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Abstract: This paper contains two main parts, Part I and Part II, which discuss the local and global
minimization problems, respectively. In Part I, a fresh conjugate gradient (CG) technique is suggested
and then combined with a line-search technique to obtain a globally convergent algorithm. The
finite difference approximations approach is used to compute the approximate values of the first
derivative of the function f . The convergence analysis of the suggested method is established. The
comparisons between the performance of the new CG method and the performance of four other
CG methods demonstrate that the proposed CG method is promising and competitive for finding
a local optimum point. In Part II, three formulas are designed by which a group of solutions are
generated. This set of random formulas is hybridized with the globally convergent CG algorithm to
obtain a hybrid stochastic conjugate gradient algorithm denoted by HSSZH. The HSSZH algorithm
finds the approximate value of the global solution of a global optimization problem. Five combined
stochastic conjugate gradient algorithms are constructed. The performance profiles are used to
assess and compare the rendition of the family of hybrid stochastic conjugate gradient algorithms.
The comparison results between our proposed HSSZH algorithm and four other hybrid stochastic
conjugate gradient techniques demonstrate that the suggested HSSZH method is competitive with,
and in all cases superior to, the four algorithms in terms of the efficiency, reliability and effectiveness to
find the approximate solution of the global optimization problem that contains a non-convex function.

Keywords: global optimization; unconstrained minimization; numerical approximations of gradients;
meta-heuristics; stochastic parameters; conjugate gradient methods; efficient algorithm; performance
profiles; comparisons; testing

MSC: 90C26

1. Introduction

The major goal of this paper is to find the local and global minima of a convex and
non-convex function. The local and global minimization problems are defined as follows.

Definition 1. A local minimum xlo ∈ S of the function f , f : S → R is an input element with
f (xlo) ≤ f (x) for all x neighboring xlo. If S ⊆ Rn, it is formulated by

∀xlo ∃ε > 0 : f (xlo) ≤ f (x) ∀x ∈ S, ‖x− xlo‖ ≤ ε. (1)
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Definition 2. The point xgl ∈ S is called the global minimizer of the function f ; f : S→ R such
that f (xgl) ≤ f (x) ∀x ∈ S. When S ⊆ Rn, then the problem can be formulated by

min
x∈S

f (x) : S→ R, (2)

In both problems (formulae) S ⊆ Rn is the range in which we find the global minimizer
of f (x). f (x) is continuously differentiable.

Global optimization (GO) attempts to find the approximate solution of the objective
function are shown in Problem (2).

However, this task can be difficult since the knowledge about f is usually only local.
On the other hand, the fastest algorithms (LO) prefer to find a local point since these
algorithms are not capable of finding the global solution at each run.

The bottom line is that the core difference between the GO methods and the LO
algorithms is as follows: the GO methods focus on solving Problem (2) over the given
set, while the task of the LO methods is to solve (1). Consequently, solving Problem (1)
is relatively simple by using deterministic (classical) local optimization methods. On the
contrary, finding the global optimum of Problem (2) is an NP-hard problem.
Challenging problems arise in different application fields, for example, technical sciences,
industrial engineering, economics, networks, chemical engineering, etc. See [1–11].

Recently, many optimization algorithms have been proposed to deal with these prob-
lems. The thoughts of those suggested methods rely on the standard of meta-heuristic
strategies (random search).

There are different classifications for meta-heuristic methods [12].
Mohamed et al. [7] presented a brief description of these classifications.
In random algorithms, the minimization technique relies partly on probability.
In contrast, in the deterministic algorithms, a guessing scale is not utilized. Hence,

deterministic techniques need an exhaustive examination over the research domain of
function f to find the approximate solution to Problem (2) at each run. Otherwise, they fail
in this task.

Therefore, finding the approximate solution to Problem (2) by using random tech-
niques can be proved by the asymptotic convergence probability. See [13–15].

There are many deterministic methods that have been proposed for dealing with the
local optimization problems. See, for example, Refs. [16–20].

The most popular deterministic method is the CG method [18]. CG methods are
exceedingly utilized to find the local minimizer of Problem (1) [21].

However, the CG algorithms have a numerical weakness, so their subsequent actions
might be low if a little step is created away from the local point. Hence, for solving this issue,
a line-search technique is combined with the CG technique to create a globally convergent
algorithm [22,23].

Therefore, many conjugant gradient line-search methods are suggested; see, for exam-
ple, refs. [18,24–28].

The CG method is an efficient and inexpensive technique to deal with Problem (1).
The CG method is an iterative algorithm. Therefore, the candidate solutions are

generated by the following recursive formula.

xk+1 = xk + αk dk , (3)

where the step size αk > 0, and the directions dk are created by the following formula:

dk+1 = −gk+1 + βk dk , d0 = −g0 . (4)

where gk denotes the gradient vector of the function f at the point xk .
Several versions of the CG methods are suggested. The core difference between those

CG algorithms relies on choosing the parameter βk [18,27–29]. The main features of the
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CG method are as follows: it has low memory requirements, it is strongly local, and it has
global convergence properties [30].

Many authors presented several studies to analyze the CG method; see, for exam-
ple, Refs. [31,32].

In 1964, the authors of [33] applied the CG methods to nonlinear problems, and they
proposed the following parameter.

βFR
k

=
‖gk+1‖2

‖gk‖2 . (5)

The authors of [34,35] established the global convergence of the scheme defined in (5); they
used an exact line search and an inexact line search respectively.

However, the author of [36] showed that there are some cases that have some strays;
these jamming occurrences happen when the search directions dk are almost orthogonal to
the gradient vector gk [18].

The authors of [37,38] presented a modification of the parameter βFR
k

for treating the
noise event denoted in [36]. Hence, they proposed the following parameter.

βPRP
k

=
yT

k
gk+1

||gk ||2
, (6)

where yk = gk+1 − gk . When a noise occurs gk+1 ≈ gk , βPRP
k
≈ 0, and dk+1 ≈ −gk+1,

i.e., when jamming happens, the search direction dk is no longer perpendicular to the
gradient vector gk , but it is aligned with the vector −gk . This built-in restart advantage of
the βPRP

k
parameter usually has better quick convergence when compared to the parameter

βFR
k

[18].
The authors of [39] proposed an approach closely related to βPRP

k
, and it is defined as

follows.

βHS
k

=
yT

k
gk+1

dT
k

yk

. (7)

in the case that step-size αk is found by an exact line search algorithm. Hence, by (4) and
the orthogonality situation gT

k+1yk = 0, the following can be obtained:

dT
k yk = (gk+1 − gk)

Tdk = −dT
k

gk = ||gk ||
2. (8)

Therefore, βHS
k

= βPRP
k

when the step size αk is calculated by an exact line search
method. Other fundamentals formulas of the parameter βk which contain one term are
listed as follows.

βLS
k

=
gT

k+1yk

−dT
k

gk

. (9)

Formula (9) was proposed by [40].

βDY
k

=
‖gk+1||2

yT
k

dk

. (10)

Formula (10) was proposed by Dai and Yuan [41]. It is noteworthy that when the f is
quadratic and step size αk is selected to reduce f along dk , the options of the parameter βk

mentioned above are alike for the generic nonlinear function.
Different alternatives have fully different convergence possessions [18].
Many version of the parameter βk have been proposed in two- and three terms; see,

for example, Refs. [32,42–50].
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For example, in the following two approaches, we present some modifications to
obtain a new CG method. See Section 2.

βHZ
k

=
(yT

k
gk)(d

T
k−1yk)− 2||yk ||2(dT

k−1gk)

(dT
k−1yk)

2
. (11)

Formula (11) was proposed by [30].

βMHZ
k

=
(yT

k
gk)(d

T
k−1yk)− 2||yk ||2(dT

k−1gk)

max{σ||yk ||2||dk ||2, (dT
k−1yk)

2}
, (12)

where σ > 0.5 is a constant. Formula (12) was proposed by [49]. The denominator
(dT

k−1yk)
2 in the βHZ

k
is modified to max{σ‖yk‖2‖dk‖2, (dT

k−1yk)
2} in the βMHZ

k
. This

procedure may help the dk stay in a trusted area automatically beneath each iteration [49].
Furthermore, in a situation σ||yk ||2||dk ||2 < (dT

k−1yk)
2, βMHZ

k
decreases to βHZ

k
with αk

calculated to satisfy the inexact line search. Moreover, βHZ
k

decreases to βHS
k

under the
exact line search.

Consequently, by using a line search method, the CG method can satisfy the following
descent condition:

gT
k

dk ≤ −C‖gk‖
2, (13)

where C > 0 is a constant.
The sufficient descent condition (13) has a core task in the convergence analysis of the

algorithms. See [17,30–32,35,41,49,51,52].
However, the CG method has a numerical obstacle; its sub-sequential phases might be

low if a little step is created away from the intended point [49].
Recently, the authors of [48,49] proved that the CG algorithm includes powerful

convergence features if it satisfies the trust-region feature that is determined by

||dk || < Cv ||gk ||, (14)

where Cv > 0 is a constant. It is shown, therefore, that the trust-region property can enable
the search direction dk to be bounded in the trust radius [49]. Numerous researchers pro-
posed many CG algorithms that give perfect results and powerful convergence properties.
See [30,48,49,51].

The selection of the right step size αk can help the CG algorithms to achieve global con-
vergence.

The exact line search is defined as follows:

f (xk + αk dk) = min
α≥0

θ(α) = f (xk + αdk). (15)

It is clear that in big-scale problems, the exact line search cannot be used.
Therefore, there are many techniques to achieve this task. Formula (15), for example,

the weak Wolfe–Powell algorithm (WWP), is a popular technique, and it is exceedingly
utilized. The WWP technique is designed to find the step size αk to satisfy the following
inequalities:

f (xk + αk dk) ≤ f (xk) + δαk gT
k

dk , (16)

and
g(xk + αk dk)

Tdk ≥ σgT
k

dk , (17)

where δ ∈ (0, 0.5) and σ ∈ (δ, 1) are constants.
Inequality (16) is named the Armijo condition, and the WWP line search decreases to

strong Wolfe–Powell (SWP) by substituting Inequality (17) with the following inequality:

|g(xk + αk dk)
Tdk | ≤ −σgT

k
dk , (18)
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Generally, under the WWP line search, it is assumed that the gradient g(x) is Lipschitz
continuous in the convergence analysis. Therefore, the following inequality is satisfied:

||g(x)− g(y)|| ≤ L||x− y||, (19)

with L is a constant ∀ x, y ∈ Rn.
In fact, the CG technique with the line search methods has proven notability in solving

the local optimization problem [18,27,28]. However, in trying to solve Problem (2), the CG
method fails to achieve this task per run because it is trapped to a local point. To prevent
sticking in a local point, random parameters are used [53].
We can summarize the essence of the above discussions as follows.

Recently, there have been many and many proposed approaches presented to improve
the performance of deterministic methods, such as CG methods, gradient descent meth-
ods, Newton methods, etc. Those new approaches are designed to deal with the local
optimization problems. See, for example, Refs. [16–20].

On the other hand, a plentiful number of stochastic approaches are suggested to deal
with the global optimization problems. See, for example, Refs. [1,2,4,5,7,54].
Therefore, to gain the features of both deterministic and stochastic methods, many studies
presented several ideas and suggestions to combine deterministic and stochastic techniques
to obtain a new technique that is efficient and effective in solving Problem (2). Numerical
outcomes demonstrated that the interbreed between classical and stochastic techniques has
been hugely successful. See [55–59].

This work focuses on solving the local and global minimization problems. So, the first
part of this study trades with Problem (1) by suggesting a new modified CG method, while
the second part of this paper presents a new random approach that includes three formulae
by which the candidate solutions are generated randomly.

