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Abstract: The current lightweight face recognition models need improvement in terms of floating
point operations (FLOPs), parameters, and model size. Motivated by ConvNeXt and MobileFaceNet,
a family of lightweight face recognition models known as ConvFaceNeXt is introduced to overcome
the shortcomings listed above. ConvFaceNeXt has three main parts, which are the stem, bottleneck,
and embedding partitions. Unlike ConvNeXt, which applies the revamped inverted bottleneck
dubbed the ConvNeXt block in a large ResNet-50 model, the ConvFaceNeXt family is designed as
lightweight models. The enhanced ConvNeXt (ECN) block is proposed as the main building block
for ConvFaceNeXt. The ECN block contributes significantly to lowering the FLOP count. In addition
to the typical downsampling approach using convolution with a kernel size of three, a patchify
strategy utilizing a kernel size of two is also implemented as an alternative for the ConvFaceNeXt
family. The purpose of adopting the patchify strategy is to reduce the computational complexity
further. Moreover, blocks with the same output dimension in the bottleneck partition are added
together for better feature correlation. Based on the experimental results, the proposed ConvFaceNeXt
model achieves competitive or even better results when compared with previous lightweight face
recognition models, on top of a significantly lower FLOP count, parameters, and model size.

Keywords: face recognition; face verification; lightweight model; inverted residual block; ConvNeXt
block; enhanced ConvNeXt block; ConvFaceNeXt
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1. Introduction

Face recognition is one of the popular research areas in the field of computer vision.
Generally, the common pipelines for face recognition are face detection, face alignment
and facial representation for verification or identification. The first step for face recognition
is face detection, whereby each person’s face is enclosed with a bounding box [1]. Aside
from the frontal face, a robust detector must be able to detect faces across different illu-
minations, poses and scales [2]. Next, face alignment includes the process of capturing
discriminant facial landmarks and aligning the face to normalised canonical coordinates [2].
Normally, alignment transformation is carried out with reference to important facial land-
marks such as the eyes’ centre, the nose’s tip and the mouth’s corners. Finally, facial
representation is implemented by obtaining the face descriptors from the extracted features.
Given a pair of face images, face verification is a one-to-one comparison to determine
whether both faces belong to the same person [3]. On the other hand, face identification is
a one-to-many comparison in order to match the given unknown face against the known
faces in a gallery [4]. If there is a match, then it is considered a closed-set identification;
otherwise, it is an open-set identification.

With the recent progress of deep convolutional neural networks, the performance of
face recognition systems has been greatly improved. Nevertheless, this comes at the expense
of large model sizes and high computational complexity [5–7]. In other words, if there are
more layers in a convolutional neural network, then the floating-point operations (FLOPs),
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parameters and model size also tend to be increased. Hence, the employment of the face
recognition model in embedded and mobile applications remains a demanding task.

Several efforts have been made to revamp mobile-based networks, which were origi-
nally used for generic computer vision applications, to better suit face recognition. These
common networks comprise the MobileNet series [8,9] and ShuffleNetV2 [10]. Based on
MobileNetV2 [9], a lightweight face recognition model known as MobileFaceNet [11] is
introduced. MobileFaceNet adopts the typical inverted residual block design with around
0.47 G FLOPs and 1.03 M parameters. This is followed by ShuffleFaceNet [12], which builds
on ShuffleNetV2 [10]. There are four types of architectures with different output channels
proposed by ShuffleFaceNet. ShuffleFaceNet 1× has around 0.28 G FLOPs and 1.46 M
parameters. Another example is ShuffleFaceNet 1.5×, which has around 0.58 G FLOPs and
2.70 M parameters. In a more recent publication [13], the authors suggested that Shuffle-
FaceNet 1.5× provides a better speed-accuracy trade-off among the four architectures. The
MobileFaceNetV1 and ProxylessFaceNAS models [13] were introduced simultaneously by
the same authors. With reference to MobileNet(V1) [8], depthwise separable convolution
is employed in MobileFaceNetV1 in order to reduce computation. On the other hand,
the design of ProxylessFaceNAS has been attributed to the efficient architecture found by
the ProxylessNAS [14] network. MobileFaceNetV1 has roughly 1.15 G FLOPs and 3.43 M
parameters, while ProxylessFaceNAS possesses 0.87 G FLOPs and 3.01 M parameters.

Lightweight convolutional neural network (LCNN) face recognition models [15] adopt
MobileFaceNet [11] as the baseline. Two examples of LCNNs are DSE_LSSE and Dis-
till_DSE_LSSE, both with around 1.35 M parameters. After that, MixFaceNets [16] with six
family members is introduced. Motivated by MixNets [17], MixFaceNets utilises depthwise
convolution with multiple kernel sizes in the building block. MixFaceNet-S and Shuffle
MixFaceNet-S are two of the members, with 0.45 G FLOPs and 3.07 M parameters.

Recently, another model based on inverted residual blocks [9] was introduced, which
is known as the efficient, lightweight attention network (ELANet) [18]. The FLOPs and
parameter counts for ELANet are 0.55 G and 1.61 M, respectively. At the same time,
four face-specific models known generally as PocketNets [19] are designed by utilising
the search space of differentiable architecture search (DARTS) [20]. The complexity of
these four PocketNets differs in terms of parameters and the output-embedding dimen-
sion. For instance, PocketNetS-128 has 0.58 G FLOPs and 0.92 M parameters. Additionally,
PocketNetM-128 contains 1.09 G FLOPs and 1.68 M parameters.

Unfortunately, these lightweight face recognition models still suffer from high FLOPs,
model sizes and parameters. Motivated by both ConvNeXt [21] and MobileFaceNet [11],
a new family of face recognition models termed ConvFaceNeXt is proposed. Note that
the key building block of ConvNeXt is known as the ConvNeXt block, while Mobile-
FaceNet deploys an inverted residual block. The structure design of ConvNeXt is based
on a large Resnet model, while MobileFaceNet is adapted from lightweight MobileNetV2.
Modifications are performed on these two networks so that the proposed ConvFaceNeXt in-
tegrates both lower FLOPs and lightweight properties that suit face recognition tasks. Note
that FLOPs have an impact on a model’s runtime and computing operations [22].
Generally, for a typical inverted bottleneck block, the depthwise convolution layer is
located in between two pointwise convolution layers, which results in increasing FLOPs.
Hence, in the revamped inverted bottleneck block, the location of the depthwise convo-
lution layer is moved up to reduce the FLOPs. In addition, the features of each block
with the same output dimension are aggregated to generate better facial features. Fewer
activation functions and normalisation layers were also found to be beneficial to the overall
model performance.

In recent years, lightweight face recognition systems have received increasing interest
due to the rapid growth of mobile computing and the Internet of Things (IoT). This trend
enables face recognition technology to be adopted by smartphones, embedded systems
and wearable devices. As a result, lightweight face recognition technology can be em-
ployed in a myriad of mobile applications with limited computational resources. These use
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cases include user authentication and attendance monitoring as well as augmented reality
(AR) and virtual reality (VR) applications for identity verification, to name a few [23–25].
For banking and financial services, face recognition is used as an authentication method
to verify the identity of a client for online banking using smartphones [26]. In the educa-
tion sector, face recognition can be implemented on an embedded system for monitoring
students’ attendance in a classroom [27]. Pertaining to AR and VR applications in security
enforcement, face recognition can be integrated into wearable devices such as Google Glass
to help police identify criminals for public safety [28].

Based on the aforementioned factors, the main contributions of this paper can be
summarised as follows:

• We propose a family of lightweight face recognition models known generally as
ConvFaceNeXt. The proposed models have three major components, namely the stem
partition, the bottleneck partition and the embedding partition. With different combi-
nations of downsampling approaches in the stem partition and the bottleneck partition,
four models of ConvFaceNeXt are proposed. These downsampling approaches differ
in kernel size for convolutional operation. Specifically, the patchify approach involving
a non-overlapping patch is introduced in addition to the typical overlapping approach.
All of the ConvFaceNeXt models are lightweight yet still able to achieve comparable
or better performance.

• We improve and enhance the existing ConvNeXt block for face recognition tasks.
Hence, a new structure known as an enhanced ConvNeXt (ECN) block is proposed.
Given the same input tensor and expansion factor, the ECN block has significantly
lower FLOPs and parameter counts compared with the inverted residual block and
ConvNeXt block. These advantages are mainly due to the arrangement of depthwise
convolution in the first layer of the ECN block as well as the smaller kernel size.
Multiple ECN blocks are stacked repeatedly in the bottleneck partition to form the
core part of ConvFaceNeXt.

• We capture more comprehensive and richer face features with less information loss.
This is accomplished by aggregating the blocks with the same output dimension
for the three respective stages in the bottleneck partition. The aggregation process
ensures information correlation for all the generated features within the same stage.
In addition, the impact of the vanishing gradient problem can be minimised because
the high-level and low-level features of each stage are linked through aggregation.
Thus, ConvFaceNeXt models are resistant to information loss, as more feature details
can be preserved.

This work provides another alternative form of lightweight model that can be used
as a guideline for future vision and face recognition research. The remainder of the paper
is organised as follows. In Section 2, the related lightweight face recognition models
are reviewed. Section 3 introduces the proposed lightweight face recognition family,
which is ConvFaceNeXt. In Section 4, the experimental results of ConvFaceNeXt and other
previous lightweight face recognition models are presented and analysed. Finally, Section 5
summarises and concludes this work.

