE

Egy
=  

3 jAP  
Average priority of allocated tasks on 
satellite j  


assigned

assigned
max

1
*

l j

j l
tskj

AP pri
pri ∈Ω

=
Ω   

4 jSP  
The standard deviation of allocated 
tasks priority on satellite j  

 ( )
assigned

2

assigned
max

1 1*
l j

j l j
tskj

SP pri AP
pri ∈Ω

= −
Ω   
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5 jAR  
The average ratio of priority to imag-
ing time for allocated tasks on satellite 
j  


assigned

min
assigned

max*
l j

l
j

tsk lj

prictAR
ctpri ∈Ω

=
Ω   

6 jSR  
The standard deviation of the ratio of 
priority to imaging time for allocated 
tasks on satellite j  


assigned

2

min
assigned

max

1

l j

l
j j

tsk lj

prictSR AP
pri ct∈Ω

 
= ∗ − Ω  

  

7 jAO  
The average overhead time of allo-
cated tasks on satellite j  


assigned

side
assigned

plan

1 1*
l j

j l
tskj

AO t
T ∈Ω

=
Ω   

8 jSO  
The standard deviation of allocated 
tasks’ overhead time on satellite j  

 ( )
assigned

2side
assigned

plan

1 1*
l j

j l j
tskj

SO t AO
T ∈Ω

= −
Ω   

9 iWP  
The priority of the unassigned task i  
which is used to describe the task's im-
portance 


maxiiWP pri pri=  

10 iWR  The ratio of priority to imaging time 
for the unassigned task i  

 min

max

*i i
ctWR WR
pri

=  

11 ijWO  
The overhead time of unallocated 
tasks i  on satellite j  

 side

plan

1 *ij ijWO t
T

=  

12 ijWL  
The time window length of unas-
signed tasks i  on satellite j  

 ( )
plan

1 *ij ij ijWL we wb
T

= −  

13 ijWC  
The Conflict degree between unas-
signed tasks i  and scheduled plans on 
satellite j  


sat 1

assigned

0

1 *ij ijn

j
j

WC WC−

=

=
Ω

 

14 ijWV  

Non-overlapping length of the as-
signed task i  to the scheduled plan, 
describing the length of time periods 
that do not conflict with the tasks in 
the scheduled plan 

assigned
, ,

l j
ij ij ij lj lj ij ij

tsk
WV we wb wb we wb we

∈Ω

    = − − ∪ ∩     
 

 1 *ij ij
ij ij

WV WV
we wb

=
−

 

15 ijAS  

Statistical mean of observation slope 
between the unallocated task i  and 
the allocated tasks on satellite j ; the 
observation slope is defined as ilsp  
and is used to describe the difficulty of 
attitude conversion 

side side

side side
i l

il
i l

sp
t t

θ θ−=
−

 


assigned

assigned
max

1 1*
2

k j

ij il
tskj

AS sp
θ ∈Ω

 
 =
 Ω 

  

16 ijSS  

The standard deviation of the observa-
tion slope between the unallocated 
task i  and the allocated tasks on satel-
lite j  

 ( )
assigned

2

assigned
max

1 1*
2

k j

ij il ij
tskj

SS sp AS
θ ∈Ω

= −
Ω   

The above features are selected as the components of the feature vector ijFV  to char-
acterize MSCTAP. In each generation, the heuristic functions are evolved with GP with 
the inputs of the feature vector. It should be noted that when the above features violate 
the operation rules during calculation (for example, when the assigned task of the satellite 
is 0, it violates the calculation rules of division), zero will be set without special instruc-
tions. 
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     {         }, , , , , , , , , , , , , , ,j jj j j j i i ij ij ij ij ij ijij j jFV TN RE AP SP AR SR AO SO WP WR WO WL WC WV AS SS=  (16) 

3.3. Chromosome Design 
In GEP, each chromosome corresponds to a dispatching rule which leads to a solu-

tion. The dispatching rules, which are expressed as trees of expressions, assign heuristic 
values to visible time windows and can be considered constructive heuristics. Chromo-
somes are decoded by mapping the mathematical functions to a single satellite task sched-
uling problem solution produced by a timeline-based construction heuristic algorithm. 
The details of the program encoding and decoding schemes are shown in Figure 5. 
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The expression tree of

The expression tree of

 
Figure 5. The encoding and decoding of the chromosome. 