Therefore, the new proposed stochastic approach is combined with the new modified
CG method that is proposed in the first part of this paper to obtain a new hybrid stochastic
conjugate gradient algorithm that solves Problem (2). The new hybrid stochastic conjugate
gradient algorithm has four formulae by which the candidate solutions are created. One of
the four formulae is a purely deterministic formula, the second one is a mixture of determin-
istic and stochastic parameters, and the other two formulas contain parameters generated
randomly. The bottom line is that we can claim that the main merit that makes the new
hybrid algorithm capable of finding the approximate solution to the global minimum of a
non-convex function comes from the hybridization of random and non-random parameters.

Consequently, the contribution of this paper is divided into two parts.
Part I presents the following contributions.

• A new modified CG technique is proposed and added with a line search for obtaining
a globally convergent algorithm that solves Problem (1). It is abbreviated by SHZ.

• The convergence analysis of the SHZ algorithm is designed.
• The gradient vector is estimated by using a numerical approximation approach (DFF);

step-size h (interval) is randomly.
• The convergence analysis of the DFF method is designed.
• The four FR, SH, HZ and MZH methods are designed like the SHZ algorithm to solve

Problem (1).
• Numerical experiments of the five SHZ FR, SH, HZ and MZH algorithms are analyzed

by using the performance profiles.

Part II presents the following contributions.

� Stochastic parameters are designed (SP).
� The five SHZ, FR, SH, HZ and MZH algorithms are hybridized with the SP technique

to obtain five hybrid algorithms; HSSHZ, HSFR, HSSH, HSHZ and HSMZH. These
five algorithms solve Problem (2).

� Numerical experiments of the five HSSHZ, HSFR, HSSH, HSHZ and HSMZH algo-
rithms are analyzed by using the performance profiles.
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Consequently, the remainder of the study is arranged as follows.
Part I contains the following sections: Section 2 presents a new modified CG- SHZ

technique with its convergence analysis.
In Section 3, the approximate value of the gradient vector is calculated by using the

numerical differentiation. Section 4 presents the numerical investigations of the local
minimization problem. Part II contains the following sections: Section 5 presents a random
approach for unconstrained global optimization. Section 6 presents the hybridization of
the conjugate gradient method with stochastic parameters. The numerical experiments of
Problem (2) are presented in Section 7. Some concluding remarks are given in Section 8.

Part I: Local Minimization Problem

In this part, a new modified CG technique is presented, the convergence analysis of
this technique is designed, the numerical differentiation approach is utilized to calculate
the approximate values of the first derivative, the five algorithms are designed to solve
Problem (1), and their numerical experiments are analyzed by using the performance pro-
files.

2. Suggested CG Method

Recently, the authors of [49] suggested a new MHZ-CG method, relying on the study
which was proposed by the authors of [30]. The MHZ method contains the sufficient
descent and the trust-region features independent of a line search technique. The parameter
of the MHZ is defined by (12).

Therefore, the story in this section begins with the authors of [30] who proposed a new
CG-HZ method, where the parameter of the HZ method is defined by (11). The parameter
βHZ

k
can ensure that dk satisfies the following inequality:

dT
k

gk ≤ −
7
8
||gk ||

2, (20)

where (20) is proved by [30]. If the step size αk is calculated by the true line search, then
βHZ

k
decreases to the βHS

k
that was proposed by [39] because dT

k
gk = 0 is true [49].

Hence, for obtaining the global convergence for a general function, Hager and Zhang [30]
dynamically adjusted the down limitation of βHZ

k
by

dk = −gk + βHZ+

k
dk−1, d0 = −g0 , (21)

βHZ+

k
= max{βHZ, rk}, rk =

−1
||dk−1||min{r,||gk−1 ||}

, where r > 0 is a constant.

Many researchers have suggested several modifications and refinements to improve
the performance of the CG-HZ algorithm. The latest version of the CG-HZ method was
offered by [49]. Yuan et al. [49] presented some modifications to the HZ-CG method, and
the result was obtaining the new CG-MHZ algorithm.

The CG-MHZ algorithm contains a sufficient condition and the trust-region feature.
The research direction of the MHZ-CG technique is designed as follows:

dk = −gk + βMHZ
k

dk−1, d0 = −g0 , (22)

where the βMHZ is defined by (12).
In this paper, the MHZ method is extended and modified to obtain a new proposed

method called the SHZ method such that the SHZ method has a sufficient condition and
the trust-region feature. This method is defined as follows:

dk = −gk + βSHZ
k

dk−1, d0 = −g0 , (23)

βSHZ
k

=
(yT

k
gk)(d

T
k−1yk)− 2||yk ||2(dT

k−1gk)

max{ϑ‖yk‖2‖dk‖2, (dT
k−1yk)

2}
, (24)
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where the ϑ = max{ρ, Rk}, the ρ and Rk are defined as follows. The parameter ρ is changed
randomly at each iteration and its values are taken from the range [0.8, 2) and Rk = 4 f4x.
The values of4 f and4x are calculated by

4 f = | f0 − f Itr |, (25)

where Itr is the number of iterations, and after the Itr number of iterations, f Itr and4 f are
computed. Then, we set f0 = f Itr , while4x is defined by

4x = ‖xk+1 − xk‖, for k = 0, 1, . . . , Itr. (26)

Hence, when ϑ = σ, βSHZ
k

inevitably reduces to one of the following methods
{βMHZ

k
, βHZ

k
, βHS

k
} as follows.

If ϑ = σ and δ‖yk‖2‖dk‖2 > (dT
k−1yk)

2, the βSHZ
k

reduces to the βMHZ
k

. Otherwise,
βSHZ

k
reduces to βHZ

k
or to βHS

k
under the exact line search [49]. This procedure gives the

advantages of the MHZ, HZ and HS methods to the proposed SHZ method. In other words,
the SHZ algorithm gains the characteristics of the three MHZ, HZ and HS algorithms. This
is why the SHZ algorithm is superior to the four other MHZ, HZ, HS and FR methods.

Note: The authors of [49] imposed that the σ > 0.5 is a constant, while the parameter
ϑ is modified dynamically at each iteration.

Convergence Analysis of Algorithm 1

In this section, we present the features of Algorithm 1. We also present the convergence
analysis of this algorithm, and we show that the search direction dk that is defined by
Formula (23) satisfies the sufficient descent condition and the trust-region merit, which are
defined by Formulae (13) and (14), respectively.

Algorithm 1 A conjugate gradient method (CG-SHZ).

Input: f : Rn → R, f ∈ C1, γ ∈ (0, 1) ,k = 0, a starting point xk ∈ Rn and ε > 0.
Output: x∗ = xloc the local minimizer of f , f (x∗), the value of f at x∗

1: Set d0 = −g0 and k := 0.
2: while ‖gk‖ > ε. do
3: compute αk to satisfy (16) and (17).
4: Calculate a new point xk+1 = xk + αk dk .
5: compute fk = f (xk+1), gk = g(xk+1)
6: Set k = k + 1.
7: calculate the search direction dk by (23).
8: end while
9: return xac the local minimizer and its function value fac

Two sensible hypotheses are assumed as follows.

Hypothesis 1. We suppose that Problems (1) and (2) contain an objective function f (x) with the
following characteristics: continuity and differentiability properties.

Hypothesis 2. In some neighborhood ℵ of the level set

` = {x ∈ Rn : f (x) ≤ f (x0)},

the gradient vector g(x) is Lipschitz continuous. This means that there is a fixed real number
L < ∞ such that

‖g(x)− g(y)‖ ≤ L‖x− y‖,

for all x, y ∈ ℵ.
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Lemma 1. Suppose that the sequence {xk} is obtained by Algorithm 1. If dT
k

yk 6= 0, then

gT
k

dk ≤ −c‖gk‖
2, (27)

and
||dk || ≤ rv‖gk‖, (28)

where c = 1− 7
9ϑ > 0, ϑ = max{ρ, Rk}, ρ is taken randomly from ∈ [ 8

10 , 2) at each iteration of
Algorithm 1, 0 ≤ Rk < ∞, and rv = (1 + 3

ϑ ) is the trust-region radius.

Proof. If k = 0, d0 = −g0 , then gT
0

d0 = −||g0 ||2 and ||d0 || = ‖g0‖, which indicates (27)
and (28) by picking c ∈ (0, 1] and rv ∈ [1, ∞) .
Merging (23) with (24), the result is obtaining the following:

gT
k

dk =
(yT

k
gk)(d

T
k−1yk)(gk

Tdk−1)− 2||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2}
− ‖gk‖

2. (29)

The following inequality uT v ≤ 1
2 (||u||2 + ‖v‖2) is applied to the first term of the

numerator of Inequality (29), where u = dk−1gT
k yk , v = yk gk

Tdk−1, and it is clear that
uT v ≤ 7

9 (||u||2 + ‖v‖2) is right.
Therefore, the following inequality obtains

gT
k

dk =
(yT

k
gk)(d

T
k−1yk)(gk

Tdk−1)− 2||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2}
− ‖gk‖

2 ≤

−‖gk‖
2 +

7
9 ||yk ||2‖gk‖2||dk−1||2 + 7

9 ||yk ||2(gk
Tdk−1)

2 − 2||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2}
=

−‖gk‖
2 +

7
9 ||yk ||2‖gk‖2||dk−1||2 − 11

9 ||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2}
≤

−‖gk‖
2 +

7
9 ||yk ||2‖gk‖2||dk−1||2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2}
≤ (

7
9ϑ
− 1)‖gk‖

2,

such that
max

{
ϑ‖yk‖

2‖dk−1‖2, (dT
k−1yk)

2} ≥ ϑ‖yk‖
2‖dk−1‖2, (30)

where ϑ = max{ρ, Rk}. Since ϑ ≥ 8
10 and c = 1− 7

9ϑ > 0, (27) is true.
By using (30), it is obvious that

‖dk‖ =
∥∥∥∥− gk +

(yT
k

gk)(d
T
k−1yk)− 2||yk ||2(dT

k−1gk)

max{ϑ‖yk‖2‖dk‖2, (dT
k−1yk)

2}
dk−1

∥∥∥∥ ≤
‖− gk‖+

||yk ||2‖gk‖‖dk−1‖2 + 2‖yk‖2‖gk‖‖dk−1‖2

ϑ‖yk‖2‖dk−1‖2 =
(
1 +

3
ϑ

)
‖gk‖

Consequently, (28) is met, where rv ∈ [1 + 3
ϑ , ∞). The proof is complete.

Corollary 1. According to Formula (28) of Lemma 1, the following formula is met.

∞

∑
k=0

‖gk‖4

‖dk‖2 = ∞. (31)
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Proof. Since ‖dk‖ ≤ rv‖gk‖2, where 1 < rv < ∞, then ‖dk‖2 ≤ r2
v‖gk‖4, therefore,

‖dk‖
2

‖gk‖
4 ≤

r2
v , hence

‖gk‖
4

‖dk‖
2 ≥ 1

r2
v

. Now, the final expression is summed as k→ ∞. The result is obtaining

the following inequality:
∞

∑
k=0

‖gk‖4

‖dk‖2 ≥
∞

∑
k=0

1
r2

v

=
1
r2

v

∞

∑
k=0

1 = ∞. Therefore, (31) is met.

Under the assumptions, we give a helpful lemma that was basically proved by Zou-
tendijk [60] and Wolfe [61,62].

Lemma 2. Assume that the x0 is the initial point by which Assumption 1 is satisfied. Regarding any
algorithm of Formula (23), dk is a descent direction, and αk satisfies the standard Wolfe conditions
(16) and (17). Hence, the following inequality is met:

∞

∑
k=0

(gk
Tdk)

2

‖dk‖2 < ∞ (32)

Proof. It tracks Formula (17), such that

dT
k

yk = dT
k
(gk+1 − gk) ≥ (σ− 1)gT

k
dk . (33)

On the other hand, the Lipschitz condition (19) implies

(gk+1 − gk)
Tdk ≤ αk L‖dk‖

2. (34)

The above two inequalities give

αk ≥
σ− 1

L
.
gk

Tdk

‖dk‖2 , (35)

which with (16) implies that

fk − fk+1 ≥ c
(gk

Tdk)
2

‖dk‖2 , (36)

where c = δ(1−σ)
L . By summing (36) and with the observation that f is limited below, we

see that (32) holds, which concludes the proof.