2. Related Works

Several lightweight and efficient face recognition models have recently been proposed
for applications with low computational requirements. As a guideline, lightweight face
recognition models should have a computation complexity of no more than 1 G of FLOPs,
as well as a model size not exceeding 19.8 MB [29]. Most of these lightweight models are
based on the modification of the common network architecture used for ImageNet [30]
classification. In this section, the related lightweight face recognition models are briefly
presented and described as follows:

MobileFaceNet: This model [11] was introduced with the aim of achieving better
face recognition accuracy on mobile and embedded applications in real time. Based on
MobileNetV2 [9], an inverted residual block is used as the main structure for MobileFaceNet,
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albeit with a lower reduction factor. In order to reduce the spatial dimension of the raw
input face image, 3× 3 convolution with a stride of 2 is used for faster downsampling.
In this work, this fast downsampling strategy is denoted as a typical head. Towards the
end of the model, global depthwise convolution (GDC) and linear convolution are adopted.
GDC is used to reduce the final spatial dimension as well as ensure low computation in the
last several convolution layers.

ShuffleFaceNet: With the purpose of accomplishing efficient and accurate performance
in face recognition tasks, ShuffleFaceNet [12] models were introduced. ShuffleFaceNet is
inspired by ShuffleNetV2 [10], which introduced channel shuffle and channel split units.
Both of these units are incorporated into the building block of ShuffleNetV2 for a better
flow of information between feature channels. Similar to MobileFaceNet, a typical head
is employed at the beginning, while GDC and linear convolution are deployed at the end
part of the model. Note that ShuffleFaceNet includes a family of four models, namely
ShuffleFaceNet 0.5×, ShuffleFaceNet 1×, ShuffleFaceNet 1.5× and ShuffleFaceNet 2×.
Each model is scaled with different channel numbers in the block for varying complexities.

MobileFaceNetV1: In order to enhance the discriminative ability of face recognition,
MobileFaceNetV1 [13] was developed. Motivated by MobileNet [8], depthwise separa-
ble convolution is used as the building block of MobileNetV1 to significantly reduce the
computational complexity. Note that depthwise separable convolution is basically the com-
bination of depthwise convolution followed by pointwise convolution. At the beginning of
the model, 3× 3 convolution is applied to generate multiple feature maps. Different from
MobileFaceNet and ShuffleFaceNet, the first convolution operator of MobileFaceNetV1 is
not used for faster downsampling. Instead, the spatial dimension of the input image is
retained after the first convolution to preserve more information. Next, several depthwise
separable convolutions are stacked sequentially, followed by GDC and linear convolution
when approaching the end.

ProxylessFaceNAS: An efficient model known as ProxylessFaceNAS [13] was sug-
gested so that the learned features would be discriminative enough for face recognition tasks.

ProxylessFaceNAS utilizes the CPU model searched by ProxylessNAS [14]. The objec-
tive of ProxylessNAS is to learn architecture directly in the target tasks alongside reducing
the memory and computational cost. In addition, inverted residual blocks with numerous
expansion ratios and kernel sizes are added into the search space of ProxylessNAS. Akin to
MobileFaceNetV1, the fast downsampling strategy is not adopted for the first convolution
operation. Moreover, inverted residual blocks with larger expansion factors are preferable
in the subsequent downsampling operations to avoid losing too much information. Af-
ter stacking the inverted residual blocks countless times, GDC and linear convolution are
performed at the end.

LCNN: A lightweight convolutional neural network (LCNN) [15] is suggested for
face recognition with reference to MobileFaceNet [11] as the baseline model. This work
investigates the strategies of channelling attention and knowledge distillation towards
the performance of the lightweight face recognition model. Specifically, the location of the
attention module in an inverted residual block is evaluated in addition to the integration
of this module at the end of the model. As a result, three structures based on the squeeze-
and-excitation (SE) [31] attention module are introduced, namely depthwise SE (DSE),
depthwise separable SE (DSSE) and linear SE (LSE) structures. Based on these structures,
various models based on different combinations are constructed. In addition, a larger
model based on an improved version of ResNet-50 [32] is used as the teacher model to train
the smaller constructed models.

MixFaceNets: Taking computational complexity into consideration, MixFaceNets [16]
was developed. The objectives of these models are to reduce the FLOPs and computation
overhead. With inspiration from MixNets [17] and ShuffleFaceNet [12], the channels and
kernels are mixed up to improve the discriminative capability and performance accuracy.
Using depthwise convolution with multiple kernel sizes, MixFaceNets models can obtain
resolution patterns at various scales. Similar to ShuffleFaceNet, channel shuffle units are
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applied to some MixFaceNets models to ensure information flow between channels. In addi-
tion, an SE [31] attention module is integrated into the building block of MixFaceNets. There
are six family members for MixFaceNets: MixFaceNet-XS, MixFaceNet-S, MixFaceNet-M,
ShuffleMixFaceNet-XS, ShuffleMixFaceNet-S and ShuffleMixFaceNet-M. These six models
differ in terms of complexity and whether the channel shuffle unit is incorporated.

ELANet: The Efficient Lightweight Attention Networks (ELANet) [18] were intro-
duced with the intention to overcome the challenges of face variations due to changes in
pose and age. Motivated by MobileNetV2 [9] and MobileFaceNet [11], the architecture of
ELANet consists of multiple inverted residual blocks with a slight modification. Specifically,
channel and spatial attention mechanisms are incorporated and applied concurrently in
each of the inverted residual blocks, collectively known as the bottleneck attention module.
In addition, the multiscale pyramid module is integrated into the architecture to extract and
learn features at different scales. Note that a multiscale pyramid module is implemented
in every two bottleneck attention modules. The outputs from these multiscale pyramid
modules are then united by an adaptively spatial feature fusion module. This is to ensure
the comprehensive integration of information in different layers. Finally, all the features
are concatenated before the fully connected layer.

PocketNet: Extreme lightweight face recognition models known as PocketNet [19]
were developed by utilizing the differential architecture search (DARTS) algorithm [20].
The goal of this work is to search for a family of face-specific lightweight models that
can improve face recognition accuracy. Two types of cells are learned by DARTS, namely
normal and reduction cells. First, a typical head is implemented for fast downsampling. Af-
ter that, multiple normal cells and three reduction cells are stacked in series, followed by
GDC and linear convolution towards the end. In addition, multi-step knowledge distil-
lation is utilized to transfer knowledge from the large ResNet-100 teacher model to the
PocketNet student model. Hence, the performance and generalisation capability of the
smaller student model can be improved. Bear in mind that PocketNet is a family with
four models: PocketNetS-128, PocketNetS-256, Pocket-NetM-128 and PocketNetM-256.
Here, the abbreviations ‘S’ and ‘M’ represent small and medium PocketNet models in terms
of parameter counts, respectively. Likewise, ‘128’ and ‘256’ are the output embedding
dimensions of the respective models.

LFR: A lightweight face recognition (LFR) model [33] was introduced for embedding
devices. The baseline of LFR is adopted from MobileFaceNet [11] with three strategies to
optimise the overall model. First, fewer inverted residual blocks are deployed compared
with MobileFaceNet in order to have a more efficient model. Second, h-ReLU 6 is used as
the activation function for less expensive computing. Essentially, h-ReLu 6 is based on the
hard version of the Swish activation function and has an upper bound, which is clipped at
six. The final strategy involves applying efficient channel attention (ECA) [34] to the first
and last inverted residual blocks. Instead of an SE [31] attention module, ECA is adopted
due to its lower memory requirement and computational complexity.

3. Proposed Approach

In this section, the preliminaries of the inverted residual block and ConvNeXt block
are reviewed first. Next, the proposed enhanced ConvNeXt (ECN) block is presented,
followed by the whole ConvFaceNeXt architecture.

3.1. Preliminaries

Inverted Residual Block: Introduced in MobileNetV2 [9], an inverted residual block
is designed for mobile applications. As shown in Figure 1a, the structure of the inverted
residual block consists of three convolutional layers. Specifically, first, a 1× 1 pointwise
convolution is used to expand the channel dimension. This is then followed by a 3× 3
depthwise convolution to learn the spatial context for each channel and finally another
1 × 1 pointwise convolution to reduce the channel dimension. In addition, one batch
normalisation and one rectified linear unit (RELU) activation function are applied after
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each convolution, except for the last convolution, where only one batch normalisation
is utilized.

Foutput

3 × 3 DConv

Finput

BN

F1

1 × 1 Conv

PReLU

F2

1 × 1 Conv

BN

Foutput

7 × 7 DConv

Finput

Layer Normalization

F1

1 × 1 Conv

GELU

F2

1 × 1 Conv

BN

Foutput

Finput

1 × 1 Conv

BN

F1

3 × 3 DConv

F2

1 × 1 Conv

BN

RELU

RELU

  (a) (b) (c)

Figure 1. Different types of building blocks. (a) Inverted residual block. (b) ConvNeXt block. (c) The
proposed Enhanced ConvNeXt (ECN) block. Here, ‘Conv’ represents convolution operation, ‘BN’
represents batch normalisation and ‘DConv’ represents depthwise convolution.

Two distinctive characteristics of the inverted residual block are the use of the residual
connection between two bottlenecks and the adoption of the linear bottleneck. Note that
the residual connection enables the gradient to flow easily across multiple blocks, while the
linear bottleneck tends to preserve more information by omitting the activation function
of the last 1× 1 pointwise convolution [9]. Due to the light weight and efficiency of the
inverted residual block, it is adopted for the face recognition model with low computation
and memory requirements. The building block of MobileFaceNet [11] is based on an
inverted residual block, albeit with a much smaller expansion factor. ProxylessFaceNAS [13]
is modified from the ProxylessNAS network, which adds an inverted residual block as its
search space. In addition, ELANet [18] incorporates an attention mechanism in the inverted
residual block to prioritise discriminative features.