During the evolution of GEP, the algorithm maintains a fixed-size population popn , 

in which each individual corresponds to a chromosome uξ , 1,2,..., popu n= . Each chro-

mosome uξ  contains coding genes ,u vη , and each gene contains coding bits , ,u v wω . The 

corresponding encoding in each encoding bit , ,u v wω  is a function set or a terminal set. The 
encoding scheme is formed once the terminals and functions are determined. 

The function sets include: 
 Arithmetic operators, such as +, -, *, and /. 
 Mathematical functions, such as sin, cos, and max. 
 Relational operators, such as >, <, and =. 
 Logical operators, such as And, Or, Nor, and Xor. 
 Conditional operators, such as if. 

The terminal sets include: 
 Variable values that correspond to attribute variables with weights. 
 Constant values that correspond to a constant, such as π . 
 Nonparametric functions, such as random number generation function rand(). 

Each gene ,u vη  can be divided into two parts: the head and the tail. The head can 
contain both functions and terminals, while the tail and the first element in the head can 
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only contain terminals. Each gene corresponds to a tree of expressions in which the func-
tion set is the non-leaf nodes and the terminal set is the leaf nodes. Given the maximum 
parameter number n  in the function, the number of encoding bits in the head hd , and 
the number of encoding bits in the tail tl , Formula (17) must be satisfied in order to meet 
the validity of the expression tree conversion. 

( )* 1 1tl hd n= − +  (17) 

According to the above coding rules, each population contains popn  chromosomes, 

and each chromosome has vn  genes, which can be expressed as 

{ } { }, ,1,2,..., 1,2,..., *( )u u v v u l vv n l n hd tlξ η ω= = = = +  (18) 

{ }, , , 1,2,..., ( )u v u v w w hd tlη ω= = +  (19) 

In the process of chromosome decoding, each gene in the chromosome corresponds 
to an expression tree and is generated in width first order according to the encoded bit. 
The expression trees corresponding to multiple genes are connected by gene connectors 
(+, −, *, /, etc.). Finally, the expression tree corresponding to chromosomes can be trans-
formed into an arithmetic expression through bottom-up order, so as to realize the decod-
ing of chromosomes. 

The encoding and decoding parameters, in which the random parameter rc  is intro-
duced to produce scalability compensation for attributes, are shown in Table 3. The length 
of the gene head is set to 12 because each gene with a length of 25 ( 12hd = , 13tl = ) can 
carry 7 function sets and 17 terminal sets. In addition, the number of genes in a chromo-
some vn  is set to 16, which is expected to support the evolution of 16 independent rules 
for each chromosome. 

Table 3. The variables in the chromosome. 

Parameter Value 
Function set +, −, *, sin, cos, max, and min 

Terminal set 16 attributes in ijFV  and random parameter rc  

Random variable rc  rand(−5, 5) 
Gene connector + 
Gene head length hd  12 
Number of genes in chromo-
some vn  16 

3.4. Fitness Evaluation 
Fitness is an index that evaluates chromosomes from the perspective of problem op-

timization objectives. In the calculation of specific functions, the object of evaluation is the 
corresponding dispatching rules of chromosomes. The function ( )EvRule ⋅  is used to de-
scribe the arithmetic expression of the dispatching rule corresponding to each chromo-
some, which outputs the matching score between task i  and satellite j . In each decision 
step, the match with the highest matching score is selected as follows. 

( )=1, argmax EvRuleassigned
ij ij

j
x j FV=  (20) 
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For scn  test scenarios, the assignment is constructed using sequence matching as 

shown in Figure 6. The scheduling benefits ( )kjΦ ⋅  of each satellite j  obtained based on 

single-satellite scheduling. For the fitness of the rule u , the fitness uf  of the rule defined 
by the average profit of test scenarios is shown in Formula (21). 