Theorem 1. Suppose that Hypotheses 1 and 2 hold, and by utilizing the outcome of Corollary 1,
the sequence {gk} that is generated by Algorithm 1 satisfies the following:

lim
k→∞

inf ‖gk‖ = 0, (37)

Proof. By contradiction, suppose that (37) is not true; then, for some ε > 0, the following
inequality is true:

‖gk‖ ≥ ε. (38)

Hence, with inequality (38) and (27), we obtain

gk
Tdk ≤ −c‖gk‖

2 ≤ −ε2. (39)

Then, we have
gk

Tdk

‖dk‖
≤ −ε2

‖dk‖
;

gk
Tdk

‖dk‖
≥ ε4

‖dk‖2 ,
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and by summing the final expression, we obtain

∞

∑
k=0

(gk
Tdk)

2

‖dk‖2 ≥
∞

∑
k=0

ε4

‖dk‖2 = ∞. (40)

Therefore, the above leads to a contradiction with (32). So, (37) is met.

Note 1: The search direction dk that is defined by Formula (23) satisfies the sufficient
descent condition which is defined by Formula (13).

Note 2: Lemma 1 guarantees that Algorithm 1 has a sufficient descent property and
the trust-region feature automatically.

Note 3: Theorem 1 confirms that the series {gk} that is obtained by Algorithm 1
approaches to 0 as long as k→ ∞.

In the next section, the numerical differentiation approach is discussed by which the
first derivative is estimated and the step size αk is computed.

3. Numerical Differentiation

We now turn our attention to the numerical approximation to compute the approxi-
mate value of the gradient vector. In precept, it can be possible to find an analytic form for
the first derivative for any continuous and differentiable function. However, in some cases,
the analytic form is very complicated. The numerical approximation of the derivative may
be sufficient for some purposes.

In this paper, the values of the αk , gk and the direction dk are computed by using
the numerical differentiation method. Moreover, we have another step size and research
directions that are generated randomly.

Several suggested methods have given fair outcomes for computing the gradient
vector values numerically. See [63–67].

The common approaches by which the first derivative is computed are the finite
difference approximation methods. Therefore, the first derivative f ′(x) can be estimated by
the following numerical differentiation formula:

D f f (xi) =
f (xi+1)− f (xi )

xi+1 − xi

=
f (xi + h)− f (xi )

h
, (41)

where h is limited and little, but it is not necessarily infinitesimally small.
Reasonably, if the value of the h is small, the approximated value of the first derivative

may improve. The forward difference and the central difference are the familiar and
common methods used in many studies; see for example, [68–72].

The Taylor series can be used to derive these formulas. Thus, 3, 4 and 5 points can
be utilized to derive these formulas, but it will be more costly than utilizing 2 points. The
central difference method is known to include aspects of both accuracy and precision [73]
but it needs 2n function evaluations against the forward-difference approximation approach,
which needs n function evaluations for each iteration. So, in this study, the forward-
difference approximation approach is used, because it is a cheap method and it has sensible
precision [66,68].

The advantage of the finite difference approximation approaches relies on choosing
the fit values of the h.

Error approximation of the first derivative is discussed in the next section.
Therefore, the discussion of the error analysis guides us to define an appropriate finite-

difference interval for the forward-difference approximation that balances the truncation
error that grows from the error in the Taylor formula, and the magnitude error that is
obtained from noise during computing the function values [66].
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3.1. Error Analysis

Formula (41) contains the forward-difference approximation form that is used to
estimate the first derivative of the function f . Its errors are proportional to some power
of the values of h. Therefore, it appears that the errors go on to reduce if h is reduced.
However, it is a part of the problem since it is assumed only the truncation error yielded
by truncating the high-order terms in the Taylor series expansion and does not take into
account the round-off error induced by quantization. The round-off error is beside the
truncation error; all of them are discussed in this section as follows.

Regarding this goal, suppose that the function values f (x), f (x + h), are quantized to
θ1 = f (x + h) + ε1 , θ0 = f (x) + ε0 , with the sizes of the round-off errors ε1 and ε0 all being
smaller than some positive number ε, that is |εj | ≤ ε; with j = 0, 1.
Hence, the total error of the forward difference approximation defined by (41) is derived by

D f f (x) =
θ1 − θ0

h
=

f (x + h) + ε1 − f (x)− ε0

h
= f ′(x) +

ε1 − ε0

h
+

Tf

2
h. (42)

Hence, ∣∣D f f (x)− f ′(x)
∣∣ ≤ ∣∣∣ ε1 − ε0

h

∣∣∣+ ∣∣∣Tf

2

∣∣∣h ≤ 2ε

h
+
|Tf |

2
h, (43)

with Tf = f
′′
(x). Therefore, the upper bound of the error is illustrated by the right-hand

side of Formula (43). The maximum limited of error contains two expressions; the first
comes from the rounding error and in inverse proportion to step-size h, whilst the second
comes from the truncation error and in direct proportion to h. These two parts can be

formulated as a function φ(h) with respect to h as follows φ(h) = 2ε
h +

|Tf |
2 h. Now, if we

find the minimizer h∗ of the function φ(h), then the value φ(h∗) is the upper bound of the

total error. Hence dφ(h)
dh = −2ε

h2 +
|Tf |

2 = 0, then

h∗ = 2

√
ε

|Tf |
= 2

√
ε

| f ′′(x)|
. (44)

Therefore, it can be concluded that as we create small values of h, the round-off error
might grow, whilst the truncation error reduces. It is called the “step-size dilemma”.

Consequently, there have to be some optimal values of the h∗ for the forward difference
approximation formula, as derived analytically in (44). However, Formula (44) is only of
theoretical value and cannot be used practically to determine h∗ because we do not have
any information about the second derivative and, therefore, we cannot estimate the values
of Tf .

Therefore, there are many approaches which have been presented to deal with the
step-size dilemma.

Recently, Shi et al. [66] proposed a bisection search for finding a finite-difference interval
for a finite-difference method. Their approach was presented to balance the truncation
error that grows from the error in the Taylor formula and the measurement error obtained
from noise in the function evaluation. According to their numerical experience, the finite-
difference interval h∗ are bounded between the following ranges [2× 10−4, 6.32× 10−1],
[2.72× 10−4, 8.26× 100] and [8.44× 10−3, 3.94× 100] by using the forward and central
differences to estimate the values of the first derivative of the f .

Additionally, the authors of [68] gave a study of the theoretical and practical com-
parison of the approximate values of the gradient vector in derivative-free optimization.
These authors analyzed some approaches for approximating gradients of noisy functions
utilizing only function values; those techniques include a finite difference.

The values of the finite difference interval are as follows 10−8 ≤ h∗ ≤ 1.



Mathematics 2022, 10, 3595 12 of 37

According to the earlier investigations, the core of the difference between all ap-
proaches is to determine the step size h. Hence, the value of the step size is ranged between
this range h∗ ∈ [1, 12× 10−10].

In this paper, the h is designed in a way that makes its values generated randomly.
Additionally, the values of the h are connected to the function values per iteration to cover
this domain, thus the feature here is that the value of h is modified per iteration randomly.

Therefore, a fresh approach to define the h∗ is presented in the following section.

3.2. Selecting a Step-Size h

The forward difference approach is a cheap method compared to the different tech-
niques.

The forward difference approach has shown promising results for minimizing noisy
black-box functions [66].

Depending on the hypotheses which are listed in Section 2, let x0 be any starting point,
thus function f satisfies the following f0 ≥ f1 ≥ . . . ≥ fk , for k = 0, 1, 2, . . .. The numerical
outcomes that are given in the past papers denote that the values of step-size h belong to
the following range [10−10,≤ 1].

Therefore, the next Algorithm 2 is created to generate the values of the h∗ randomly
from the intervals [0.1, 10−8].

Algorithm 2 Algorithm for calculating the values of h∗.

Step 1: At each iteration k, we generate a set random values between 10−2, and 10−7, and
this set of random values is denoted by Lε = {lε1

, lε2
, . . . , lε10

}.
Step 2: The minimum and maximum of the set Lε are extracted, respectively, as follows
Mε = min{l

εi :i=1,2,...,10}, Nε = max{l
εi :i=1,2,...,10} and set M f = M−1

ε
.

Step 3: The function value f is calculated at each k; fk = f (xk).

Now we determine two cases according to the function values of the | fk | as follows.
Case 1: If | fk | ∈ [10−1, ∞), the value of the h is determined by

hk =


√

Nε
M f

if | fk | > M f ,√
Mε
| f f |

otherwise.
(45)

Case 2: If | fk | ∈ [0, 10−1), the value of the h is determined by a random way from the
range [10−4, 10−8].

Example: In this example, we show how the above algorithm is run.
Let us suppose that the point x0 has four different values as starting points with four

different values of f , for example, f0 = f (x0) = {1010, 106, 103, 10−1} and suppose we
generate the set Lε as random values between 10−1, and 10−7 such that Lε = {1.50×
10−4, 5.10× 10−6, 1.01× 10−6, 1.40× 10−2, 1.78× 10−7, 1.92× 10−5, 1.09× 10−3, 2.77×
10−4, 2.99 × 10−04, 5.15 × 10−4}, Mε = 1.78 × 10−7; hence, M f = 5.618 × 106, since

f0 = 1010 > M f = 5.618× 106, then we set F0 = M f = 5.618× 106 and h1 = 2
√

Mε
M f

=

2
√

1.78×10−7

5.618×106 = 3.56 × 10−7. If f0 = 106, f0 = 106 < M f = 5.618 × 106, and then

h1 = 2
√

Mε
F0

= 2
√

5.618×106

106 = 8.438 × 10−7, and f0 = {103 < M f 5.618 × 106, we set

F0 = 103, then h1 = 2
√

Mε
F0

= 2
√

5.618×106

103 = 2.6683× 10−5.

Finally, if f0 = 10−1, then h1 = 2
√

5.618×106

10−1 = 2.67× 10−3.
The above example shows how Case 1 is implemented by using Formula (45).
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Regarding Case 2 when 0 ≤ | fk | < 0.1, the value of the hk is taken randomly from the
range [10−4, 10−8].

3.3. Estimating Gradient Vector

The forward finite difference (DFF) is utilized to compute the approximate value of
the gradient vector of function f at x ∈ Rn by

[DFF]i =
f (x + hei )− f (x)

h
, for i = 1, 2, . . . , n. (46)

where h > 0 is the finite difference interval defined in Section 3.2, and ei ∈ Rn is the ith

column of the identity matrix.
Therefore, g(x) ≈ DFF(x), is the approximate value of the gradient vector of function

f at point x.
Therefore, the step size ϕk is defined in the following.
The function f (x) is estimated by utilizing Taylor’s expansion up to the linear term

around the point xk , for each iteration k. Then we have

f (xk + p) ≈ f (xk)+g(xk)
T p.

We define the quadratic model of f (x) at xk as

mk(p) =
1
2

(
f (xk) + g(xk)

T p
)2

=
1
2

f (xk)
2 + f (xk)g(xk)

T p +
1
2

pT g(xk)g(xk)
T p.

Set p = −ϕg(xk) where ϕ is the step size along the -g(xk). The optimal value of the ϕ
is picked by solving the following subproblem: min

ϕ∈R
mk(ϕ) = 1

2 f (xk)
2− ϕ f (xk)g(xi)

T g(xk)+

1
2 ϕ2(g(xk)

T g(xk))
2. This gives

ϕk =
f (xk)

‖g(xk)‖2 . (47)

Therefore,

‖g(xk)‖
2 =

f (xk)

ϕk

, ϕk 6= 0, (48)

where g(xk) ≈ DFF(xk).

3.4. Convergence Analysis of DFF

The condition which is usually utilized in the convergence analysis of first-order
methods with inexact gradient (DFF) vectors is defined by

||DFF(x)− g(x)|| ≤ C||g(x)||, (49)

for some 0 ≤ C < 1. This condition is introduced by [74,75] and it is called a norm condition.
This condition denotes that the g(x) ≈ DFF(x) is a descent direction for the function
f [68].