ConvNeXt Block: ConvNeXt [21] was introduced with the aim to strengthen the
importance of the convolutional neural network while still maintaining its efficiency and
simplicity. As depicted in Figure 1b, there are three convolutional layers in a ConvNext
block. The main difference with inverted residual blocks lies in the position arrangement
for those layers. Instead of pointwise convolution, a 7 × 7 depthwise convolution is
applied to extract spatial information in the first layer. This position arrangement strategy
of moving up the depthwise convolution to the first layer helps to reduce the FLOPs
significantly, provided that both blocks have the same convolutional kernel size [21].
The remaining structure consists of two 1× 1 pointwise convolutions arranged in sequence.
This arrangement enables the channel to be extended first and then reduced subsequently.
Aside from that, normalisation and activation functions are applied only once in the
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ConvNext block. Concretely, layer normalisation is placed after the depthwise convolution,
whereas the Gaussian error linear unit (GELU) activation function is located after the first
pointwise convolution. Similar to the inverted residual block, there is a residual connection
for each ConvNext block.

3.2. Enhanced ConvNeXt Block for the Lightweight Model

The original ConvNeXt block is modified and optimized for lightweight tasks.
Here, lightweight is defined as a block with fewer parameters, fewer FLOPs and a smaller
size. Hence, the Enhanced ConvNext (ECN) block was designed based on these three
perspectives. The building block for ECN is shown in Figure 1c. The ECN block adopts a
smaller 3× 3 kernel size for the depthwise convolution such that the parameters, FLOPs
and size are reduced.

Moreover, either normalisation or an activation function is applied after each con-
volutional layer instead of implementing both as in inverted residual block. This in turn
helps to reduce the parameter count. Following the works of MobileFaceNet and Shuffle-
FaceNet, batch normalisation and parametric rectified linear unit (PReLU) activations are
adopted in the ECN block in lieu of layer normalisation and GELU in the ConvNeXt block.
Moreover, as observed from the experiment, the performance of layer normalisation
is poor compared with batch normalisation for the ECN block. Let Finput ∈ RH×W×C

and Foutput ∈ RH×W×C denote the input and output tensors for an ECN block, respec-
tively. Assuming that the input and output of the ECN block have the same spatial
and channel dimension, here, H, W and C are those tensors’ height, width and number
of channels, respectively.

The first part consists of implementing a 3× 3 depthwise convolution followed by
a batch normalisation operation. Note that the stride s of depthwise convolution is set to
one for a block with the same input and output dimensions. In the second part, a 1× 1
pointwise convolution with an expansion factor t is utilized for channel expansion before
appending a PReLU activation function. Next, one more 1× 1 pointwise convolution is
employed for channel reduction prior to batch normalisation. Finally, a residual connection
is used to connect both input and output tensors. The whole process of the ECN block can
be mathematically represented as follows:

F1 = b
(

f 3×3
d (Finput)

)
(1)

F2 = a
(

f 1×1
p,1 (F1)

)
(2)

Foutput = b
(

f 1×1
p,2 (F2)

)
+ Finput (3)

where f 3×3
d and f 1×1

p,i correspond to the depthwise and ith pointwise convolution, b is the
batch normalisation operation, a indicates the PReLU activation function and F1 and F2
represent the intermediate features obtained from the first and second parts, respectively.
In summary, the overall workflow of the ECN block is given in Table 1.

Table 1. The workflow of the ECN block. Here, ‘DConv’ denotes depthwise convolution, ‘Conv’
denotes convolution operation and ‘BN’ denotes batch normalisation.

Input Dimension Operator Output Dimension

H ×W × C 3× 3 DConv, BN (H/s)× (W/s)× C

(H/s)× (W/s)× C 1× 1 Conv, PReLU (H/s)× (W/s)× tC

(H/s)× (W/s)× tC 1× 1 Conv, BN (H/s)× (W/s)× C

3.3. ConvFaceNeXt Architecture

Motivated by ConvNeXt and MobileFaceNet, a family of four novel lightweight face
recognition models known generally as ConvFaceNeXt were proposed. The ConvFaceNeXt
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models consist of three major components, namely the stem partition, the bottleneck
partition and the embedding partition. The core architecture for ConvFeaceNeXt mod-
els is formed by stacking multiple ECN blocks sequentially in the bottleneck partition.
In addition, numerous downsampling approaches are combined in the stem partition
and bottleneck partition, which results in four different sets of architecture design for
ConvFaceNeXt family members. Given a 112× 112× 3 face image in the stem partition,
the stem cell is utilized to downsample the spatial dimension by half as well as generate
64 output channels. The stem cell operator can either be a 2× 2 or a 3× 3 convolution,
both with a stride of two. The first option is known as patchify head (PH), inspired by
ConvNeXt, while the second is the typical head (TH), used by previous lightweight face
recognition models. Both operators involve a stride of two.

Depthwise separable convolution is performed afterwards to encode spatial and inter-
channel information. For the bottleneck partition, the downsampling and ECA blocks are
stacked together in several stages. There are two designs for the spatial downsampling
block. Motivated by ConvNeXt, the first involves a separate downsampling (SD) block of
a 2× 2 convolution with a stride of two. The second alternative, which is designated the
ECN downsampling (ED) block, utilizes a 3× 3 depthwise convolution with a stride of two
in the ECN block, where the residual connection is removed. Notably, these downsampling
and ECN blocks are arranged with a stage computing ratio of 5:8:3 in ConvFaceNeXt.

Bear in mind that the stride is set to two for those downsampling blocks. Otherwise,
it is fixed to one for the remaining blocks in the same stage. Moreover, the outputs of
all the blocks in the same stage are linked together. Specifically, all of the outputs are
summed so that the low-level and high-level face features can be correlated effectively. This
is inspired by the linking strategy adopted by EEPNet [35] to avoid blurriness in the palm
print feature. In the subsequent embedding partition, a 1× 1 convolution followed by a
linear 7× 7 global depthwise convolution is performed. Finally, a linear 1× 1 convolution
is employed to obtain a compact 128-dimension vector embedding for each face image. In
contrast to the conventional technique of applying both batch normalisation and activation
functions after each convolution, ConvFaceNeXt adopts either one. Hence, the overall
architecture is lightweight yet with comparable or better performance.

In order to gain a better understanding and ensure clarity, Table 2 presents the gen-
eral settings for each of the four ConvFaceNeXt architecture designs. Specifically, Con-
vFaceNeXt, which employs a patchify head and separate downsampling block, is known as
ConvFaceNeXt_PS. In addition, ConvFaceNeXt with a patchify head and ECN downsam-
pling block is addressed as ConvFaceNeXt_PE. The subsequent model deploys a typical
head along with a separate downsampling block, termed as ConvFaceNeXt_TS. Finally,
the last model combines both a typical head and ECN downsampling blocks, dubbed
ConvFaceNeXt_TE. The following subsections describe in detail each of the three partitions
in ConvFaceNeXt based on the graphical and tabulated outlines, as illustrated in Figure 2
and Table 3, respectively.

Table 2. The general architecture design for each ConvFaceNeXt family member.

ConvFaceNeXt
Stem Partition Bottleneck Partition

Embedding PartitionFamily Member
Patchify Typical Separate ECN

ECN BlocksHead Head Downsampling Downsampling
Configuration Configuration Configuration Configuration

ConvFace- NeXt_PS X X Same ECN Same embedding

ConvFace- NeXt_PE X X block design partition design

ConvFace- NeXt_TS X X for all four for all four

ConvFace- NeXt_TE X X family members family members
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Table 3. Tabulated outline of the proposed ConvFaceNeXt model. Each row denotes a sequence of
operators. Here, t denotes the expansion factor for downsampling and ECN blocks. Note that for the
downsampling block, the expansion factor only applies to the ED block (shown with *), while there is
none for the SD block. In addition, a stride s of two is set for all the downsampling blocks, while the
other ECN blocks use a stride of one.

Input Dimension Operator Output Dimension t s

Stem Partition

112× 112× 3 Stem Cell 56× 56× 64 - 2

56× 56× 64 3× 3 DSConv, PReLU 56× 56× 64 - 1

Bottleneck Partition

Stage One:

56× 56× 64 Downsampling block 1 28× 28× 64 2 * 2

28× 28× 64 ECN blocks 2–5 28× 28× 64 2 1

Stage Two:

28× 28× 64 Downsampling block 6 14× 14× 128 4 * 2

14× 14× 128 ECN blocks 7–13 14× 14× 128 2 1

Stage Three:

14× 14× 128 Downsampling block 14 7× 7× 128 4 * 2

7× 7× 128 ECN blocks 15 and 16 7× 7× 128 2 1

Embedding Partition

7× 7× 128 1× 1 Conv, PReLU 7× 7× 512 - 1

7× 7× 512 7× 7 linear GDConv, BN 1× 1× 512 - 1

1× 1× 512 1× 1 linear Conv 1× 1× 218 - 1

3.3.1. Stem Partition

At the beginning of the model, stem partition is used to downsample and extract raw
information from the input face image. Hence, ConvFaceNeXt uses a patchify head (PH)
or typical head (TH) to process the input image into a proper feature size. For PH, the in-
put image is split into non-overlapping patches according to the size of the convolution
kernel. Unlike ConvNeXt, which adopts a 4× 4 convolution and a stride of 4, the PH of
ConvFaceNeXt uses a 2× 2 convolution and a stride of two due to a smaller input image
size. On the other hand, a TH is implemented through a 3× 3 convolution with a stride of
two. This is similar to the approach used in MobileFaceNet, ShuffleFaceNet and PocketNet.
In addition, batch normalisation is appended to the stem cell. After that, a 3× 3 depthwise
separable convolution followed by a PReLU activation function is performed to encode
useful spatial and channel information. The whole process for stem partition is shown in
Figure 2a,b.