The feature 
vectors Dispatching rule The feature 

vectors Dispatching rule

1s

1s

1a

1a

2s

2s

2a

... The feature 
vectors Dispatching rule

1na −
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1ns −

na

1-2 2-1 3-3 4-4 5-3

1a 2a
na

1tsk 2ts k 1tsk 2tsk
1tsk 2tsk 1tsk 2tsk

1tsk 2tsk 1tsk 2ts k

 
Figure 6. The construction of sequential solutions for task assignment. 

( )
sc sat 1

1 0sc

1 n n

u kj
k j

f
n

−

= =

= Φ ⋅  (21) 

3.5. Population Initialization and Selection 

Population initialization is used to generate popn  chromosomes on the basis of satis-

fying coding rules. In Formula (22), Γ  represents the function set, Λ  represents the ter-
minal set, rand(0,1)p =  is to classify the generated code bits, and the method of gener-
ating genes is given in the initialization of the population. Each chromosome is made up 
of multiple genes, and the population is made up of popn  chromosomes. 

( )( )
( )( )
( )( )

, ,

rand 0, 1 , 1

rand 0, 1 , 0.5 1

rand 0, 1 , 0.5

u v w

w

p w hd

p w hd

ω

Γ Γ − =

= Γ Γ − < ∧ < ≤


Λ Λ − > ∨ >

 (22) 

As for the population selection, in each generation, both elite individuals and a cer-
tain number of inferior individuals should be reserved to avoid falling into the local opti-
mum. In this study, the classic tournament ranking algorithm is adopted. When construct-
ing the new generation, the elite individual is retained according to the proportion elpro  

of population size popn . Then, tourn  individuals are randomly selected from the popula-
tion, and the individual with maximum fitness is put into the new generation, as shown 
in Figure 7. 
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Figure 7. The selection of individuals in the population. 

4. Experiments 
This section presents numerical results via experiments to evaluate the effectiveness 

of CHMGEP and demonstrate its superiority to existing methods. A set of well-designed 
test scenarios will be introduced first since there are no existing well-recognized bench-
marks for the MSCTAP. Then, the analysis of the training process and training results will 
be given to illustrate the convergence and feasibility, respectively. Finally, comparisons 
and results will be presented with a detailed discussion. 

4.1. Design of Scenarios 
The test scenarios are generated by the orbit characteristics of satellite resources. Tar-

gets obey specific distribution (mainly uniform distribution, U( ) ), which makes the con-
flict between tasks greater and can better test the efficiency of the algorithm in terms of 
resource scheduling. The parameter distributions of the scenarios are shown in Table 4, 
and the satellite capability parameter settings are shown in Table 5. In this experiment, 
three training scene scales are set, sc100-s4-t160, sc100-s7-t280, and sc100-s10-t400, where 
sc represents the number of example samples, s represents the number of satellites, and t 
represents the number of tasks to be assigned. The experimental environment is the Win-
dows 7 Intel(R) core i5-4460 processor (3.20 GHz), 12 G RAM. 

Table 4. The distribution of the test scenarios. 

Items Distribution Parameter 

Task overhead yaw angle sideθ  ( )max maxU ,θ θ−  max  45θ = °  

Centric position of task distribu-
tion interval χ  ( )max max,2U 2tsk plan tskn tw T n twλ λ− −+  max 300tw s= , 5400planT s=  

Task overhead time sidet  ( )U ,tsk tskn nχ λ χ λ− +  12λ =  

Task duration ct  ( )min maxU ,ct ct  min 5ct s= , max 20ct s=  

Task priority pri  ( )maxU 1, pri  max 10pri =  

Task time window length tw  ( )max maxU / 4, / 2tw tw  max 300tw s=  

Table 5. The parameter distribution of the satellite capability. 