However, condition (49) cannot be applied, unless we know ‖g(x)‖; therefore, this
condition might be hard or impossible to verify.

There are many authors who have attempted to deal with this issue; see, for example,
Refs. [68,76–79]. Byrd et al. [76] suggested a practical approach to estimate ‖g(xk)‖,
and they utilized it to guarantee some approximation of (49). Cartis and Scheinberg
[77] and Paquette and Scheinberg [79] replaced condition (49) by

‖DFF(x)− g(x)‖ ≤ kαk ||g(x)||, (50)

where k > 0, and convergence rate analysis were derived for a line search method that
has access to deterministic function values in [77] and stochastic function values (with
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additional assumptions) in [79]. Berahas et al. [68] established conditions under which (49)

holds. For the forward finite differences method (DFF), they set h∗ = 2
√

Mε
L .

Therefore, we present the following

Theorem 2. Under Assumptions 1 and 2 of Section 2, let DFF(x) denote the forward finite
difference approximation to the gradient g(x). Then, for all x ∈ Rn, the following inequality is
true: ∣∣∣‖DFF(xk)‖∞ − ‖g(xk)‖∞

∣∣∣ ≤ ∣∣ f (xk)hi
− f (xk)

∣∣+ f (xk)

ϕk

, ϕk 6= 0, (51)

where the value of the ϕk is estimated by (47). We know that ‖X‖∞ and ‖X‖ are the norm
infinity and the 2-norm, respectively, and they are defined by

‖X‖∞ = max
1≤i≤n

|xi |, (52)

‖X‖ =
√

∑
i

xi
2, (53)

and then
‖X‖∞ = max

1≤i≤n
|xi | ≤

√
∑

i

xi
2. (54)

According to (46) which defines the gradient approximation by forward differences,
the vector of [DFF(xk)]i is described by [DFF(xk)]i = 1

h [ f (xk + ei h) − f (xk)]i , wherer
i = 1, 2, . . . , n, then

‖DFF(xk)‖∞ = max
1≤i≤n

∣∣∣∣∣
[

f (xk + ei h)− f (xk)

h

]
i

∣∣∣∣∣ = 1
h

max
1≤i≤n

|[ f (xk + ei h)− f (xk)]i |,

and therefore, the next inequality is true

‖DFF(xk)‖∞ =
1
h

max
1≤i≤n

|[ f (xk + ei h)− f (xk)]i | ≤ | f (xk)hi
− f (xk)|. (55)

By using (48), (51), (54) and (55), we obtain
∣∣∣‖DFF(xk)‖∞ −‖g(xk)‖∞

∣∣∣ ≤ ‖DFF(xk)‖∞ +

‖g(xk)‖∞ ≤ | f (xk)hi
− f (xk)|+ ‖g(xk)‖2 = | f (xk)hi

− f (xk)|+
f (xk )

ϕk
, ϕk 6= 0.

Therefore, the theorem holds. �

4. Numerical Experiments of Part I

All experiments were run on a PC with Intel(R) Core(TM) i5-3230M CPU@2.60GHz
2.60 GHz with RAM 4.00GB of memory on a Windows 10 operating system. The five
methods were coded by utilizing MATLAB version 8.5.0.197613 (R2015a) and the machine
epsilon was about 10−16.

The model optimization test problems are categorized into two types. The first type
is the test problems that contain a convex function, while the second type include a non-
convex function. Both kinds of test problems are listed in Tables 1–8 such that the second
type of the test problem is referred to by ∗. Columns 1–4 of Table 1 give the data of the test
problems as follows: the abbreviation of the function f is given on Column 1, the number
of variables n is listed on Column 2, the exact function value f (x∗) at the global point x∗ is
presented on Column 3, and the exact value of the norm of the gradient ‖g(x∗)‖ vector is
given by Column 4, where the mark “−” denotes that the value of the norm of the gradient
‖g(x∗)‖ for the convex function satisfies the stopping criterion ‖g(x∗)‖ < 10−6. Columns
5–8 are as Columns 1–4.

The data in Table 1 are taken from [56].
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The numerical results for the local minimizers of all test problems are listed in
Tables 2–8. Columns 1–2 and 8–9 contain the abbreviation of the function f and the
number of the variables n, respectively. Columns 3–7 contain the abbreviation of each
algorithm of the five algorithm SHZ, MHZ, HZ, HS and FR, which present the number of
worst iterations, number of worst function evaluations, number of best iterations, number
of best function evaluations, average of time (CPU), average of the number of iterations
and average of the number of function evaluations, respectively. Columns 10–14 are similar
to Columns 3–7.

Note 1: It is worth noting that the full name for each test function is mentioned in
Appendix A according to the reference in which the test problem is.

Note 2: F denotes that the algorithm has failed to find the local minimizer of the
function f according to the stopping criteria of Algorithm 1 which are listed in Section 4.1
below.

Table 1. List of both kinds of test problems.

f n f (x∗) ‖g(x∗)‖ f n f (x∗) ‖g(x∗)‖
Rn 10, 30, 50, 80, 100 0 - Zn 10, 30, 50, 80, 100 0 -
PW 8, 32, 84, 120 0 - SP 10, 30, 80, 100 0 -
Tr 10, 30, 60, 80 −n(n+4)(n−1)

6
- Su 10, 30, 50, 80, 100 0 -

CV 4 0 - BR 2 0.397887 -
DJ 3 0 - BO 2 0 -
Ma 2 0 - S5∗ 4 −10.1532 3.2 × 10−5

S7∗ 4 −10.4029 - S10∗ 4 −10.5364 3 × 10−5

GP∗ 2 3 2 × 10−6 Ras∗ 2 −2 2.5 × 10−6

Bh1∗ 2 0 2.4 × 10−5 SH∗ 2 −186.7309 2 × 10−6

P8∗ 3 0 - P16∗ 5 0 1.2 × 10−6

CB∗ 2 −1.0316285 2 × 10−5 H3∗ 3 −3.86278 2 × 10−5

H6∗ 6 −3.32237 6 × 10−5 HM∗ 2 0 1.1 × 10−8

Le∗ 10 0 2.1 × 10−6

Table 2. The number of worst iterations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 2915 3740 5705 5080 5185 Rn 30 2270 3555 5170 5140 5050
Rn 50 2605 3805 5705 5290 5145 Rn 80 2750 4010 5795 5150 5890
Rn 100 2820 2950 5050 5930 5840 Zn 10 145 170 225 210 195
Zn 30 1075 995 1825 1575 1425 Zn 50 2295 2600 4180 3645 3515
Zn 80 5335 4900 9255 8610 7345 Zn 100 9095 7490 9905 9905 9905
PW 8 1470 2230 7120 3980 970 PW 32 2135 4515 9700 9700 2075
PW 84 3345 6575 9885 9885 2145 PW 120 4385 7750 9920 9920 4495
SP 10 15 25 25 30 25 SP 30 15 25 30 30 30
SP 80 15 30 25 35 25 SP 100 15 30 30 35 30
Tr 10 575 160 135 355 155 Tr 30 2830 1765 2055 9680 2280
Tr 60 9840 9840 9840 9840 9840 Tr 100 9880 9905 9905 9905 9905
Su 100 155 155 190 200 185 Su 80 140 135 175 190 185
Su 50 115 95 130 130 130 Su 30 75 80 90 95 80
Su 10 45 40 45 40 40 BR 2 75 75 70 65 200
CV 4 2070 1745 1760 2455 5705 DJ 3 15 15 35 40 30
BO 2 35 35 40 40 35 Ma 2 80 105 65 F 140
S5∗ 4 115 445 150 750 155 S7∗ 4 200 275 220 1500 215
S10∗ 4 100 250 205 620 120 GP∗ 2 6670 6670 6670 6670 6670
Ras∗ 2 30 175 1665 280 220 Bh1∗ 2 35 50 400 70 75
SH∗ 2 6670 6670 6670 6670 6670 P8∗ 4 20 8000 8000 1880 4730
P16∗ 5 20 8000 8000 1880 4730 CB∗ 2 25 25 115 25 150
H3∗ 3 415 655 1300 365 7500 H6∗ 6 445 1425 2190 8575 565

HM∗ 2 25 30 25 25 25 Le∗ 10 1105 1575 1815 1025 1200
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Table 3. The number of worst function evaluations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 32,065 41,140 290,955 55,880 57,035 Rn 30 70,370 110,205 160,270 159,340 156,550
Rn 50 132,855 194,055 290,955 269,790 262,395 Rn 80 222,750 324,810 469,395 417,150 477,090
Rn 100 284,820 297,950 510,050 598,930 589,840 Zn 10 1595 1870 2475 2310 2145
Zn 30 33,325 30,845 56,575 48,825 44,175 Zn 50 117,045 132,600 213,180 185,895 179,265
Zn 80 432,135 396,900 749,655 697,410 594,945 Zn 100 918,595 756,490 1,000,405 1,000,405 1,000,405
PW 8 13,230 20,070 64,080 35,820 8730 PW 32 70,455 148,995 320,100 320,100 68,475
PW 84 284,325 558,875 840,225 840,225 182,325 PW 120 530,585 937,750 1,200,320 1,200,320 543,895
SP 10 165 275 275 330 275 SP 30 465 775 930 930 930
SP 80 1215 2430 2025 2835 2025 SP 100 1515 3030 3030 3535 3030
Tr 10 6325 1760 1485 3905 1705 Tr 30 87,730 54,715 63,705 300,080 70,680
Tr 60 600,240 600,240 600,240 600,240 600,240 Tr 100 800,280 1,000,405 1,000,405 1,000,405 1,000,405
Su 100 15,655 15,655 19,190 20,200 18,685 Su 80 11,340 10,935 14,175 15,390 14,985
Su 50 5865 4845 6630 6630 6630 Su 30 2325 2480 2790 2945 2480
Su 10 495 440 495 440 440 BR 2 225 225 210 195 600
CV 4 10,350 8725 8800 12,275 28,525 DJ 3 60 60 140 160 120
BO 2 105 105 160 120 105 Ma 2 240 315 195 F 420
S5∗ 4 575 2225 750 3750 775 S7∗ 4 1000 1375 1100 7500 1075
S10∗ 4 500 1250 1025 3100 600 GP∗ 2 20,010 20,010 20,010 20,010 20,010
Ras∗ 2 90 525 4995 840 660 Bh1∗ 2 105 150 1200 210 225
SH∗ 2 20,010 20,010 20,010 20,010 20,010 P8∗ 4 100 40,000 40,000 9400 23,650
P16∗ 5 100 40,000 40,000 9400 23,650 CB∗ 2 75 75 345 75 450
H3∗ 3 1660 2620 5200 1460 30,000 H6∗ 6 3115 9975 15,330 60,025 3955

HM∗ 2 75 90 75 75 75 Le∗ 10 12,155 17,325 19,965 11,275 13,200

Table 4. The number of best iterations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 360 460 490 520 510 Rn 30 230 485 190 590 420
Rn 50 705 375 490 650 440 Rn 80 230 400 920 125 460
Rn 100 240 275 885 670 705 Zn 10 60 60 115 80 75
Zn 30 245 330 875 875 810 Zn 50 570 905 2235 1765 1885
Zn 80 935 1565 4080 4365 3495 Zn 100 1670 2545 6345 6045 5095
PW 8 180 175 2080 375 225 PW 32 280 2610 1250 390 280
PW 84 510 3525 4115 520 410 PW 120 535 2745 2765 395 435
SP 10 5 10 10 20 10 SP 30 10 10 10 20 10
SP 80 10 10 10 20 15 SP 100 10 10 10 20 15
Tr 10 85 85 65 80 55 Tr 30 735 1370 230 350 220
Tr 60 9840 9840 9840 9840 430 Tr 100 9880 9905 9905 9905 9905
Su 100 70 80 95 95 75 Su 80 65 55 75 100 70
Su 50 50 55 60 70 50 Su 30 40 40 40 45 40
Su 10 20 25 20 25 20 BR 2 15 15 15 15 10
CV 4 275 275 690 370 600 DJ 3 10 10 10 20 10
BO 2 15 15 20 20 20 Ma 2 30 20 20 F 15
S5∗ 4 15 20 20 25 125 S7∗ 4 15 15 15 30 100