Supposing that IFACE is the input face image, the first stem feature FS_1 and the
second stem feature FS_2 outputs from the respective convolution and depthwise separable
convolution can be mathematically formulated as follows:

FS_1 = b( f m(IFACE)) (4)

and
FS_2 = a

(
f 3×3
ds (FS_1)

)
(5)

where f m refers to the convolution operation f with a kernel size m. Note that m is 2× 2
for ConvFaceNeXt with a PH ( ConvFaceNeXt_PS and ConvFaceNeXt_PE) and 3× 3 for
ConvFaceNeXt with a TH (ConvFaceNeXt_TS and ConvFaceNeXt_TE). Aside from that,
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f 3×3
ds represents the 3× 3 depthwise separable convolution. This way, richer information

can be extracted by appending two convolution layers.
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Figure 2. Graphical outline of the proposed ConvFaceNeXt model. (a) Stem partition with the
patchify head configuration. (b) Stem partition with typical head configuration. (c) Bottleneck parti-
tion with separate downsampling configuration. (d) Bottleneck partition with ECN downsampling
configuration. (e) Linking of blocks with same output dimension for a particular stage in bottleneck
partition. (f) Embedding partition. Here, ‘PH’ refers to the patchify head, ‘TH’ refers to the typical
head, DSConv denotes depthwise separable convolution, ‘SD’ refers to separate downsampling, ‘ED’
refers to ECN downsampling and ‘GDConv’ denotes global depthwise convolution.
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3.3.2. Bottleneck Partition

The bottleneck partition is the most important part of the entire model.
Utilizing ECN blocks, the bottleneck partition enables the total FLOPs of the model to be
reduced as a whole. That aside, the outputs of all the downsampling and ECN blocks in a
particular stage are aggregated with the aim of having better correlation among different
features. This in turn will help prevent the vanishing gradient problem and lessen infor-
mation loss. There are three main stages in the bottleneck partition, where the number
of blocks in each stage is five, eight and three, respectively. Figure 2c–e illustrates the
operating procedures of the bottleneck partition. From the bottleneck partition in Table 3,
each stage starts with a downsampling block, whereas the remaining are ECN blocks.

In order to reduce the spatial dimension, ConvFaceNeXt adopts either separate down-
sampling (SD) or an ECN downsampling (ED) approach. SD is considered more aggressive
and faster than ED. The reason for this is that only one convolution operation is performed
in SD, while there are three convolution operations for ED. Concretely, two ConvFaceNeXt
models employ an SD block (ConvFaceNeXt_TS and ConvFaceNeXt_PS), whereas the re-
maining two adopt an ED block (ConvFaceNeXt_PE and ConvFaceNeXt_TE). As illustrated
in Figure 2c, FB_IN is the input for a particular stage in the bottleneck partition, and then
the output of the SD block is

FBm = b
(

f 2×2(FB_IN)
)

(6)

where f 2×2 denotes the 2× 2 convolution operation. Using the same input and output
notations of the SD block, the following equations show the output for the ED block in
series as depicted in Figure 2d:

FED_1 = b
(

f 3×3
d (FB_IN)

)
(7)

FED_2 = a
(

f 1×1
p,1 (FED_1)

)
(8)

FBm = b
(

f 1×1
p,2 (FED_2)

)
(9)

where FED_1 and FED_2 are the intermediate features generated by the depthwise convolu-
tion and first pointwise convolution, respectively.

In an ECN block, information is obtained sequentially through feature extraction
using depthwise convolution, feature expansion using pointwise convolution, and feature
compression using another pointwise convolution. Different from the larger 7× 7 depth-
wise convolution used in the ConvNeXt block, ConvFaceNeXT employs a 3× 3 depthwise
convolution in the ECN block, which is a better option for face recognition tasks. Generally,
there is a residual connection to link the input and output of the ECN block with the same
dimension. Referring to the bottleneck partition in Table 3, we note that ConvFaceNeXt has
no residual connection for ECN blocks 7 and 15 in stages 2 and 3, respectively. In order to
further improve the performance while maintaining a low FLOP count, the output from
downsampling and the ECN blocks in the same stage are aggregated together. Hence,
the aggregated output feature shown in Figure 2e can be generally expressed as

FB_OUT =
n

∑
j=m

FBj = FBm + · · ·+ FBn−1 + FBn (10)

where FBj is the output of the jth block while m and n represent the first and last index of
a block in a particular stage, respectively. To be precise, the block indices for each stage
are 1–5 for stage 1, 6–13 for stage 2 and 14–16 for stage 3. Here, blocks 1, 6 and 14 are the
downsampling blocks, and the others are ECN blocks.

3.3.3. Embedding Partition

This partition is used to obtain the face embedding. All the ConvFaceNeXt models
employ the same setting in the embedding partition. Different from ConvNeXt, global
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average pooling and fully connected layers are not employed. This is because global
average pooling is less accurate for face verification, while fully connected layers consume
a huge amount of parameters [11]. The increase in parameters leads to a larger model size,
which essentially deviates from ConvFaceNeXt’s purpose of introducing a lightweight
face recognition model. First, the features are increased using a 1× 1 convolution along
with the PReLU activation function. Then, the spatial dimension is reduced with a linear
7× 7 global depthwise convolution followed by batch normalisation. Eventually, the face
embedding with a 128-dimension vector is obtained via a linear 1× 1 convolution.

Previous works adopted the same three convolution operators to extract face embed-
ding. However, the approach of ConvFaceNeXt is slightly different in terms of deploying
fewer batch normalisation operations. The entire process of the embedding partition is
depicted in Figure 2f. Let FE_1, FE_2 and FE_3 denote the output features of the first, second
and third convolutions in the embedding partition, respectively. Then, the aforementioned
steps can be mathematically formulated as

FE_1 = a
(

f 1×1(FB_OUT_3)
)

(11)

FE_2 = b
(

f 7×7
gd (FE1)

)
(12)

FE_3 = f 1×1(FE_2) (13)

where FB_OUT_3 is the output feature from the last stage of the bottleneck partition and f 7×7
gd

is the 7× 7 global depthwise convolution.

4. Experiments and Analysis

In this section, the training and evaluation datasets for all of the ConvFaceNeXt
family and previous lightweight face recognition models are presented first. After that,
the experimental settings for all these models are described. This is followed by ablation
studies to determine the same effective design scheme for all the ConvFaceNeXt models.
Then, quantitative analysis is conducted based on the verification accuracy of the evaluation
dataset for all the models. Finally, qualitative analysis involves the assessment of images
by visual observation.

4.1. Dataset

UMD Faces [36] was employed as the training dataset for all the models. This is a
medium-sized dataset consisting of 367,888 face images for 8277 individuals. The reason for
choosing this dataset was because it has more pose variations compared with other similar-
sized datasets, such as CASIA WebFace [37] and VGGFace [38]. Note that CASIA WebFace
comprises 494,414 images of 10,575 individuals, while VGGFace has 2.6 million images from
2622 individuals. During the training of ConvFaceNeXt, the 112× 112× 3 dimensional face
images were detected and aligned through multi-task cascaded convolutional networks
(MTCNN) [39] were obtained from the face.evoLVe library [40]. In order to evaluate the
efficiency of ConvFaceNeXt, seven image-based and two template-based datasets with
various aspects were used as evaluation benchmarks. These datasets are listed below:

1. The Labeled Faces in the Wild (LFW) [41] dataset consists of 13,233 face images
from 5749 identities. The majority of the face images are frontal or near-frontal.
The verification evaluation comprises 6000 pairs of face images, which includes
3000 positive face pairs and 3000 negative face pairs.

2. Cross-Age LFW (CALFW) [42] is the revised version of LFW, where 3000 positive
face pairs are obtained from the same individual with a notable age gap, whereas the
remaining 3000 negative face pairs are from different individuals of the same gender
and race.

3. Cross-Pose LFW (CPLFW) [43] is derived from LFW with intra-class pose variation
for the 3000 positive face pairs while ensuring the same gender and race attributes for
the other 3000 negative face pairs.
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4. The CFP [44] dataset contains 7000 face images from 500 identities, where each
identity has 10 frontal and 4 profile face images. There are 3500 positive face pairs
and 3500 negative face pairs. The evaluations are conducted based on two protocols,
namely frontal-frontal (CFP-FF) and frontal-profile (CFP-FP).

5. AgeDB [45] includes 16,488 face images of 568 identities used for age-invariant
face verification. This dataset contains 3000 positive and 3000 negative face pairs.
There are four face verification protocols, each with different age gaps of 5, 10, 20 and
30. AgeDB-30, with the largest age gap, was used for evaluation since it is harder
compared with the other three protocols.

6. VGGFace2 [7] comprises 3.31 million face images from 9131 individuals. The VG-
GFace2 dataset is split into two parts, where the training dataset has 8631 individuals
while the evaluation set has only 500 individuals. Two evaluation protocols are avail-
able, which include evaluation over the pose and age variations. VGG2-FP, which
emphasizes pose variation, was chosen as the benchmark to evaluate 2500 positive
and 2500 negative face pairs.