Items Value 
Maximum pitch angle of the satellite maxθ  45° 
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Maximum roll angle of the satellite maxϕ  45° 
Maximum yaw angle of the satellite maxψ  90° 

Maximum electricity of the satellite maxEgy  10000 unit 

Initial satellite electricity Egy  ( )max *U 0.3,0.9Egy  unit 

Threshold of remaining satellite electricity ζ  0.05 

Initial pitch angle 0θ  ( )max maxU ,θ θ−  

Initial roll angle 0ϕ  ( )max maxU ,ϕ ϕ−  

Initial yaw angle 0ψ  ( )max maxU ,ψ ψ−  

Initial time of scenario t  0s 
Unit of electricity consumption of attitude maneuver ute  2 unit 
Unit of electricity consumption of imaging maneuver uie  2 unit 

4.2. Evolution Process Analysis 
Evolution process analysis mainly checks the convergence and evolution results of 

the GEP evolution process. In evolution, this experiment conducts rule evolution for the 
three task scale scenarios described in the previous section, representing small, medium, 
and large-scale scenarios, respectively. Table 6 shows the parameter settings of the evolu-
tion. 

Table 6. The parameter settings of the evolution. 

Items Value Items Value 

Population size popn  50 
maximum number of itera-
tions itern  600 

Number of scenarios for fitness 
evaluation scn  100 

Single-point intersection 
probability c1p  0.7 

Two-point intersection probabil-
ity c2p  0.7 

Gene intersection probabil-
ity gep  0.7 

Single-point variation probability 0.05 
Fragment inversion proba-
bility m ip  0.1 

IS transposition probability isp  0.1 
RIS transposition probabil-
ity risp  0.1 

Proportion of elite individuals re-
tained elpro  0.1 

Extracted Number of 
sorted individuals tourn  3 

The maximum, minimum, and average fitness of the individuals of each generation 
in the evolutionary process of the three scenarios are shown in Figure 8. The fitness values 
rise very quickly in the first 50 generations, indicating that the algorithm has an obvious 
effect on improving rule evolution in the early stage. For small-scale scenarios, it gradu-
ally slows down after the evolution generation reaches 50, converges around 200 genera-
tions, and then remains steady. Although the medium scale and large scale tend to be 
stable after 100 generations, they increase slightly after 350 and 300 generations, respec-
tively, then stop growing and are stable. In the whole evolution process, the average fit-
ness of the population keeps the same trend as the maximum fitness, while the minimum 
fitness is basically in the stage of fluctuation, which is also conducive to maintaining the 
diversity of the population and avoiding falling into the local optimum. In general, the 
fitness of rules under the three scenarios converges during the evolution process. 
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Figure 8. The GEP evolutionary process. 

In addition to the convergence of evolution, the final evolution rules are obtained 
through rule evolution under the three scenarios, as shown in Table 7, and the correspond-
ing expression tree is shown in Figure 9. From the perspective of the rules, there is no 
overly complex rule, which indicates that the algorithm tends to be simplified as far as 
possible in the evolution process. Additionally, rules represent only order relations in 
which individual constant terms can be removed. From the expression tree, it can be found 
that WR is an important attribute and has obtained the multiplier of coefficient 4 in the 
medium and large-scale scenario and positive feedback of coefficient 1 in the small-scale 
scenario. In addition, during the evolution, attribute AS presents negative feedback. From 
the perspective of scale, the three rules all have their applicability to the scenario scale, 
but the rules themselves are universal in the model, and the trend of guiding order rela-
tionship is also consistent. 

Table 7. The results of optimal evolution rules. 