S10∗ 4 15 15 20 15 100 GP∗ 2 25 180 170 60 165
Ras∗ 2 10 20 95 15 45 Bh1∗ 2 20 20 30 25 75
SH∗ 2 390 255 840 155 20010 P8∗ 4 10 15 5 15 125
P16∗ 5 10 15 5 15 125 CB∗ 2 15 15 20 15 45
H3∗ 3 5 5 5 5 15 H6∗ 6 50 50 50 50 175

HM∗ 2 10 15 15 15 30 Le∗ 10 65 40 105 70 550
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Table 5. The number of best function evaluations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 3960 5060 24,990 5720 5610 Rn 30 7130 15,035 5890 18,290 13,020
Rn 50 35,955 19,125 24,990 33,150 22,440 Rn 80 18,630 32,400 74,520 10,125 37,260
Rn 100 24,240 27,775 89,385 67,670 71,205 Zn 10 660 660 1265 880 825
Zn 30 7595 10,230 27,125 27,125 25,110 Zn 50 29,070 46,155 113,985 90,015 96,135
Zn 80 75,735 126,765 330,480 353,565 283,095 Zn 100 168,670 257,045 640,845 610,545 514,595
PW 8 1620 1575 18,720 3375 2025 PW 32 9240 86,130 41,250 12,870 9240
PW 84 43,350 299,625 349,775 44,200 34,850 PW 120 64,735 332,145 334,565 47,795 52,635
SP 10 55 110 110 220 110 SP 30 310 310 310 620 310
SP 80 810 810 810 1620 1215 SP 100 1010 1010 1010 2020 1515
Tr 10 935 935 715 880 605 Tr 30 22,785 42,470 7130 10,850 6820
Tr 60 600,240 600,240 600,240 600,240 26,230 Tr 100 800,280 1,000,405 1,000,405 1,000,405 1,000,405
Su 100 7070 8080 9595 9595 7575 Su 80 5265 4455 6075 8100 5670
Su 50 2550 2805 3060 3570 2550 Su 30 1240 1240 1240 1395 1240
Su 10 220 275 220 275 220 BR 2 45 45 45 45 30
CV 4 1375 1375 3450 1850 3000 DJ 3 40 40 40 80 40
BO 2 45 45 80 60 60 Ma 2 90 60 60 F 45
S5∗ 4 75 100 100 125 125 S7∗ 4 75 75 75 150 100

S10∗ 4 75 75 100 75 100 GP∗ 2 75 540 510 180 165
Ras∗ 2 30 60 285 45 45 Bh1∗ 2 60 60 90 75 75
SH∗ 2 1170 765 2520 465 20,010 P8∗ 4 50 75 25 75 125
P16∗ 5 50 75 25 75 125 CB∗ 2 45 45 60 45 45
H3∗ 3 15 15 15 15 15 H6∗ 6 300 300 300 300 175

HM∗ 2 30 45 45 45 30 Le∗ 10 715 440 1155 770 550

Table 6. The average of time.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 1.463 1.441 3.316 2.436 3.215 Rn 30 2.771 3.702 6.831 6.934 6.816
Rn 50 5.571 6.123 13.288 12.286 13.258 Rn 80 10.149 11.273 19.529 21.934 22.283
Rn 100 14.761 15.973 29.596 29.495 32.934 Zn 10 0.083 0.091 0.139 0.137 0.115
Zn 30 1.336 1.365 2.477 3.220 2.290 Zn 50 5.445 5.297 11.689 11.293 10.938
Zn 80 24.818 27.532 58.547 55.403 50.910 Zn 100 53.552 51.210 107.859 104.313 109.531
PW 8 0.493 1.231 4.760 0.985 0.309 PW 32 1.783 6.812 21.873 6.496 1.085
PW 84 8.779 38.644 76.499 16.061 4.562 PW 120 16.955 72.473 113.171 29.623 7.631
SP 10 0.011 0.016 0.020 0.026 0.017 SP 30 0.021 0.032 0.033 0.042 0.036
SP 80 0.060 0.099 0.096 0.165 0.096 SP 100 0.075 0.137 0.125 0.191 0.148
Tr 10 0.183 0.084 0.068 0.144 0.069 Tr 30 2.948 2.891 1.982 24.737 1.256
Tr 60 63.990 73.812 80.235 58.588 70.106 Tr 100 90.259 130.122 134.463 145.078 135.992
Su 100 4.542 4.706 4.736 5.194 5.127 Su 80 2.288 2.753 2.839 2.948 2.716
Su 50 0.780 0.799 0.842 0.921 0.889 Su 30 0.294 0.265 0.298 0.296 0.247
Su 10 0.051 0.043 0.038 0.041 0.036 BR 2 0.022 0.024 0.022 0.019 0.045
CV 4 0.568 0.505 0.762 0.774 6.317 DJ 3 0.008 0.009 0.013 0.020 0.013
BO 2 0.014 0.014 0.016 0.016 0.016 Ma 2 0.026 0.026 0.017 F 0.019
S5∗ 4 0.107 0.321 0.166 0.297 0.162 S7∗ 4 0.231 0.204 0.180 0.554 0.273

S10∗ 4 0.124 0.180 0.208 0.432 0.194 GP∗ 2 6.068 7.927 5.410 11.203 3.164
Ras∗ 2 0.021 0.091 1.355 0.109 0.120 Bh1∗ 2 0.019 0.030 0.184 0.039 0.043
SH∗ 2 13.341 11.597 13.226 12.487 17.294 P8∗ 4 0.011 0.307 0.234 0.247 0.155
P16∗ 5 0.128 0.276 3.452 0.129 3.886 CB∗ 2 0.014 0.015 0.060 0.015 0.058
H3∗ 3 0.103 0.411 0.203 0.114 0.400 H6∗ 6 0.224 0.902 0.205 1.064 0.164

HM∗ 2 0.016 0.021 0.015 0.015 0.016 Le∗ 10 0.501 0.513 0.836 0.553 0.612
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Table 7. The average of number of iterations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 1469.3 1479.3 3114.8 2517.2 2952.5 Rn 30 1273.4 1523.8 2877.9 2867.5 2721.5
Rn 50 1375 1530.6 3114.8 2746.4 2851.1 Rn 80 1379.2 1535.2 2524.7 2885.5 2593.2
Rn 100 1403.9 1421.2 2821 2839 2809.7 Zn 10 104.61 108.92 168.04 155.2 142.16
Zn 30 654.02 674.22 1229.3 1187.3 1078.8 Zn 50 1491.3 1479.2 2947.1 2914.6 2817
Zn 80 3378.6 3298.6 6529 6519.2 6185.1 Zn 100 5125.6 4818.4 9066.1 8703.7 9048.1
PW 8 697.16 1731.6 5774.2 1339.6 441.47 PW 32 1042.5 3675 8852.9 2993.3 660.1
PW 84 1665.2 5767.7 9547.3 2632.5 817.55 PW 120 1774.8 6851.4 9424 2964.5 897.55
SP 10 10.294 16.765 16.471 23.824 18.529 SP 30 10.784 17.941 18.627 25.294 21.176
SP 80 11.176 19.118 19.216 26.471 19.412 SP 100 10.588 19.314 18.725 26.765 20.98
Tr 10 283.24 125.88 100.59 182.06 96.961 Tr 30 1713.5 1610.5 1053 7268.8 649.41
Tr 60 9840 9840 9840 9840 9117.5 Tr 100 9880 9905 9905 9905 9905
Su 100 116.08 112.35 152.06 147.94 141.86 Su 80 96.373 99.02 134.9 137.25 117.35
Su 50 76.667 72.353 95.98 95.686 89.51 Su 30 58.725 54.314 70.392 69.608 57.255
Su 10 32.451 29.706 31.961 33.627 29.706 BR 2 36.961 32.255 35.686 31.667 49.902
CV 4 704.41 634.9 1114.1 1015.2 3365.8 DJ 3 11.078 11.373 21.176 31.275 18.824
BO 2 24.608 23.824 29.02 28.235 27.451 Ma 2 58.824 60.882 39.902 F 40.882
S5∗ 4 52 106.5 76.75 255.25 66.75 S7∗ 4 73.25 73 61.25 387.75 76.5

S10∗ 4 40.25 49.75 57.75 172.75 51.75 GP∗ 2 2053.8 3273.3 2340.3 4125 1381
Ras∗ 2 21.5 68.25 802.25 86.25 88.25 Bh1∗ 2 28.5 33.25 119.5 38 42.5
SH∗ 2 5927.5 5855 6184.5 6344.3 6670 P8∗ 4 13.25 771.5 575.25 603.75 367.5
P16∗ 5 13.25 771.5 575.25 603.75 367.5 CB∗ 2 19.75 19 50.75 19.75 47.5
H3∗ 3 92.25 201.25 225.5 104.75 450 H6∗ 6 108.25 250 130.25 580.5 103.75

HM∗ 2 19.75 20.25 19 19.25 19 Le∗ 10 303.5 323.25 550.75 375 379

Table 8. The average of number of function evaluations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 16,163 16,273 158,855 27,689 32,477 Rn 30 39,476 47,239 89,216 88,894 84,366
Rn 50 70,125 78,060 158,855 140,065 145,405 Rn 80 111,717 124,351 204,501 233,725 210,052
Rn 100 141,796 143,539 284,919 286,741 283,780 Zn 10 1151 1198 1848 1707 1564
Zn 30 20,275 20,901 38,109 36,805 33,444 Zn 50 76,055 75,440 150,300 148,645 143,665
Zn 80 273,669 267,189 528,851 528,057 500,993 Zn 100 517,684 486,662 915,674 879,076 913,862
PW 8 6274 15,584 51,968 12,057 3973 PW 32 34,404 121,275 292,147 98,780 21,783
PW 84 141,542 490,258 811,517 223,758 69,492 PW 120 214,751 829,016 1,140,306 358,706 108,603
SP 10 113 184 181 262 204 SP 30 334 556 578 784 657
SP 80 905 1549 1557 2144 1572 SP 100 1069 1951 1891 2703 2119
Tr 10 3116 1385 1107 2003 1067 Tr 30 53,119 49,925 32,644 225,333 20,132
Tr 60 600,240 600,240 600,240 600,240 556,165 Tr 100 800,280 1,000,405 1,000,405 1,000,405 1,000,405
Su 100 11,724 11,348 15,358 14,942 14,328 Su 80 7806 8021 10,927 11,118 9506
Su 50 3910 3690 4895 4880 4565 Su 30 1821 1684 2182 2158 1775
Su 10 357 327 352 370 327 BR 2 111 97 107 95 150
CV 4 3522 3175 5571 5076 16,829 DJ 3 44 46 85 125 75
BO 2 74 72 116 85 82 Ma 2 177 183 120 F 123
S5∗ 4 260 533 384 1276 334 S7∗ 4 366 365 306 1939 383

S10∗ 4 201 249 289 864 259 GP∗ 2 6161 9820 7021 12,375 4143
Ras∗ 2 65 205 2407 259 265 Bh1∗ 2 86 100 359 114 128
SH∗ 2 17,783 17565 18,554 19,033 20,010 P8∗ 4 66 3858 2876 3019 1838
P16∗ 5 66 3858 2876 3019 1838 CB∗ 2 59 57 152 59 143
H3∗ 3 369 805 902 419 1800 H6∗ 6 758 1750 912 4064 671

HM∗ 2 59 61 57 58 57 Le∗ 10 3339 3556 6058 4125 4169

The stopping criteria of Algorithm 1 are as follows.