7. IARPA Janus Benchmarks (IJB) [46,47] set a new phase in unconstrained face recogni-
tion with several series of datasets. These datasets are more challenging, with further
unconstrained face samples under significant pose, illumination and image quality
variations. In contrast to other image-to-image or video-to-video datasets, each IJB
is a template-based dataset with both still images and video frames. The IJB-B [46]
dataset consists of 1845 individuals. This dataset has 21,798 still images in addition to
55,026 frames from 7011 videos. The 1:1 baseline verification of the IJB-B dataset is
based on 10,270 genuine comparisons and 8 million imposter comparisons. On the
other hand, there are 3531 individuals for the IJB-C [47] dataset. This dataset comprises
31,334 still images alongside 117,542 frames from 11,779 videos. The 1:1 baseline veri-
fication consists of 19,557 genuine comparisons and 15,638,932 imposter comparisons.

The evaluation metrics for the aforementioned testing dataset were conducted based
on the verification tasks. For LFW, CALFW, CPLFW, CFP-FF, CFP-FP, AgeDB-30 and
VGG2-FP, the evaluation metric for face pairs is verification accuracy. The performance of
the IJB-B and IJB-C datasets were evaluated in terms of the true accept rates (TARs) at false
accept rates (FARs) of 0.001, 0.0001 and 0.00001.

4.2. Experimental Settings

All of the models were implemented using the TensorFlow platform. These models
were trained from scratch using a stochastic gradient descent optimizer. The momentum
and weight decay were set to 0.9 and 0.0005, respectively. In addition, a cosine learning
schedule was employed with an initial value of 0.1 and decreased factor of 0.5. Due to
GPU memory limitations, these models were trained with a batch size of 256 for 49 epochs.
The training was conducted on an NVIDIA Tesla P100 GPU. In addition, ArcFace [32] was
adopted as the loss function L for all of these models. The purpose of the loss function
is to increase the inter-class differences and reduce the intra-class variations. Specifically,
ArcFace tends to increase the discriminative power of learned face features through the
additive angular margin m. Hence, the formulation for ArcFace to predict the probability
of feature xi belonging to identity class yi is given as

L = − 1
N

N

∑
i=1

ln
eh(cos(θyi+m))

eh(cos(θyi+m)) + ∑C
j=1,j 6=yi

eh cos(θj)
(14)

where N is the batch size, C is the total number of classes in the training dataset, h is the
scaling hyperparameter and θyi is the angle between the feature xi and the ith class centre.

4.3. Ablation Studies

In this section, several experiments are implemented to analyse the impacts of var-
ious settings in ConvFaceNeXt with respect to the final results, FLOPs and parameters.
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Based on the hill climbing technique [48], these experiments can be categorized into
three main parts to tune and determine the best-performing design architecture for Con-
vFaceNeXt. The overview of these experiments is depicted in Figure 3. Note that Con-
vFaceNeXt_PE is used as the reference model to carry out all the experiments in ablation
studies, as all four family models utilise the same ECN core structure. First, the effect of
linking ECN blocks in different stages is investigated. Second, the influence of different
kernel sizes on the depthwise convolution in the ECN block is studied. Finally, the amount
of batch normalisations and activation functions in the ECN block is investigated. The final
results for all the experiments are reported for the image-based datasets (LFW, CALFW,
CPLFW, CFP-FF, CFP-FP, AgeDB-30 and VGG2-FP) and template-based datasets (IJB-B
and IJB-C).

START

Part 1 Experiments

Selecting the optimum linking strategy for downsample and

ECN blocks of respective stages in the bo�leneck partition.

Part 2 Experiments

Selecting the optimum kernel size for depthwise convolution

in the ECN block.

Part 3 Experiments

Selecting the optimum number of batch normalization and

activation function in the ECN block.

END

Figure 3. Flow chart depicting experiments conducted based on hill climbing technique to tune and
determine optimum architecture for ConvFaceNext.

4.3.1. Effect of Different Linking Strategies

In order to gain insight into the optimum linking strategy for all the downsampling
and ECN blocks in the three respective stages of the bottleneck partition, three experiments
were conducted. Note that the linkage was implemented through aggregating the output
feature of the downsampling and ECN blocks with the same output dimension. The first
model was built with no feature aggregation. The second model only aggregated the
output features of the blocks in the first stage. In contrast, the third model considered the
aggregating features of the blocks in the first two stages. The last model connected all the
blocks with the same output dimension for the three respective stages.

The experimental results for each model are shown in Tables 4 and 5 and Figure 4. It can
be observed that the model with aggregation at all stages had the best overall performance
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for most evaluation datasets compared with the other three models. Aside from that,
the performance gain was achieved without having to incur any additional parameters
or FLOPs. This was due to better correlation among the multiple features implemented
through aggregating features with the same output dimension for all three stages.

Table 4. Performance results of the different linking strategies. These results are reported in terms of
parameters, FLOPs and verification accuracy for LFW, CALFW, CPLFW, CFP-FF, CFP-FP, AgeDB-30
and VGG-2FP. Aside from that, the average accuracy for the seven image-based datasets is shown
in the last column. Here, ‘0A’ denotes no aggregation for all the stages in the bottleneck partition,
‘1A’ denotes aggregation in stage 1, ‘2A’ denotes aggregation in the first two stages (stage 1 and 2),
and the last row represents the model with aggregation for all the stages.

Model Param. FLOPs LFW CALFW CPLFW CFP-FF CFF-FP AgeDB-30 VGG2-FP Average(M) (M)

ConvFace NeXt_0A 1.05 404.57 98.98 93.08 85.33 98.94 86.44 92.68 88.28 91.96

ConvFace NeXt_1A 1.05 404.57 99.02 93.00 85.12 98.90 86.40 92.37 88.76 91.94

ConvFace NeXt_2A 1.05 404.57 99.12 92.78 85.45 98.84 86.63 93.05 88.88 92.11

ConvFace NeXt_PE 1.05 404.57 99.10 93.32 85.45 98.87 87.40 92.95 88.92 92.29

(a) (b)

Figure 4. ROC curves of 1:1 verification for different linking strategies. (a) IJB-B dataset. (b) IJB-
C dataset.

Table 5. Verification accuracy of different linking strategies on IJB-B and IJB-C datasets.

Model
IJB-B IJB-C

FAR FAR FAR FAR FAR FAR
= 10−5 = 10−4 = 10−3 = 10−5 = 10−4 = 10−3

ConvFace
NeXt_0A 56.40 77.87 88.26 69.47 82.03 90.22

ConvFace
NeXt_1A 38.39 74.78 87.72 45.68 77.75 89.75

ConvFace
NeXt_2A 20.16 70.69 87.44 31.68 73.65 89.08

ConvFace
NeXt_PE 66.11 79.77 88.22 73.75 83.27 90.56

In addition, the vanishing gradient problem can be reduced, retaining more face
feature information. Normally, this problem occurs when the gradient of the loss function
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becomes too small during backpropagation. Hence, the weights of the model cannot be
updated effectively, leading to information loss and poor performance. From the results, it is
noted that the model with aggregation in stage one (ConvFaceNeXt_1A) had a comparable
result to the model without aggregation (ConvFaceNeXt_0A) for those seven image-based
datasets. The reason for this might be the model with aggregation in stage one only linking
lower-level features such as edges and simple textures without considering the correlation
of higher-level features in stages two and three, which contained more face details.

It is also interesting to observe that the model with aggregation in stage one as well
as the model with aggregation in stages one and two (ConvFaceNeXt_2A) had lower
performance in the template-based dataset compared with the model with no aggregation.
This is because both models only linked features in certain stages and did not fully utilise
the correlation between multi-level features in different stages. Without feature aggregation
in the following stage, the correlated information learned in the previous stage could not
be forwarded effectively. This proves that it is crucial to aggregate features with the same
output dimension for all three stages for extensive and richer feature representation.

4.3.2. Effect of Different Kernel Sizes

In this section, experiments are conducted to determine the optimum kernel size for
depthwise convolution of the ECN block. These kernel sizes included three, five, seven and
nine. The results of applying various kernel sizes are shown in Tables 6 and 7 and Figure 5.
These results conform to the fact that a larger kernel size does lead to better performance,
as in the case of increasing the kernel size from 3 to 5 for the seven image-based datasets.

Table 6. Performance results of different kernel sizes. These results are reported in terms of pa-
rameters, FLOPs and verification accuracy for LFW, CALFW, CPLFW, CFP-FF, CFP-FP, AgeDB-30
and VGG-2FP. That aside, the average accuracy for the seven image-based datasets is shown in the
last column. Here, the first row represents a model with a kernel size of three in the depthwise
convolution of the ECN block, ‘5K’ refers to a kernel size of five, ‘7K’ refers to a kernel size of 7, and
‘9K’ refers to kernel size of nine.

Model Param. FLOPs LFW CALFW CPLFW CFP-FF CFF-FP AgeDB-30 VGG2-FP Average(M) (M)

ConvFace
NeXt_PE 1.05 404.57 99.10 93.32 85.45 98.87 87.40 92.95 88.92 92.29

ConvFace
NeXt_5K 1.08 419.22 98.97 93.53 86.22 98.91 89.59 92.67 90.00 92.84

ConvFace
NeXt_7K 1.12 441.19 98.97 93.15 85.37 98.80 89.44 92.87 89.08 92.53

ConvFace
NeXt_9K 1.17 470.50 98.77 92.67 84.40 98.63 88.80 91.73 89.16 92.02

Table 7. Verification accuracy of different kernel sizes on IJB-B and IJB-C datasets.