Scenarios Optimal Evolution Rules 

sc100-s4-t160 
SO*WP + SO + WR + 5 * WV + sin(Min(−2.17, WR)) + cos(SS) + cos(Min(SP, WC, (−WR + 

Min(SS, TN)) * Min(SO * WR, cos(SR)))) + Min(AR, AS * (WR + cos(WV))) * Min(WP, 
cos(AS) + 3.65) + 8.16 

sc100-s7-t280 
2 * WP + 4 * WR–sin(AS) + 2 * cos(SS) + cos(Min(−AS, cos(cos(AS)))) + 
cos(Min(sin(WL)–Min(−3.67, AO), cos(AS–WL))) + Min(AO, WP)–9.68 

sc100-s10-t400 
−3 * AS + SS * Min(SR, AO * SP) + TN * WL + 4 * WR + 2 * sin(WP) + sin(WR) + 

sin(cos(WR)) + cos(SO) + cos(sin(SS)) + Max(WR, cos(TN))–4.02 
 

 
(a) sc100-s4-t160 
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(b) sc100-s7-t280 

 
(c) sc100-s10-t400 

Figure 9. The expression trees of the best dispatching rules. 

In general, both convergence and trend consistency of evolution rules are guaranteed 
in the GEP algorithm. The GEP has a relatively good effect on the evolution of solving 
rules for MSCTAP. 

4.3. Comparation with Heuristic Algorithms 
Assignment results cannot be evaluated by the task assignment algorithm alone. It is 

also dependent on single satellite scheduling results. Therefore, the total scheduling rev-
enue SP (average scheduling revenue ASP in multiple scenarios), scheduling time ST (av-
erage scheduling time AST in multiple scenarios), and the percentage of CHMGEP’s rev-
enue over other algorithms’ PSPs are mainly used in the comparison process. 

To validate the effect of the algorithm, comparative results between CHMGEP and 
heuristic algorithms are presented. The heuristic algorithm allocates based on the value 
of the heuristic rules. At each assignment, all satellites and the remaining tasks are given 
a matching index. After selecting the match with the best index, the new allocation is 
started again. 

Heuristic algorithms are selected including heuristic multi-satellite task assignment 
rules based on NATA (Number of Assigned Task Ascending), LVTD (Length of Visible 
time-window Descending), and CDTA (Conflict Degree of Assigned Task ascending). 
They are the three heuristic rules. NATA gives assignment priority to the satellite with 
the least number of assigned tasks, LVTD gives assignment priority to the satellite with 
the longest visible time window, and CDTA gives assignment priority to the satellite with 
the least conflict degree of the assigned task. In the experiment, 50 test examples are gen-
erated for the s4-T160, S7-T280, and S10-T400 scenarios, and the scheduling benefit (SP) 
and scheduling time (ST) of each scenario are counted. The test results of 50 examples of 
the three scenarios are shown in Figure 10. 
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(a) s4-t160 (b) s7-t280 

 
(c) s10-t400 

Figure 10. The comparison of heuristic algorithms in different scenarios. (a) The scenario of s4-
t160; (b) The scenario of s7-t280; (c) The scenario of s10-t400; 

From Figure 10, it can be seen that in the case of three scenarios of the small, medium, 
and large scales, the CHMGEP algorithm has comprehensively surpassed the other three 
heuristic algorithms on SP. The three heuristic algorithms have their own advantages and 
disadvantages in solving the problem quality, while CHMGEP stands out. In order to fur-
ther evaluate the advantages, the indexes of ASP (Average Scheduling Profit) and AST 
(Average Scheduling Time) are calculated according to the test results of 50 examples of 
each scale. The index of PSP (Profit Surpass Percentage) is also given to show the percent-
age of CHMGEP’s profit over other algorithms. The results are shown in Table 8. 

Table 8. The comparative results of CHMGEP with heuristic algorithms. 

Scenarios 
CHMGEP NATA LVTD CDTA 

ASP AST PSP ASP AST PSP ASP AST PSP ASP AST PSP 
s4-t160 669.38 7.434 0.00% 629.94 5.059 5.89% 653.90 5.076 2.37% 646.64 4.764 3.52% 
s7-t280 1180.10 16.713 0.00% 1106.18 12.266 6.26% 1161.36 10.732 1.61% 1131.64 8.961 4.28% 
s10-t400 1693.20 28.260 0.00% 1584.82 16.383 6.40% 1669.46 17.855 1.42% 1612.82 17.575 4.98% 

It can be seen from Table 8 that CHMGEP has the best performance in the three scale 
scenarios and the highest ASP index. The LVTD algorithm is the best among the heuristic 
algorithms, followed by CDTA and NATA.  