4.1. Stopping Criteria of Algorithm 1

Since this section focuses in finding a local minimizer of all test problems, the stopping
criteria of Algorithm 1 can be defined as follows.
According to the discussions of the convergence analysis which are mentioned in the
previous sections, the stopping criterion of Algorithm 1 is, if ‖g(xk)‖ ≤ ε1 is satisfied,
Algorithm 1 stops, where ε1 ∈ [10−6, 10−8]. However, the exact value of the gradient
vector is unknown since the value of the gradient vector is estimated by Formula (46);
therefore, this condition is replaced by ‖DFFk‖ ≤ ε2 or FEs = n104, i.e., if one of them
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is met, Algorithm 1 stops, where ε2 ∈ [10−7, 10−9], FEs denotes the maximum function
evaluations and n is the number variables of the f .

In the following section, the performance profile is presented as an easy tool to compare
the performance of our proposed method versus other methods in finding local minimizers
of convex or non-convex functions regarding the worst and best numbers of iterations and
function evaluations, the average of CPU time and the average of iterations and function
evaluations, respectively.

4.2. Performance Profiles

The performance profile is the best tool for testing the performance of the proposed
algorithms [80–84].

In this paper, the five algorithms’ performance evaluation standards are as follows:
the worst and best numbers of iterations and function emulations, and the average of the
CPU time, iterations and function emulations. They are abbreviated as itr.w, itr.be, FEs.w,
FEs.be, time.a, itr.a and EFs.a, respectively. In the remainder of the paper, the set Fit will be
used to denote the seven criteria; Fit = {itr.w, itr.be, FEs.w, FEs.be, time.a, itr.a, EFs.a}.

Therefore, the numerical outcomes are presented in the form of performance profiles,
as depicted in [82]. The most important characteristic of the performance profiles is that they
can be shown in one figure by plotting for the different solvers a cumulative distribution
function ρs(τ).

The performance ratio is defined by first setting rp,s =
tp,s

min{tp,s :s∈S} , where p ∈ P, P is
a set of test problems, S is the set of solvers, and tp,s is the value obtained by solver s on
test problem p.

Then, define ρs(τ) =
1
|P| size{p ∈ P : rp,s ≤ τ}, where |P| is the number of test prob-

lems.
The value of ρs(1) is the probability that the solver will win over the remaining ones,

i.e., it will yield a value lower than the values of the remaining ones.
In the following, the performance profiles are utilized to evaluate the performance of

the five methods: SHZ, MHZ, HZ, SH and FR.
Therefore, in this paper, the term tp,s indicates one element of the set Fit, |P| = 46 is

the number of test problems. We have 46 unconstrained test problems, 14 of which include
non-convex functions. The group of solvers S = {SHZ, MHZ, HZ, SH, FR} finds the local
minimizers of the 46 test problems; therefore, the values of the Fit are taken from the results
of the 46 test problems as follows.

Each solver s of the set S is run 51 times for each of the 46 problems; at each run, every
element of the set Fit has owned its value. So, they are analyzed in the following.

rp,s =


fitp,s

min{fitp,s :s∈S} if the s pass to solve the p,

∞ otherwise,
(56)

where fitp,s is an element of the Fit for the test problem p by using the solver s.
Note: Formula (56) means that if the final result, obtained by a solver s ∈ S, satisfies

Inequality (57), then the first branch of (56) is computed. Otherwise, we set rp,s = ∞.

‖DFFk‖ ≤ ε2 , (57)

where ε2 ∈ [10−5, 10−9].
Therefore, the performance profile of solver s is defined as follows:

δ(rp,s, τ) =

{
1 if rp,s ≤ τ,
0 otherwise,

(58)
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Therefore, the performance profile for solver s is then given by the following function:

ρs(τ) =
1
|P|

{
∑
p∈P

δ(rp,s, τ)
}

, τ ≥ 1. (59)

As we mentioned above, |P| = 46 and τ ∈ [1, 60].
By definition of Fitp,s, ρs(1) denotes the fraction of test problems for which solver s

performs the best. In general, ρs(τ) can be explained as the probability for solver s ∈ S that
the performance ratio rp,s is within a factor τ of the best possible ratio. Additionally, the es-
sential characteristic of performance profiles is that they present data on the proportional
performance of numerous solvers [82,83].

The numerical outcomes of the five methods are analyzed by using the performance
profiles as follows. Figures 1–4 show the performance profiles of the set solvers S, for each
element of the set Fit, respectively.

The performance profile depicted on the left of Figure 1 (in the term itr.w) compares
the five techniques for a set of the 46 test problems.

The SHZ method has the best performance for the 46 test problems; this means that
our suggested approach is capable of finding a local minimizer to the 46 test problems as
fast as, or faster than, the other four approaches.

For instance, if τ = 1, the SHZ technique is capable of finding the local minimizer for
65% of problems versus the 33%, 20%, 20% and 13% of a set of test problems solved by the
MHZ, HS, FR and HZ methods, respectively.

In general, the term itr.w, τ = 60 displays that all test problems are solved by SHZ
against 96% of test problems solved by the MHZ, HZ and FR methods respectively, while
93% of test problems are solved by the HS method. At τ ≥ 400, all test problems are solved
by the MHZ, HZ and FR methods respectively, while 98% of test problems are solved by
the HS.

The right graph of Figure 1 shows that the method SHZ is capable of finding the local
minimum of all test problems regarding term FEs.w.

The rest of Figures 2–4 show that the SHZ algorithm is superior to the four algorithms
regarding the rest of the terms of the set Fit.

Therefore, the SHZ technique includes the characteristics of efficiency, reliability and
effectiveness in solving Problem (1) compared to the other four methods.

Note: The power of the SHZ technique comes from the fact that the SHZ method gains
the features of the four methods MHZ, HZ and HS, as we mentioned in Section 2.

Figure 1. Cont.



Mathematics 2022, 10, 3595 21 of 37

Figure 1. Plotting the results of the terms itr.w and FEs.w for 5 algorithms.

Figure 2. Plotting the results of the terms itr.be and FEs.be for 5 algorithms.

Figure 3. Plotting the results of the term time.a “CPU” for 5 algorithms.
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Figure 4. Plotting the results of the terms itr.a and FEs.a for 5 algorithms.

Part II: Global Minimization Problem

It is worth mentioning that the final results of Part I for the second set of test problems
contain some global minimizers at some runs for some non-convex functions. This means
that the pure CG technique could not find the global minimizer of the second type of test
problems for each run because it is a local method.

Therefore, to make this method capable of solving Problem (2) per run, the random
technique is proposed and it is added to the CG approach to gain a new PS-CG hybrid
technique that solves Problem (2). In many studies, the numerical outcomes indicated that
the interbreed between a classical method and a random technique is very successful in
overcoming the weakness of these methods. See [55–59].

Consequently, this part of the paper seeks to solve Problem (2).
Therefore, each method of the five CG methods mentioned in Part I is hybridized with

the stochastic technique to obtain five algorithms to try to solve Problem (2).
In the next section, a stochastic technique is presented.

5. Random Technique

In this section, a new random parameter “SP” is presented. This stochastic technique
contains three different formulas by which three different points are generated. This set of
formulas is combined with the CG method to obtain a new algorithm that solves Problem
(2).

Random Parameters (SP Technique)

Step 1: The first point is computed as follows, generate Vk ∼ [−1, 1]n is as a random
vector, set γk = 10ψk , ψk ∈ [0.01, 1), where the interval [0.01, 1) is divided into Itr of fractions
and at every iteration k, the parameter ψk takes one value of the Itr and then computes

λk =
(1+γk )

|Vi |

γk
SVi as a research direction with the step lengths, where i = 1, 2, . . . , n, n is
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the of number variables, Itr is the number of iterations, and SVi denotes the signs of the V
and is defined by

SVi =

{
−1 if Vi < 0,

1 otherwise.
(60)

Thus, a point is calculated as follows:

x1 = xac + λk , (61)

where xac is the best point obtained yet, and then we compute f1 = f (x1).
Step 2: The second point is defined by

x2 = xac + ηk Bk , (62)

where Bk = ϕk dk , ϕk is defined by (47), ηk ∈ (0, 2) is a random number, and the dk is
defined by (23). Then, we compute f2 = f (x2).

Step 3: This point is defined by

x3 = Xw +
1
2

Dx, (63)

where Dx =
(1+µk )

|Vi |−1
µk+0.1 SVi , µk = | fac|2, fac is the function value at the point xac that has

been accepted, and Xw is a stochastic variable picked from the feasible range of the objective
function. This means that for Xw ∼ [a, b]n, a and b are the lower and upper bounds of the
feasible range, respectively, and the random vector V with its signs SVi is defined by the
first step.

Therefore, we calculate f3 = f (x3).
For finding the global minimizer of a non-convex function, the above stochastic

technique is used since Algorithm 1 is not capable of finding the global solution at each run.
In other words, in some runs, Algorithm 1 fails to find the global solution to this function
due to it sticking to a local point.

In the following example, we show how the SP algorithm is run.
Example: This example shows how the three steps of the SP algorithm are imple-

mented.
We use the first test problem of the list of the test problems that are listed in Appendix A.

R2(x) = 100(x2
1
− x2)

2 + (x1 − 1)2, to facilitate an explanation of the mechanism of using
the Sp algorithm (Formulas (61)–(63)), we use the following easy information about the
function R2(x), n = 2 is the number of the variables, xac = [2;−1], or xac = [2; 1], where
xac represents the best solution has been accepted so far or the starting point; hence, the
function values at the two points are R2(xac) = 100(22 + 1)2 + (2− 1)2 = 2500 + 1 = 2501
and R2(xac) = 100(22 − 1)2 + (2− 1)2 = 900 + 1 = 901.

Supposing Itr = 5 is the number of iterations, the interval [0.01; 1) is divided into
five fractions with step size 1−0.01

5 = 0.198, and thus the set of this fractions is A =
{0.01, 0.208, 0.406, 0.604, 0.802}, let k be 3 which means the algorithm is at the third
iteration. Then, ψ3 = 0.406, γ3 = 10ψ3 = 100.406 = 2.5468. Let V3 be [−0.5; 1], then

λ3 =

[
(1+2.5468)|−0.5|

2.5468 ×−1; (1+2.5468)|1|
2.5468 × 1

]
=

[
− 1.8833

2.5468 ; 3.5468
2.5468

]
=

[
− 0.73948; 1.3926

]
.

Therefore, the new solution is computed by Formula (61) as follows.
x1 = xac + λ3 = [2;−1] + [−0.73948; 1.3926] = [1.2605; 0.3926] or x1 = xac + λ3 =

[2; 1] + [−0.73948; 1.3926] = [1.2605; 2.3926].
The function values at both points are as follows.

R2(x1) = 100(1.26052 − 0.3926)2 + (1.2605− 1)2 = 143.1 + 0.06786 = 143.17 or R2(x1) =
100(1.26052 − 2.3926)2 + (1.2605− 1)2 = 64.6 + 0.06786 = 64.668.

Therefore, R2(x1) < R2(xac); this means the solution that is generated by Formula (61)
reduces the function value.
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In the following, we explain how the candidate solution is generated by Formula (62).
Let Mε = 1.2× 10−6. By using Formula (45), we obtain h3 = 4.381× 10−5 as the

step size h (a random interval) to the difference approximations method, and then we
have xh1

= [xac(1) + h3 ; xac(2)] = [2 + 4.381× 10−5;−1], xh2
= [xac(1); xac(2) + h3 ] =

[2; −1 + 4.381× 10−5].
Therefore, the values of the function at the three points xac, xh1

and xh2
are listed in

the following.
R2(xac) = 2501, R2(xh1

) = 2501.175 and R2(xh2
) = 2500.956.

We compute the approximate value of the gradient vector by Formula (46) as follows:

DFF(xac) =

[
2501.175− 2501

4.381× 10−5 ;
2500.956− 2501

4.381× 10−5

]
=
[
3994.522; −1004.34

]
,

ϕ3 = 2501
‖DFF‖2 = 0.0002, where ϕ3 is defined by (47).