Model
IJB-B IJB-C

FAR FAR FAR FAR FAR FAR
= 10−5 = 10−4 = 10−3 = 10−5 = 10−4 = 10−3

ConvFace
NeXt_PE 66.11 79.77 88.22 73.75 83.27 90.56

ConvFace
NeXt_5K 58.95 79.46 88.66 70.71 82.89 90.58

ConvFace
NeXt_7K 61.59 77.06 87.60 69.32 80.60 89.58

ConvFace
NeXt_9K 5.52 48.42 81.92 11.27 53.30 83.35
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(a) (b)

Figure 5. ROC curves of 1:1 verification for different kernel sizes. (a) IJB-B dataset. (b) IJB-C dataset.

However, there was a limitation wherein the performance tended to saturate beyond
a kernel size of five. Note that ConvNeXt employed a kernel size of seven for the depth-
wise convolution to increase performance. However, from the conducted experiments,
it was observed that a larger kernel size resulted in less desirable performance for face
recognition tasks, especially for the 7× 7 and 9× 9 kernel sizes. This may be attributed
to the input image size of ConvNeXt being 224× 224× 3, while it was only 112× 112× 3
for ConvFaceNeXt. Hence, the local information extracted by a larger kernel size will be
substantially less than for a smaller kernel size.

Although there was an increase in performance for the model with a kernel size of
five in most of the aforementioned image-based datasets, this came at the cost of additional
computation. Therefore, the parameters and FLOPs increased by about 2.5% and 3.6%,
respectively, when the kernel size was switched from three to five. In addition, the model
with a kernel size of three performed better as a whole in the IJB-B and IJB-C datasets.
A possible reason might be that a smaller kernel size can extract more detail and the minute
features of unconstrained face templates in the IJB dataset. Based on the reasons above and
the aim to propose a lightweight face recognition model, ConvFaceNeXt adopted a 3× 3
depthwise convolution in each ECN block.

4.3.3. Effect on Different Numbers of Batch Normalisations and Activation Functions

In a typical inverted residual block, each convolution is followed by one batch nor-
malisation and one activation function, with the exception of the last convolution, which is
appended with one batch normalisation. As a result, three batch normalisations and two
activation functions are utilized in an inverted residual block. In contrast, the ConvNeXt
block normalizes the output of the first convolution layer and applies the activation func-
tion on the second convolution layer. Hence, normalisation and activation are only used
once in the ConvNeXt block. These concepts were adapted to examine the suitable amount
of batch normalisations and activation functions in an ECN block for better performance.
Specifically, the first model adopts the ConvNeXt strategy with one batch normalisation
and PReLU activation in the ECN block, as shown in Figure 6a. The second model contains
two batch normalisations and one PReLU activation function in the ECN block, as depicted
in Figure 1c. The last model follows the inverted residual block approach, comprising three
batch normalisations and two PReLU activation functions, as illustrated in Figure 6b.
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Figure 6. Building blocks with different amounts of batch normalisations and activation functions.
(a) ECN block with one batch normalisation and one PReLU activation. (b) ECN block with three
batch normalisations and two PReLU activations.

From the results in Tables 8 and 9 and Figure 7, the first model with one batch
normalisation and one activation function had the smallest parameter and FLOP counts,
albeit with inferior performance in the image-based dataset compared with the other two
models. For the second model with two batch normalisations and one activation function,
the parameter count minimally increased by 0.66% while maintaining the same amount
of FLOPs as the first model. In addition, competitive performance was observed in the
second model for all the evaluation datasets compared with the first and last models.
It was observed that the last model with three batch normalisations and two activation
functions showed comparable or slightly better performance. Nevertheless, there were
2.2% and 0.23% increments for the parameter and FLOP counts with respect to the lightest
first model.

Moreover, more batch normalisations and activation functions tended to slow down
the training [49]. Note that the strategy of one batch normalisation and one activation
function in the ConvNeXt block is recommended for the ImageNet [30] classification task.
Nonetheless, the approach of using two batch normalisations and one activation function
in an ECN block is more suitable for face recognition tasks. This is evidenced by the
experimental results as well as balancing out the computation complexity and performance.
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Table 8. Performance results for different amounts of batch normalisations and activation functions.
These results are reported in terms of parameters, FLOPs and verification accuracy for LFW, CALFW,
CPLFW, CFP-FF, CFP-FP, AgeDB-30 and VGG-2FP. Aside from that, the average accuracy for the
seven image-based datasets is shown in the last column. Here, ‘1B1P’ denotes the ECN block
with one batch normalisation and one PReLU activation, the model in the second row utilizes two
batch normalisations and one activation function in the ECN block, and ‘3B2P’ denotes three batch
normalisations and two PReLU activations.

Model Param. FLOPs LFW CALFW CPLFW CFP-FF CFF-FP AgeDB-30 VGG2-FP Average(M) (M)

ConvFace
NeXt_1B1P 1.04 404.57 98.98 93.05 85.40 98.73 88.23 92.23 88.66 92.18

ConvFace
NeXt_PE 1.05 404.57 99.10 93.32 85.45 98.87 87.40 92.95 88.92 92.29

ConvFace
NeXt_3B2P 1.07 405.48 99.10 93.08 85.43 98.87 88.81 92.98 89.46 92.53

Table 9. Verification accuracy of different amounts of batch normalization and activation functions
on IJB-B and IJB-C datasets.

Model
IJB-B IJB-C

FAR FAR FAR FAR FAR FAR
= 10−5 = 10−4 = 10−3 = 10−5 = 10−4 = 10−3

ConvFace
NeXt_1B1P 66.36 79.06 88.05 72.57 82.78 90.32

ConvFace
NeXt_PE 66.11 79.77 88.22 73.75 83.27 90.56

ConvFace
NeXt_3B2P 58.28 79.16 88.62 70.09 82.65 90.45

(a) (b)

Figure 7. ROC curves of 1:1 verification on different amounts of batch normalisations and activation
functions. (a) IJB-B dataset. (b) IJB-C dataset.

4.4. Quantitative Analysis

In this section, the experimental results for all lightweight face recognition models are
reported. Based on the ablation studies in Section 4.3, the family of four ConvFaceNeXt
models followed the same settings, which were aggregating features in the three respective
stages, adopting a 3× 3 depthwise convolution as well as utilizing two batch normali-
sations and one activation function in an ECN block. Moreover, other models such as
MobileFaceNet, the ShuffleFaceNet series, MobileFaceNetV1 and ProxylessFaceNAS were
compared with the ConvFaceNeXt family. Generally, comparisons between models tend to
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be biased due to the deployment of different training and testing datasets. In order to be
fair, the results are presented with all the aforementioned models trained from scratch using
the UMD face dataset. In addition, all the models were trained using the same experiment
settings, as discussed in Section 4.2. These models were evaluated on the LFW, CALFW,
CPLFW, CFP-FF, CFP-FP, AgeDB-30, VGG2-FP, IJB-B and IJB-C datasets. The results are
shown in Tables 10 and 11.

Table 10. Performance results of different models. These results are reported in terms of parameters,
FLOPs, model size and verification accuracy for LFW, CALFW, CPLFW, CFP-FF, CFP-FP, AgeDB-30
and VGG-2FP. Aside from that, the average accuracy for the seven image-based datasets is shown in
the last column.

Model Param. FLOPs Model LFW CA CP CFP CFF AgeDB VGG2 Average(M) (M) Size (MB) LFW LFW -FF -FP -30 -FP

MobileFace Net 1.03 473.15 4.50 99.03 93.18 85.52 98.91 87.51 93.35 88.40 92.27

ShuffleFace Net 1× 1.46 278.47 6.59 98.87 93.13 84.47 98.84 86.44 92.33 87.08 91.59

ShuffleFace Net 1.5× 2.70 581.35 11.45 99.03 93.23 85.28 99.03 87.97 92.18 88.20 92.13

MobileFace NetV1 3.43 1145.89 13.70 99.02 93.50 85.38 98.96 87.64 92.95 88.14 92.23

Proxyless Face NAS 3.01 873.95 12.40 98.82 92.63 84.32 98.76 86.13 92.23 87.66 91.51

ConvFace NeXt_PS 0.96 390.13 4.11 99.30 93.35 85.63 98.96 88.14 92.88 89.38 92.52

ConvFace NeXt_PE 1.05 404.57 4.49 99.10 93.32 85.45 98.87 87.40 92.95 88.92 92.29

ConvFace NeXt_TS 0.96 396.15 4.12 99.17 93.35 85.23 98.94 88.71 93.03 88.82 92.46

ConvFace NeXt_TE 1.05 410.59 4.49 99.05 93.42 85.58 99.07 88.21 93.15 89.36 92.55

Table 11. Verification accuracy of different models on IJB-B and IJB-C datasets.