In terms of the PSP index, the advantage of CHMGEP over the heuristic algorithm is 
not obvious. For the best heuristic LVTD, the scheduling profit overruns are only about 
2%, and for the worst NATA algorithm, the overruns are about 6%. However, in terms of 
the solution time AST, the four algorithms remain in the same order of magnitude with 
little difference. Therefore, it is confirmed that CHMGEP can achieve efficiency beyond 
the best heuristic algorithm without consuming too much time cost. 

4.4. Comparation with Meta-Heuristic Algorithms 
Compared with the exact algorithm, the meta-heuristic algorithm can obtain satisfac-

tory solutions and its solving efficiency is much higher. For example, Simulated Anneal-
ing (SA) and Variable Neighborhood Search (VNS), which are random search algorithms, 
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can accept poor solutions with a certain probability in the process of searching. This strat-
egy prevents the algorithm from falling into the local optimum. Compared with the pop-
ulation-based evolutionary algorithm, the local search algorithm is characterized by 
searching on the basis of a single solution, which has lower memory consumption and 
does not require complex crossover and mutation operations within the population. The 
algorithm flow charts are given as Figure 11. 
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Figure 11. The algorithm flow charts of SA and VNS. (a) The algorithm flow charts of SA; (b) The 
algorithm flow charts of VNS; 

Based on the classical SA and VNS algorithm, this experiment introduces the best 
heuristic rule LVTD to generate the initial solution of SA and VNS. Thus, ISA (Improved 
Simulated Annealing) and IVNS (Improved Variable Neighborhood Search) are obtained 
and are used as representatives of meta-heuristic algorithms for comparison. 

The solutions of the two algorithms are coded by integers, with each encoded bit 
representing the index of the assigned satellite. Tables 9 and 10 show the parameters of 
ISA and IVNS, respectively. 

Table 9. The parameters in ISA. 

Parameters Value 
Initial temperature 100 

Termination temperature 1 
Sub-iteration on each temperature 3 

Rate of reduction 0.9 
Coding mode Integer encoding 

Local search operator 
Single point mutation, two-point exchange, and 

fragment inversion 
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Table 10. The parameters in IVNS. 

Parameters Value 
Iteration number 30 

Termination temperature 5 
Coding mode Integer encoding 

Neighborhood solution selection Roulette according to individual profit 
Number of neighborhood operators 3 

Neighborhood operator 
Single point mutation, two-point exchange, and 

fragment inversion 

To analyze the effect of CHMGEP, another 7 scenarios varying from S4-T160 to S10-
T400, with an increment step of one satellite and 40 tasks, are also proposed. Scenarios of 
each size contain 10 test cases. In the test, the ASP and AST indicators of each scale sce-
nario were counted, as shown in Table 11. Results illustrate that CHMGEP does not al-
ways find the best solution. IVNS had the 4 best out of 7 scenarios, followed by CHMGEP 
with 2 and ISA with only 1 best. Moreover, CHMGEP also surpassed ISA in scenarios S7-
T280. In terms of PSP index, the gap between CHMGEP and ISA and IVNS is as large as 
−1.47%, and even achieves 2% (S6-T240) in some small and medium scale scenarios, indi-
cating that CHMGEP can approach the performance of meta-heuristic in solving the 
MSCTAP. From the perspective of the AST index, the CHMGEP algorithm can be con-
trolled within 20 s in small and medium-scale scenarios, while the ISA algorithm is on the 
order of magnitude of hundreds of seconds. The IVNS algorithm achieves an amazing 
AST of thousands of seconds, although most of the new solutions are very good. While 
the iteration number of IVNS is only set for 30 times, its mechanism of breaking out of the 
loop is determined by the quality of the solution. When a local solution can find a better 
solution, its iteration counter does not increase, which leads to a large increase in algo-
rithm time. In terms of algorithm efficiency, CHMGEP is obviously much higher than the 
latter two. 