We consider d3 = −g(xac) ≈
[
− 3994.522; 1004.34

]
because we do not have informa-

tion about the value of the d2 in this illustration example.
Now, we apply Formula (62), as follows B3 = ϕ3 d2 = [−0.799; 0.201], we take

η3 = 0.971 as a random number from the range (0, 2), then x2 = [2;−1] + 0.971 ×
[−0.799; 0.201] = [1.2242; −0.80483], the function value at the point x2 is R2(x2) = 530.66.

We note that the R2(x2) = 530.66 < R2(xac) = 2501, i.e., the function value is reduced
by the point x2 .

In the following, we explain how the candidate solution is generated by Formula (63).

µ3 = | fac|2 = 25012 = 6,255,001, Dx =
[ (1+6,255,001)|−0.5|−1

6,255,001+0.1 × −1; (1+6,255,001)|1|−1
6,255,001+0.1 ×

1
]
=
[
− 2501−1

6,255,001.1 ; 6,255,002−1
6,255,001.1

]
=
[
− 0.0004; 0.999

]
. Xw = [−3.095; 8.701] is as a random

vector picked from the range [−5, 10]2, and then x3 = [−3.095; 8.701]+ 1
2 [−0.0004; 0.999] =

[−3.095; 8.701] + [−0.0002; 0.4995] = [−3.0952; 9.2005].
We compute the function value at the point x3 ; R2(x3) = 100((−3.0952)2 − 9.2005)2 +

(−3.0952− 1)2 = 14.422 + 16.771 = 31.193.
We note that the R2(x3) = 31.193 < R2(xac) = 2501. Therefore, the point x3 minimizes

the function value.
According to the above example that illustrates the mechanism of Formulas (61)–(63),

we deduce the following results.

Remark 1. Formulas (3), (61) and (62) are the main formulas which are used in the new hybrid
proposed algorithm that is described in Section 6. However, Formula (63) is used when ∆ f = 0 that
is defined by Formula (25); in this case, Algorithm 3 reaches a critical point, thus if this point is
the approximate value of the global minimizer point of the f , then Algorithm 3 stops according to
the condition in Line 4 or Line 1 of Algorithm 3. Otherwise, the candidate solution is generated by
Formula (63); see Section 6. Consequently, in this example, at iteration k = 3, the result which is
obtained by Formula (63) cannot be taken into account due to the ∆ f 6= 0.

Remark 2. All Formulas (61)–(63) minimize the function value from any starting point.

6. Hybridization of the CG Method with Stochastic Parameters

When a stochastic method as a global optimization algorithm is combined with a
globally convergent method (deterministic method), the result is a global optimization
algorithm [55,56].

Therefore, the SP technique is hybridized with each of the five conjugate gradient
methods SHZ, MHZ, HZ, HS and FR to obtain five techniques.

Our proposed algorithm is called a hybrid stochastic CG method abbreviated by
HSSHZ that solves Problem (2). However, Algorithm 3 represents five alternative algo-
rithms when the SHZ method is hybridized with the PS technique, then we obtain a new
algorithm abbreviated by HSSHZ. When we combine any method of MHZ, HZ, HS or FR,
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we obtain four other abbreviations of algorithms as follows: HSMHZ, HSHZ, HSHS and
HSFR, respectively.

In general, the outputs of this paper are five algorithms that solve Problem (2), where
the best one is the HSSHZ algorithm as illustrated by the numerical experiments section of
Part II.

In the following, Algorithm 1 is combined with SP technique to obtain Algorithm 3.
The SP method permits conducting an exhaustive wipe of the search range to guarantee

that the global minimizer point is visited at least once per run.

Algorithm 3 Hybrid stochastic CG method.

Input: f : Rn → R, f ∈ C1, fac = fcg gained by Algorithm 1 and ε > 0.
Output: xgl = xac the global minimizer of f , f (xgl ), the value of f at xgl .

1: while | fac − f ∗| > ε or FEs< n104 do
2: fcg is a function value f gained by Algorithm 1.
3: fac = min{ fcg, f1 , f2} and xac the best point gives the fac.
4: if | fac − f ∗| ≤ ε then
5: Stop.
6: end if
7: if4 f == 0 then
8: calculate the x3 and the f3 = f (x3) by Formula (63).
9: if f3 < fac then

10: the x3 is accepted, compute the xac → x3 , fac → f3 , and go to Line 1.
11: else
12: generate another point x3 by Formula (63).
13: end if
14: else
15: go to Line 1.
16: end if
17: end while
18: return xac the best point and its function value fac

A Mechanism Running Algorithm 3

As we mentioned above, Algorithm 3 is a combination of two methods; the first is
a CG method of the five techniques CG= {SHZ, MHZ, HZ, SH, FR} that are discussed
in Part I, and the second is a random method is depicted by Section 5. The point xcg is
obtained by Algorithm 1 and it will be an input to Algorithm 3.

Algorithm 3 begins with Line 1 that is the stopping standard of the algorithm. There-
fore, Algorithm 3 ends if one of the following standards is satisfied: The first standard
is | fac − f ∗| ≤ ε, and the second standard is FEs≥ n104, where fac the best value of the
function f is gained, the f ∗ is the true solution, ε = 10−6, FEs is the number of function
evaluations, and FEs= n104 is a stopping standard indicated by [85,86].

In Line 3, the best value of f is selected from the three values of the function fcg, f1

and f2 , and indicated by fac, the three values of the function f are calculated by Algorithms
(1), (61) and (62), respectively, and xac indicates this.

In Line 4, if | fac − f ∗| ≤ ε is fulfilled, the algorithm ends. The standard that is listed
in Line 7 gives the algorithm an opportunity to flee from the local points. Consequently,
if 4 f = 0, then the algorithm has reached a crucial point. Therefore, if the norm of the
gradient vector is 0 or ≈0, this point is either a local point or the global point. According to
the above actions, the hybrid algorithm has been granted sequential opportunities to escape
out of a snare (a local point). Thus, the procedures in Lines 8–12 are eligible for helping the
algorithm to flee this snare, especially since the second stopping standard guarantees that
most of the research domain is scanned.

The numerical outcomes of the five methods are given in the next section.
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7. Numerical Experiments of Part II

The numerical results for the second test problems (non-convex functions) are pre-
sented, and these results are obtained by Algorithm 3.

The performance profiles tool that is described in Part I is used here for assessing the
achievement of Algorithm 3 that contains five alternatives of algorithms as we mentioned
above in Section 6.

The numerical results of the second type of the test problems are listed in Tables 9–15.
Columns 1–2 and 8–9 contain the abbreviation of the function f and the number of the
unknowns n, respectively. Columns 3–7 contain the abbreviation of each algorithm of the
five algorithm HSSHZ, HSMHZ, HSHZ, HSHS and HSFR, which present the number of
worst iterations, number of worst function evaluations, number of best iterations, number
of best function evaluations, average of time (CPU), average of number of iterations and
average of number of function evaluations, respectively. Columns 10–14 are similar to
Columns 3–7.

Note: F denotes that the algorithm has failed to find the local minimizer of the function
f according to the stopping criteria of Algorithm 3 which are listed in Section 6.

Table 9. The number of worst iterations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 3150 55 85 F F S7∗ 4 10,000 F 10,000 F F
S10∗ 4 710 F 3020 F F HM∗ 2 40 100 95 75 180
H∗ 3 300 590 1155 465 1270 H∗ 6 50 500 300 9550 F

CB∗ 2 55 145 15 200 90 P8∗ 4 20 15 15 550 10
P16∗ 5 755 835 3280 F 7300 SH∗ 2 100 115 200 250 190
Bh1∗ 2 205 F F F F Ras∗ 2 1310 F F F F
GP∗ 2 20 F F 300 F Le∗ 10 2470 1430 F F 3100

Table 10. The number of worst function evaluations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 12,600 220 340 F F S7∗ 4 40,000 F 40,000 F F
S10∗ 4 2840 F 12,080 F F HM∗ 2 120 200 190 150 360
H∗ 3 900 1770 3465 1395 3810 H∗ 6 300 3000 1800 57,300 F

CB∗ 2 110 290 30 400 180 P8∗ 4 80 60 60 2200 40
P16∗ 5 3775 4175 16,400 F 36,500 SH∗ 2 200 230 400 500 380
Bh1∗ 2 410 F F F F Ras∗ 2 2620 F F F F
GP∗ 2 40 F F 600 F Le∗ 10 24,700 14,300 F F 31,000

Table 11. The number of best iterations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 50 35 55 F F S7∗ 4 750 F 520 F F
S10∗ 4 20 F 70 F F HM∗ 2 15 10 10 10 5
H∗ 3 50 60 85 20 130 H∗ 6 50 100 100 50 F

CB∗ 2 15 10 10 50 10 P8∗ 4 5 5 5 50 5
P16∗ 5 150 35 80 F 40 SH∗ 2 10 10 10 50 10
Bh1∗ 2 20 F F F F Ras∗ 2 10 F F F F
GP∗ 2 15 F F 50 F Le∗ 10 400 120 F F 395
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Table 12. The number of best function evaluations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 200 140 220 F F S7∗ 4 3000 F 2080 F F
S10∗ 4 80 F 280 F F HM∗ 2 45 20 20 20 10
H∗ 3 150 180 255 60 390 H∗ 6 300 600 600 300 F

CB∗ 2 30 20 20 100 20 P8∗ 4 20 20 20 200 20
P16∗ 5 725 175 400 F 200 SH∗ 2 20 20 20 100 20
Bh1∗ 2 40 F F F F Ras∗ 2 20 F F F F
GP∗ 2 30 F F 100 F Le∗ 10 4000 1200 F F 3950

Table 13. The average of time.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 0.720 0.050 0.046 F F S7∗ 4 7.368 F 13.249 F F
S10∗ 4 0.151 F 0.885 F F HM∗ 2 0.017 0.031 0.028 0.021 0.053
H∗ 3 0.186 0.353 0.409 0.271 0.361 H∗ 6 0.057 0.194 0.143 4.712 F

CB∗ 2 0.018 0.025 0.010 0.049 0.030 P8∗ 4 0.014 0.015 0.009 0.116 0.007
P16∗ 5 0.319 0.135 0.683 F 1.606 SH∗ 2 0.028 0.037 0.050 0.084 0.039
Bh1∗ 2 0.039 F F F F Ras∗ 2 0.261 F F F F
GP∗ 2 0.015 F F 0.078 F Le∗ 10 1.221 0.627 F F 2.087

Table 14. The average of number of iterations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 416.7 47 67 F F S7∗ 4 5928.7 F 8648 F F
S10∗ 4 131.3 F 589 F F HM∗ 2 24.3 29 34.8 25.8 50.8
H∗ 3 213.3 268.8 373.3 247 333.8 H∗ 6 50 205 177.5 2382.5 F

CB∗ 2 26 23.3 12.8 57.5 36.8 P8∗ 4 12 11 10.5 267.5 6.3
P16∗ 5 376 171.25 878.8 F 2208.5 SH∗ 2 30.3 39 48.5 65 41.5
Bh1∗ 2 74.3 F F F F Ras∗ 2 346.7 F F F F
GP∗ 2 18 F F 62.5 F Le∗ 10 1012.7 506 F F 1380.3

Table 15. The average of number of function evaluations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 1666.7 188 268 F F S7∗ 4 23,714.7 F 34,592 F F
S10∗ 4 525.3 F 2356 F F HM∗ 2 73 58 69.5 51.5 101.5
H∗ 3 640 806.3 1119.8 741 1001.3 H∗ 6 300 1230 1065 14,295 F

CB∗ 2 52 46.5 25.5 115 73.5 P8∗ 4 48 44 42 1070 25
P16∗ 5 1880 856.3 4393.8 F 11,042.5 SH∗ 2 60.7 78 97 130 83
Bh1∗ 2 148.7 F F F F Ras∗ 2 693.3 F F F F
GP∗ 2 36 F F 125 F Le∗ 10 10,126.7 5060 F F 13,802.5

The performance profiles for the five algorithms are analyzed as follows.
Figures 5–8 show the performance profiles of the five set solvers S regarding the set

standard Fit that is mentioned in Section 4.2.
The performance profiles which are drawn on the left of Figure 5 (in the term itr.w)

compares 5 methods for the 14 test problems.
The HSSHZ technique has a good achievement (for the term itr.w) for all test problems,

which indicates that the HSSHZ technique is capable of solving Problem (2) as fast as or
faster than the four techniques.