Model
IJB-B IJB-C

FAR FAR FAR FAR FAR FAR
= 10−5 = 10−4 = 10−3 = 10−5 = 10−4 = 10−3

MobileFace Net 38.53 73.92 87.74 55.10 78.17 89.79

ShuffleFace Net 1× 64.41 77.96 87.92 71.49 81.62 90.00

ShuffleFace Net 1.5× 63.54 78.17 87.69 70.06 81.36 89.88

MobileFace NetV1 66.15 79.25 88.41 72.24 82.66 90.55

Proxyless Face NAS 53.33 75.79 86.87 63.18 78.66 88.90

ConvFace NeXt_PS 65.49 80.04 88.56 73.72 83.36 90.82

ConvFace NeXt_PE 66.11 79.77 88.22 73.75 83.27 90.56

ConvFace NeXt_TS 67.45 80.93 88.75 75.11 84.21 91.01

ConvFace NeXt_TE 66.29 80.61 88.99 74.85 83.79 90.95

For the first part, the results for the four models from the ConvFaceNeXt family were
compared. Using the average accuracy, the overall performance of ConvFaceNeXt_TE was
the best (92.55%) for the image-based datasets. In contrast, with a slight difference of 0.26%,
ConvFaceNeXt_PE achieve the lowest average accuracy (92.29%) among the four models.
However, this low accuracy is still competitive or better than the other previous lightweight
face recognition models.

From our observations, the models with the same stem and bottleneck downsampling
strategies were better than the mixed combinations. For example, ConvFaceNeXt_TE
utilizes a 3× 3 convolution while ConvFaceNeXt_PS deploys a 2× 2 convolution for both
stem and bottleneck downsampling. Hence, information can be transferred in a more
coherent and systematic way from low-level to high-level feature maps. Another possible
reason for the high accuracy in ConvFaceNeXt_TE is that more features can be extracted
due to the larger number of parameters and FLOPs.



Mathematics 2022, 10, 3592 21 of 28

In terms of the computational aspect, ConvFaceNeXt_PS and ConvFaceNeXt_TS
were more efficient. This was because both models employed the SD downsampling
block, which has only one convolution layer, reducing the parameter and FLOP counts
compared with the models that adopt the ED block with three convolutions. On the
whole, ConvFaceNeXt_PS was the most efficient and lightweight model among the family
members, with only 0.96 M parameters, 390.13 M FLOPs and a 4.11-MB model size, yet it
was still able to achieve an average accuracy of 92.52%, which is considered high.

For the template-based IJB dataset, ConvFaceNeXt_TS and ConvFaceNeXt_TE had
better performance among the ConvFaceNeXt family. The similarity between these two
models is that both utilise the typical head to downsample the raw input image. The likely
cause may be that the typical head uses a 3× 3 convolution with a stride of two. Therefore,
as the kernel slid across the input image, there was an overlapping region among the current
and previous kernel cells to ensure information continuity. However, this interrelationship
did not exist for the patchify head, where the image was split into 2× 2 non-overlapping
patches, thus resulting in raw information loss.

In the second part, the performance of the ConvFaceNext family and the other
lightweight face recognition models was compared. Among the previous works, Mo-
bileFaceNet had the highest average accuracy at 92.27%. In comparison with the proposed
family members, ConvFaceNeXt_PE was 0.02% better than MobileFaceNet at the lower end,
whereas ConvFaceNeXt_TE was 0.28% better at the higher end. On top of that, the main
advantages of ConvFaceNeXt family members were having fewer parameters and lower
FLOP counts. This was especially true for ConvFaceNeXt_PS, which had 6.3% fewer param-
eters and 17.5% fewer FLOPs than MobileFaceNet but still outperformed MobileFaceNet
for almost all evaluation datasets, except for AgeDB-30.

Note that the parameter and FLOP counts of ConvFaceNeXt_PS were also the lowest
among all the models. In addition, ConvFaceNeXt_PS surpassed all models on the LFW,
CPLFW and VGG2-FP datasets. Other family members also showed significant perfor-
mance, wherein ConvFaceNeXt_TE recorded the highest accuracy in the CFP-FF dataset
while ConvFaceNeXt_TS did so in the CFP-FP dataset. For the remaining AgeDB-30 and
CALFW datasets, the optimal performance was attained by MobileFaceNet and Mobile-
FaceNetV1, respectively. On the IJB unconstrained face dataset, the ConvFaceNeXt family
yield better performance in general, and specifically, ConvFaceNeXt_TS outperformed
other previous models.

These observations indicate that ConvFaceNext models perform well in frontal and
cross-pose datasets but are slightly less than optimal for cross-age face images. A possible
explanation for the deterioration in the cross-age dataset is that the depthwise convolution
for spatial processing in the ECN block has fewer channels than the inverted residual
block. Therefore, there will be less information for age-invariant feature extraction. As a
complement to Table 10, the published LFW results for previous models, along with the
training dataset and loss function, are shown in Table 12.

Note that CosFace [50] was used as the loss function for both MobileFaceNet V1 and
ProxylessFaceNAS, as the authors found that ArcFace [32] had lower verification accuracy
for both of these models [13]. It is noted that the LFW accuracy for MobileFaceNet increased
from 99.28% to 99.55% when employing the Cleaned MS-Celeb-1M dataset, which has
more face images than the CASIA dataset. Hence, it is unfair to compare them directly with
the published results since a larger dataset yields better performance.
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Table 12. Verification accuracy on LFW dataset, as published in the works of previous lightweight
face recognition models. The stated accuracy was obtained from the respective published paper,
whereby each model was trained with a different dataset and loss function.

Method Training Dataset, Loss Param. (M) FLOPs (M) LFW AccuracyNumber of Face Images Function

Human-Individual [32] - - - - 97.27

MobileFaceNet [11] CASIA, 0.49 M ArcFace 0.99 - 99.28

MobileFaceNet [11] Cleaned MS-Celeb-1M, 3.8 M ArcFace 0.99 - 99.55

ShuffleFaceNet 1× [12] MS1M-RetinaFace, 5.1 M ArcFace 1.4 275.8 99.45

ShuffleFaceNet 1.5× [12] MS1M-RetinaFace, 5.1 M ArcFace 2.6 577.5 99.67

MobileFaceNetV1 [13] MS1M-RetinaFace, 5.1 M CosFace 3.4 1100 99.40

ProxylessFaceNAS [13] MS1M-RetinaFace, 5.1 M CosFace 3.2 900 99.20

LCNN (DSE_LSE) [15] MS1M-ArcFace, 5.8 M ArcFace 1.35 - 99.40

LCNN (Distill_DSE_LSE [15] MS1M-ArcFace, 5.8 M ArcFace 1.35 - 99.67

MixFaceNet-S [16] MS1M-ArcFace, 5.8 M ArcFace 3.07 451.7 99.60

ShuffleMixFaceNet-S [16] MS1M-ArcFace, 5.8 M ArcFace 3.07 451.7 99.58

ELANet [18] MS1M-RetinaFace, 5.1 M ArcFace 1.61 550 99.68

PocketNetS-128 [19] MS1M-ArcFace, 5.8 M ArcFace 0.92 558.11 99.58

PocketNetM-128 [19] MS1M-ArcFace, 5.8 M ArcFace 1.68 1099.02 99.65

LFR [33] CASIA, 0.49M ArcFace - - 98.52

ConvFace NeXt_PS UMD, 0.37 M ArcFace 0.96 390.13 99.30

ConvFace NeXt_PE UMD, 0.37 M ArcFace 1.05 404.57 99.10

ConvFace NeXt_TS UMD, 0.37 M ArcFace 0.96 396.15 99.17

ConvFace NeXt_TE UMD, 0.37 M ArcFace 1.05 410.59 99.05

Although the proposed ConvFace NeXt_PS model was trained with the least face
images, due to computation constraints, the accuracy was 99.30%, which was better than
the models trained with larger datasets such as MobileFaceNet with CASIA at 99.28% and
ProxylessFaceNAS with MS1M_RetinaFace at 99.20%. For the LCNN models, a distillation
of knowledge from a larger model indeed improved the performance of the smaller model,
as observed in the comparison between LCNN (DSE_LSE) and LCNN (Distill_DSE_LSE).
Moreover, the accuracy for the LCNN (Distill_DSE_LSE) model was relatively high at
99.67% because both the channel attention and knowledge distillation strategies were
deployed to improve the performance. Following the reported results of the MixFaceNets
models, which were arranged according to the number of FLOPs, only MixFaceNet-S and
ShuffleMixFaceNet-S were taken into account. These two MixFaceNets models had similar
computational complexities to the ConvFaceNeXt family members. Although the accuracies
were higher for these two MixFaceNets models by around 0.3% to 0.6%, the parameter
counts were three times higher than those of the ConvFaceNeXt models.

In more recent works, ELANet achieved the best LFW accuracy at 99.68%. Compared
with the proposed ConvFaceNeXt_PS, which reduced the parameter and FLOP counts by
about 40% and 30%, respectively, there was only a 0.4% drop in the LFW accuracy. More-
over, unlike ELANet, which utilizes channel and spatial attention to boost performance,
the proposed model is purely a lightweight face recognition model without any attention
strategy. PocketNet is another contemporary lightweight face recognition model with four
family members. In line with the other models in Table 12, which had 128-dimension output
embedding, only PocketNetS-128 and PocketNetM-128 were considered. For models with
less than 1 M parameters, the LFW accuracy for Pocket-NetS-128 and ConvFace NeXt_PS
was 99.58% and 99.30%, respectively. Although the accuracy decreased by 0.28%, ConvFace
NeXt_PS had comparable parameters and 30% fewer FLOPs than PocketNetS-128.
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On the other hand, for the models with over 1 M parameters, the LFW accuracy for
PocketNetM-128 was 99.65%, while ConvFace NeXt_PE achieved an accuracy of 99.10%.
Even though there was an accuracy drop of 0.55%, ConvFace NeXt_PE had 37% fewer
parameters and 63% fewer FLOPs than PocketNetM-128. In order to further boost perfor-
mance, a multi-step knowledge distillation strategy was deployed to transfer the knowledge
from a large ResNet-100 model to the smaller PocketNet models. With MobileFaceNet as
the baseline, the accuracy for LFR was lower, being 98.52%. This might be due to the fewer
inverted residual blocks in LFR. Compared with the other remaining models, the proposed
ConvFaceNeXt family members achieved competitive accuracies, since the other models
were trained with 10 times more face images. Therefore, it is expected that the performance
for the proposed ConvFaceNeXt models can be improved by using a larger training dataset
as well as utilizing additional strategies.