Table 11. The comparison of metaheuristic algorithms on scheduling profit. 

Scenarios 
CHMGEP ISA IVNS 

ASP AST PSP ASP AST PSP ASP AST PSP 
s4-t160 690.9 9.282 0.00% 696.4 203.487 −0.79% 696.8 1680.919 −0.85% 
s5-t200 858.6 12.511 0.00% 844.1 248.384 1.72% 852.9 2123.959 0.66% 
s6-t240 1076.7 16.895 0.00% 1055.6 329.488 2.00% 1062.6 2570.510 1.31% 
s7-t280 1169.2 21.497 0.00% 1163.0 383.620 0.53% 1184.9 3092.066 −1.34% 
s8-t320 1386.5 24.960 0.00% 1392.7 430.670 −0.45% 1406.9 3490.173 −1.47% 
s9-t360 1486.7 41.137 0.00% 1504.0 454.257 −1.15% 1506.4 3906.438 −1.33% 
s10-t400 1648.9 36.348 0.00% 1661.5 526.829 −0.76% 1657.7 4254.568 −0.53% 

In order to further analyze the influence of scenarios on the timeliness of algorithm 
calculation, the results of AST were obtained as shown in Figure 12. As can be seen from 
Figure 12, the slope of the calculation timeliness curve corresponding to ISA and IVNS is 
larger than that of CHMGEP, and the increase in calculation time is faster than that of the 
CHMGEP algorithm. Notably, the CHMGEP algorithm is better than the general meta-
heuristic algorithm in the large-scale scenario of MSCTAP. To sum up, although the 
CHMGEP algorithm proposed in this study can only surpass the meta-heuristic algorithm 
in a small number of examples, the algorithm has good solving efficiency and quality and 
the solving time does not show explosive growth with the scenario size. 
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Figure 12. The comparison with metaheuristic algorithms on scheduling time. 

5. Conclusions and Future Work 
This paper first discusses the structural design and cooperative process of a satellite 

constellation consisting of multiple autonomous satellites and provides a model based on 
this structure. After discussing the computing complexity of the problem, this study pro-
poses a GEP-based construction heuristic method to solve the multi-satellite task assign-
ment problem. On the basis of extracting 16 features of the problem, GEP is used to realize 
the evolution of the dispatching rules. Experimental results show that the proposed algo-
rithm can completely surpass heuristic algorithms, outperform the meta-heuristic algo-
rithm in a few cases, and has a higher solving efficiency than the meta-heuristic algorithm. 
In the future, we will enhance the effect of task assignment solving rules by evaluating 
more task assignment features, and, at the same time, more scenarios will be designed to 
evaluate the models. The allocation algorithm has both timeliness and technical feasibility, 
and future research needs to be oriented toward application and deployment. We will 
then study the cooperation scenario of the fully distributed autonomous satellite constel-
lation which has higher robustness and intellectual abilities. 
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Nomenclature 
Variables Descriptions 
ASP Average Scheduling Profit 
AST Average Scheduling Time 
CDTA Conflict Degree of Assigned Task Ascending 

CHMGEP 
Constructed Heuristic Method for Multi-Satellite Collaborative Task As-
signment Based on GEP Evolution 

C-NEAT Cooperative Neuro-Evolution of Augmenting Topologies 
EA Evolutionary Algorithm 
GP Genetic Programming 
GEP Gene Expression Programming 
ISA Improved Simulated Annealing 
IVNS Improved Variable Neighborhood Search 
JADE Java Agent Development Framework 
LVTD Length of Visible Time-Window Descending 
MSCTAP Multi-Satellite Collaborative Task Assignment Problem 
NATA Number of Assigned Task Ascending 
PSP The Percentage of CHMGEP’s Profit over other Algorithms 
SA Simulated Annealing 
SP Scheduling Profit 
ST Scheduling Time 
SVM Support Vector Machine 
VNS Variable Neighborhood Search 
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