For instance, if τ = 1, the HSSHZ algorithm solves 71% of the 14 test problems against
14%, 14%, 07% and 0%, of the 14 test problems solved by the HSMHZ, HSHZ, HSFR and
HSHS algorithms, respectively.

In general, for the term itr.w, τ ≥ 60 exhibits that the second type of the test problems
are solved by HSSHZ, while 64%, 71%, 43% and 50% of test problems are solved by the
HSMHZ, HSHZ, HSHS and HSFR algorithms respectively.
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Figures 5–8 demonstrate that the performance of the HSSHZ technique is better than
the performance of the four techniques regarding the seven standards listed in the set Fit,
respectively.

Therefore, the HSSHZ technique includes the characteristics of efficiency, reliability
and effectiveness in finding the global minimizer of the non-convex function f compared
to the other four methods.

It is worth observing that the power of the HSSHZ algorithm comes from the fact that
the SHZ method gains the features of the four methods, MHZ, HZ, HS and FR, as mentioned
in Section 2.

Note 1: In Algorithm 3, a run is considered successful if Inequality (64) is met.

| fac − f ∗| ≤ 10−5, (64)

where f ∗ is the exact global solution that is listed in Columns 3 and 7 of Table 1, respectively,
and the fac is the final result obtained by Algorithm 3.

Note 2: Formula (56) means if the final result fac , obtained by Algorithm 3 satisfies
Inequality (64), then the first branch of (56) is computed; otherwise, we set rp,s = ∞.

Figure 5. Plotting the results of the terms itr.w and FEs.w for 5 algorithms.
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Figure 6. Plotting the results of the terms itr.be and FEs.be for 5 algorithms.

Figure 7. Plotting the results of the term time.a “CPU” for 5 algorithms.
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Figure 8. Plotting the results of the terms itr.a and FEs.a for 5 algorithms.

8. Conclusions and Future Work

A new modified CG algorithm is suggested, named SHZ. The SHZ finds the local
minimizers of unconstrained optimization problems. The modernized formulae of the SHZ
algorithm are more complicated than previous approaches; nevertheless, the numerical
experiments of the SHZ are very strong. The convergence analysis of the SHZ algorithm
is designed. We also analyzed the gradient approximation g(x) ≈ DFF constructed by
finite differences (the forward differences method). This method includes a new approach
for selecting the fit value of the h according to the value of the objective function and
it is updated dynamically at each iteration. The numerical results demonstrate that the
performance of the SHZ method is positively competitive with the other four conjugate
gradient methods based on performance profiles.

Comparing the final results of the gradient vector that were obtained by the method
DFF to the exact values of the gradient vector demonstrates that the fresh technique
succeeded in picking the right value of h. The proposed random approach recreates a critical
role to make the SHZ method capable of finding the global minimizers of unconstrained
optimization test problems, especially when the objective function is non-convex.

It can be worth observing that the power of the HSSHZ algorithm comes from the fact
that the SHZ method gains the characteristics of the four methods, MHZ, HZ, HS and FR.

The suggested approach can be improved and modified to deal with constrained,
multi-objective optimization problems, and it will be used for image restorations.
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Appendix A. List of Test Problems

1 Rn: Rosenbrock functions [57,87,88]

min
x

{ n−1

∑
i=1

[
100(x2

i − xi+1)
2 + (xi − 1)2

]}
.

Range of starting points −5 < xi < 10, i = 1, 2, ..., n.
Global minima: f (x∗) = 0 at x∗ =

(
1, 1, ..., 1

)
.

2 Zn: Zakharov functions [57,80,87,88]

min
x

{ n

∑
i=1

x2
i +

( n

∑
i=1

0.5ixi

)2
+
(

∑ 0.5ixi

)4
}

.

Range of starting points −5 < xi < 10, i = 1, 2, ..., n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0, ..., 0

)
.

3 PW: Powell function [80]

min
x

{ n
4
∑

i=1

[
(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − x4i)
2 + (x4i−2 − 2x4i−1)

4 + 10(x4i−3 −

x4i)
4
]}

. Range of starting points −600 < xi < 600, i = 1, 2, ..., n.

Global minima: f (x∗) = 0 at x∗ =
(
0, 0, ..., 0

)
.

4 SP: Sphere function [89]

min
x

{ n

∑
i=1

x2
i

}
.

Range of starting points −10 ≤ xi ≤ 10, i = 1, 2, ..., n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0, ..., 0

)
.

5 Tr: Trid function [80]

min
n

∑
i=1

(xi − 1)2 −
n

∑
i=2

xixi−1 .

Range of starting points −n2 < xi < n2, i = 1, 2, ..., n.
Global minima : f (x∗) = n(n+4)(n−1)

6 . at x∗ = i(n + 1− i)
6: Sum Squares function [90]

min
x

{ n

∑
i=1

ix2
i

}
.

Range of starting points −100 < xi < 100, i = 1, 2, ..., n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0, ..., 0

)
.

7 CV: Colville function [57,80,91]

min
x

{
100
(

x2
1 − x2

)2
+
(
x1 − 1

)2
+
(

x3 − 1
)2

+ 90
(

x2
3 − x4

)2

+ 10.1
((

x2 − 1
)2

+
(

x4 − 1
)2
)
+ 19.8

(
x2 − 1

)(
x4 − 1

)2
}

.
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Range of starting points −10 < xi < 10, i = 1, 2, ..., n.
Global minima: f (x∗) = 0 at x∗ = (1, 1, 1, 1).

8 BR: Branin function [57,92,93]

min
x

{
(x2 − 5.1

4π2 x2
1 +

5
π x1 − 6)2 + 10(1− 1

8π cos(x1)) + 10
}

.

Range of starting points −5 < xi < 15, i = 1, 2.
Only one global minima: f (x∗) = 0.397887. at x∗ = {(−π, 12.275),
(9.42478, 2.475), (π, 2.275)}.

9 DJ: De Joung function [57,87,88]

min
x

{
x2

1 + x2
2 + x2

3

}
.

Range of starting points −5 < xi < 15, i = 1, 2, 3.
Number of local minima: no local minima.
Global minima: f (x∗) = 0 at x∗ = (0, 0, 0).

10 BO: Booth function [89]

min
x

{
(x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

}
.

Range of starting points −10 < xi < 10, i = 1, 2, ..., n.
Global minima: f (x∗) = 0 at x∗ =

(
1, 3
)
.

11 Ma: Matyas function [90]

min
x

{
0.26

(
x2

1
+ x2

2

)
− 0.48x1 x2

}
.

Range of starting points −10 < xi < 10, i = 1, 2, ..., n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0

)
.

12 Sm∗: Shekel functions [57,80,87,88,92–94]

min
x

{
−

m

∑
j=1

( 4

∑
i=1

(
xi − Aij

)2
+ cj

)−1
}

.

where c = 0.1[1, 2, 2, 4, 4, 6, 3, 7, 5, 5],

A =


4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0


Range of starting points 0 < xi < 10, i = 1, ..., n.
Number of local minima: m local minima.
Global minima:

f (x∗)n,m =


−10.1532 , when m = 5,
−10.4029 , when m = 7,
−10.5364 , when m = 10.

Global minima for three functions at x∗ =
(
4, 4, 4, 4

)
.

13 GP∗: Goldstein and Price function [57,80,87,88,92,94]
u(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)

v(x) = 30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2).

min
x

{
v(x)u(x)

}
.

Range of starting points −2 < xi < 2, i = 1, 2.
Number of local minima: 4 local minima.
Global minima: f (x∗) = 3 at x∗ = (0,−1).
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14 Ras∗: Rastrigin function [93]

min
x

{
x2

1 + x2
2 − cos(18x1)− cos(18x2)

}
.

Range of starting points −1 < xi < 1, i = 1, 2.
Number of local minima: many local minima.
Global minima: f (x∗) = −2 at x∗ = (0, 0).

15 Bh1∗: Bohachevsky function [80]

min
x

{
x2

1 + 2x2
2 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7

}
.

Range of starting points −100 < xi < 100, i = 1, 2.
Number of local minima: many local minima.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0
)
.

16 SH∗: Shubert function in [57,80,87,88,92]

min
x

{( 5

∑
i=1

icos
(
(i + 1)x1 + i

))( 5

∑
i=1

icos
(
(i + 1)x2 + i

))}
.

Range of starting points −5.12 < xi < 5.12, i = 1, 2.
Number of local minima: 760 local minima.
Global minima: f (x∗) = −186.7309 at 18 point different of x∗.

17 P8∗ Ref. [92]

min
x

{
π

n

(
k1sin(πy1)

2 +
n−1

∑
i=1

(
yi − k2

)2
[
1 + k1sin(πyi+1)

2
]
+ (yn − k2)

2
)}

,

with yi = 1 + 1
4

(
xi + 1

)
, k1 = 10 and k2 = 1.

Range of starting points −10 ≤ xi ≤ 10, i = 1, 2, 3.
Number of local minima: 53 local minima.
Global minima: f (x∗) = 0 at x∗ = (−1,−1,−1).

18 P16∗ Ref. [92]

min
x

k3

{
sin2(πk4x1) +

n−1

∑
i=1

(
xi − k5

)2
[
1 + k6sin2(πk4xi+1)

]
+ (xn − k5)

2
[
1 + k6sin2(πk7xn)

]}
,

where k3 = 0.1,k4 = 3, k5 = 1, k6 = 1,k7 = 2.
Range of starting points −5 ≤ xi ≤ 5, i = 1, .., n.
Number of local minima: 155 local minima.
Global minima: f (x∗) = 0 at x∗ = (1, 1, 1, 1, 1).

19 CB∗: Camel back in [80] and camel function in [93]

min
x

{
4x2

1 − 2.1x4
1 +

1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2

}
.

Range of starting points −5 < xi < 5, i = 1, 2.
Number of local minima: many local minima.
Global minima: f (x∗) = −1.0316285 at x∗ = {(0.089842,−0.71266),
(−0.089842, 0.71266)}.

20 H3∗: Hartmann function [57,80,87,88,92–94]

min
x

{
−

4

∑
i=1

ciexp
(
−

3

∑
j=1

aij
(
xj − pij

)2
)}

.
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Range of starting points −1 < xj < 1, j = 1, 2, 3.
Number of local minima: 4 local minima.
Global minima: f (x∗) = −3.86278 at x∗ =

(
0.114614, 0.555649, 0.852547

)
.

21 H6∗: Hartmann function [57,80,87,88,92–94]

min
x

{
−

4

∑
i=1

ciexp
(
−

6

∑
j=1

aij
(
xj − pij

)2
)}

.

Range of starting points −1 < xj < 1, j = 1, 2, ..., n.
Number of local minima: 4 local minima.
Global minima: f (x∗) = −3.32237 at x∗ =

(
0.201690, 0.150011, 0.476874,

0.275332,0.311652, 0.657300
)
.

22 HM∗: hump Function [57]

min
x

{
1.0316285 + 4x2

1 − 2.1x4
1 +

1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2

}
.

Range of starting points −5 < xi < 5, i = 1, 2.
Number of local minima: 3 local minima.
Global minima: f (x∗) = 0 at x∗ = {(0.0898,−0.7126), (−0.0898, 0.7126)}.

23 Le∗: Levy function [95]

min
x

{
sin2(πw1) +

n−1

∑
i=1

(wi − 1)2
(

1 + 10sin2(πwi + 1)
)
+ (wn − 1)2

[
1 + sin2(2πwn)

]}
,

where wi = 1 + xi−1
4 , for i = 1, ..., n.

Range of starting points −10 < xi < 10, i = 1, 2, ..., n.
Number of local minima: many local minima.
Global minima: f (x∗) = 0 at x∗ =

(
1, 1, ..., 1

)
.
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