4.5. Qualitative Analysis

In order to show the effectiveness of the proposed ConvFaceNeXt family members in
recognizing and localizing important face features, random examples of positive face image
pairs were illustrated using the Grad-CAM [51] technique. These pairs were taken from
various conditions, namely frontal, cross-pose and cross-age face image pairs, to show the
generalisation of the proposed methods in different aspects. Note that the two face images
in each pair corresponded to the same individual. The frontal image pairs were taken from
LFW, the cross-pose images were from CPLFW, and the cross-age images were from the
CALFW dataset. The visualisation included all four proposed ConvFaceNeXt members
and five previous lightweight face recognition models trained under the same dataset and
settings. Note that the architecture of all nine methods consisted of a pure convolutional
neural network structure without deploying any additional attention mechanism.

Two face image pairs from LFW are shown in Figure 8. For the first pair, the upper
image shows a lady wearing a hat with a near-frontal face position, while the bottom
image is the corresponding frontal face image without a hat. In the Grad-CAM visualisa-
tion, the importance of a feature is highlighted with a colour scale. Specifically, the red
region refers to the most important part, followed by the green region and finally the blue
region, which is the least important part. Generally, it was observed that the proposed
ConvFaceNeXt family members were able to emphasise the face region compared with the
previous models. For the face image with a hat, ConvFaceNeXt_TE showed the strongest
excitation on the eye and nose parts, highlighted in the orange and yellow regions, re-
spectively. Hence, discriminative face parts can be emphasized. Note that discriminative
face parts such as the eyes, nose, mouth and ears are crucial for face recognition tasks [52].
Other previous models showed less desirable outcomes. MobileFaceNet is only able to
highlight the left region of the face, with no emphasis given to the discriminative face
parts. A similar situation was observed in ShuffleFaceNet 1×, with excitation only on the
forehead. Although both ShuffleFaceNet 1.5× and ProxylessFaceNAS could highlight the
face region, other unnecessary areas were mainly excited, which are also indicated by the
orange and yellow background areas.

In contrast, the MobileFaceNetV1 highlighted area does not belong to a face, shown as
the orange region in the bottom right. For the frontal face image of the lady without a hat,
ConvFaceNeXt_PS and ConvFaceNeXt_TE had the most significant response in the eye,
nose and ear regions. Other methods could also highlight the face region to a certain extent,
except for ProxylessFaceNAS, where only the forehead was emphasized. The second face
pair showed a man wearing a hat for both frontal face images. From our observation, it was
noticed that the ConvFaceNeXt family members had the capability to locate discriminative
face parts. On the other hand, some previous models tended to highlight the background
too or areas with no excitation at all.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 8. Two random face image pairs from the LFW dataset. The original image pairs are shown in (a),
and the corresponding Grad-CAM visualisations for ConvFaceNeXt family members are illustrated from
(b) to (e), while those for the other previous works are shown from (f) to (j), with all arranged column-
wise from left to right. (a) Original face image pairs. (b) ConvFaceNeXt_PS. (c) ConvFaceNeXt_PE.
(d) ConvFaceNeXt_TS. (e) ConvFaceNeXt_TE. (f) MobileFaceNet [11]. (g) ShuffleFaceNet 1× [12].
(h) ShuffleFaceNet 1.5× [12]. (i) MobileFaceNetV1 [13]. (j) ProxylessFaceNAS [13].

Another two pairs of cross-pose face images from CPLFW are shown in Figure 9.
The first pair shows a lady with a frontal face on top and a side view face at the bottom.
For the top frontal face image of the lady, ConvFaceNeXt_TS exhibited the strongest
excitation on the eye region, as well as emphasizing the nose and mouth parts. There were
excitations on the eye and nose parts as well for the other three ConvFaceNeXt members.
For previous works, MobilefaceNet and ProxylessFaceNAS only highlighted the mouth and
nose, respectively. In addition, the face regions were generally highlighted in the remaining
three previous models, with MobileFaceNetV1 showing a great response towards the nose
part. For the lady’s side view face, the ConvFaceNet family members were able to highlight
the lower parts of the face region, such as the nose and mouth. MobileFaceNet had a
similar response as well. There was no excitation in the face region for ShuffleFaceNet 1×
or MobileFaceNetV1. Meanwhile, ShuffleFaceNet 1.5× and ProxylessFaceNAS responded
to the unnecessary background region. The second pair shows a man screaming in the
upper image while he is smiling in the bottom one. From an inspection, the ConvFaceNeXt
family members generally showed strong excitation in the face region, particularly in the
eye and nose parts. Other previous methods were able to highlight the face region as well
but with weaker excitation.

Finally, two pairs of cross-age face images are shown in Figure 10. The upper image
represents a face which is younger than the bottom one. It was observed that most of the
ConvFaceNeXt family members highlighted the forehead region of the younger face image.
MobileFaceNet highlighted the background region in the upper left corner. Other previous
models such as ShuffleFaceNet 1× , ShuffleFaceNet 1.5× and MobileFaceNetV1 responded
to certain face regions. On the other hand, almost the entire image was emphasized by
ProxylessFaceNAS, which is undesirable. For the old man’s face image, the ConvFaceNeXt
family members showed a good response towards the overall face region. ShuffleFaceNet
1.5× also showed similar performance. Only some parts of the face region were highlighted
for MobileFaceNet and MobileFAceNetV1. On the other hand, ShuffleFaceNet 1× empha-
sized the entire image, in contrast to no excitation from ProxylessFaceNAS. The second
pair depicts a younger lady’s face on top and the corresponding older face image at the
bottom. It was perceived that the ConvFaceNeXt family was able to emphasise more of the
face region compared with the other previous methods for the older face image of the lady.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 9. Two random face image pairs from the CPLFW dataset. The original image pairs are shown
in (a), and the corresponding Grad-CAM visualisations for ConvFaceNeXt family members are illus-
trated from (b) to (e), while for the other previous works are shown from (f) to (j), with all arranged
column-wise left to right. (a) Original face image pairs. (b) ConvFaceNeXt_PS. (c) ConvFaceNeXt_PE.
(d) ConvFaceNeXt_TS. (e) ConvFaceNeXt_TE. (f) MobileFaceNet [11]. (g) ShuffleFaceNet 1× [12].
(h) ShuffleFaceNet 1.5× [12]. (i) MobileFaceNetV1 [13]. (j) ProxylessFaceNAS [13].

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 10. Two random face image pairs from the CALFW dataset. The original image pairs are
shown in (a), and the corresponding Grad-CAM visualisations for ConvFaceNeXt family members
are illustrated from (b) to (e), while those for the other previous works are shown from (f) to (j), with
all arranged column-wise from left to right. (a) Original face image pairs. (b) ConvFaceNeXt_PS.
(c) ConvFaceNeXt_PE. (d) ConvFaceNeXt_TS. (e) ConvFaceNeXt_TE. (f) MobileFaceNet [11]. (g) Shuf-
fleFaceNet 1× [12]. (h) ShuffleFaceNet 1.5× [12]. (i) MobileFaceNetV1 [13]. (j) ProxylessFaceNAS [13].

From all of the qualitative observations, it was proven that the proposed ConvFaceNeXt
models not only highlighted the face region but also emphasized important face parts such
as the eyes, nose and mouth. These emphasized face parts are important because these
features remain the same regardless of pose and age variations [53]. Moreover, the unneces-
sary background region was suppressed. This proves that ConvFaceNet family members
have better generalisation and discriminative abilities for face recognition tasks.

5. Conclusions

A family of efficient, lightweight face recognition models known as ConvFaceNeXt was
introduced. All of the family members are based on the ECN block, with the aim of reducing
the FLOP and parameter counts for the whole model. Generally, ConvFaceNeXt consists of
three main parts, namely the stem partition, the bottleneck partition and the embedding
partition. Ablation studies revealed several important characteristics of ConvFaceNet. First,
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the linking strategy is used to correlate low-level and high-level features alongside reducing
the vanishing gradient problem. Second, the adoption of a 3× 3 depthwise convolution
in the ECN block helps with extracting more detailed information in addition to reducing
the FLOP and parameter counts. Finally, with less batch normalisations and activation
functions, the performance of the models increased. Through quantitative analysis, it was
shown that ConvFaceNeXt achieved better verification accuracy in almost all face datasets.
From qualitative analysis, ConvFaceNeXt was able to highlight face regions with high exci-
tation on important face parts. Hence, both of these analyses indicate that the ConvFaceNext
models showed persistent performance compared with other lightweight face recognition
models. In the future, attention mechanisms and other loss functions will be explored to
increase the verification accuracy of the ConvFaceNeXt models further. One promising solu-
tion is to use a more advanced loss function such as ElasticFace [54]. Instead of a fixed mar-
gin, as implemented in ArcFace [32] and CosFace [50], ElasticFace utilizes a random margin.
This is to ensure flexible class separability learning that will further boost the generalisabil-
ity and discriminative capabilities of lightweight face recognition models.
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