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Abstract: The Gaussian Q-function has considerable applications in numerous areas of science
and engineering. However, the fact that a closed-form expression for this function does not exist
encourages finding approximations or bounds of the Q-function. In this paper, we determine
analytically two novel interval upper bound Q-function approximations and show that they could
be used efficiently not only for the symbol error probability (SEP) estimation of transmission over
Nakagami-m fading channels, but also for the average symbol error probability (ASEP) evaluation
for two modulation formats. Specifically, we determine analytically the composition of the upper
bound Q-function approximations specified at disjoint intervals of the input argument values so as to
provide the highest accuracy within the intervals, by utilizing the selected one of two upper bound
Q-function approximations. We show that a further increase of the accuracy, achieved in the case
with two upper-bound approximations composing the interval approximation, can be obtained by
forming a composite interval approximation of the Q-function that assumes another extra interval
and by specifying the third form for the upper-bound Q-function approximation. The proposed
analytical approach can be considered universal and widely applicable. The results presented in
the paper indicate that the proposed Q-function approximations outperform in terms of accuracy
other well-known approximations carefully chosen for comparison purposes. This approximation
can be used in numerous theoretical communication problems based on the Q-function calculation.
In this paper, we apply it to estimate the average bit error rate (ABER), when the transmission in
a Nakagami-m fading channel is observed for the assumed binary phase-shift keying (BPSK) and
differentially encoded quadrature phase-shift keying (DE-QPSK) modulation formats, as well as to
design scalar quantization with equiprobable cells for variables from a Gaussian source.

Keywords: Q-function; approximation; Nakagami-m fading; modulation formats

MSC: 33F05

1. Introduction

The growing need for the mathematical characterization of complex phenomena in
wireless transmission has occurred due to the recent rapid development of various wire-
less communication system services [1,2]. Determining the performance of the wireless
communication systems and observing how this performance depends on key transmis-
sion system parameter values are of importance for estimating the behavior of digital
communication systems for a wide range of applied modulation types, detection types,
and channel models (see for instance [1–5]). Signal transmission in a wireless medium is
accompanied by various phenomena, among which the most important one is multipath
fading. In the literature, various mathematical models of this fading phenomenon have
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been presented. As shown in [2], the Nakagami-m fading model provides the best fit for
collected data in indoor and outdoor wireless environments. The average symbol error
probability (ASEP) of a wireless communication system best quantifies the reliability or
integrity of a received signal [1]. To analytically determine the ASEP for an assumed
modulation format, it is necessary to average the expression for the conditional symbol
error probability (SEP) over the probability density function (PDF) of the fading channel
amplitude [1]. However, in most of the observed cases, the averaging is not straightforward
because the averaging integral includes the Gaussian Q-function or directly related special
functions: error function, erf(x), and/or complementary error function erfc(x) [1–5]. Thus,
the motivation of our research was to examine the possibility of deriving a novel, simple,
highly accurate Q-function approximation, which could be used efficiently not only for the
SEP estimation of transmission over Nakagami-m fading channels, but also for the ASEP
evaluation. Although this problem has been extensively reported in the literature [1–20],
the need for simpler and more accurate Q-function approximations still exists due to the
continuous development of various wireless services. In regards to some of our previous
research works [4,21–23], herein, tighter bounds are observed in order to obtain better and
more accurate results.

The main goal of this paper was to simplify the selection of the approximation of the Q-
function proposed in [6], where four different approximations were shown to approximate
the Q-function for each argument value, which made such a choice cumbersome. Toward
this goal, we first select two of these four approximations of the Q-function and determine
analytically which of the two selected upper-bound approximations of the Q-function
provides the best result in terms of accuracy for the widest interval of argument values. In
other words, we determine the composition of the upper-bound Q-function approximations
specified on the two disjoint intervals of input argument values so as to provide the highest
accuracy within each of them. We show that a further increase of the accuracy can be
obtained by forming a composite approximation of the Q-function that assumes another
extra interval for the highest argument values and by specifying an additional form for the
third upper-bound Q-function approximation.

The rest of this paper is organized as follows: Section 2 describes the main motivation
of this paper and gives a brief overview of the previous work in the field. In Section 3, the
novel interval upper-bound Q-function approximations are specified. Section 4 provides
the accuracy analysis of the novel interval upper-bound Q-function approximations and the
approximations of the Q-function listed in Section 2. Section 5 demonstrates the applicabil-
ity of the proposed Q-function approximations in the ASEP evaluation over Nakagami-m
fading channels when BPSK and DE-QPSK modulation formats are assumed. In Section 6,
we explore some new benefits of Q-function approximations, such as applications in design-
ing quantization with equiprobable cells for Gaussian sources. Finally, Section 7 concludes
on our research results.

As already stated, in numerous areas of science and engineering, we encounter the
Gaussian Q-function. This paper also aims to explore the benefits of approximating the
Q-function by a closed form expression when quantization issues are in question. In
particular, we consider the quantization of variables from a Gaussian source, where the
probability that the variable belongs to a particular cell is the difference of two Q-functions.
With the goal to achieve equiprobable quantization cells, in [24], a quantization noise was
injected. Unlike [24], in this paper, the equiprobable quantization cells and quantizer design
are specified in a different way. To design the quantizer for the assumed Gaussian source
having equiprobable quantization cells, the system of integral equations with arguments of
Q-functions as unknown variables has to be solved. With the application of the composite
upper-bound approximation proposed in this paper, we manage to avoid solving the
systems of integral equations, which makes our proposal useful.

In brief, the main contributions of this paper are:

- We propose an analytical approach for determining the composition of upper-bound
Q-function approximations specified on disjoint intervals of input argument values
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so as to provide the highest accuracy within the intervals by utilizing the disposable
upper-bound approximations of the Q-function;

- We determine particular analytical forms of two such compositions, named interval
upper-bound Q-function approximations;

- We demonstrate that a further increase of the accuracy, achieved in the case with two
upper-bound approximations composing the interval approximation, can be obtained by
forming a composite interval approximation of the Q-function that assumes another extra
interval and by specifying the third form for the upper-bound Q-function approximation;

- We show that in the whole domain of the function argument, our novel interval upper-
bound Q-function approximations provide noticeable improvements in terms of the
accuracy in comparison with Q-function approximations of similar analytical forms
from the literature selected for comparison purposes;

- We analyze the versatility of our proposal in determining the performance (ABER),
when the transmission in Nakagami-m fading channel is observed for the assumed
BPSK and DE-QPSK modulation formats and provide an additional justification of
the benefits of using the proposed composite improved interval approximation of
the Q-function (our second upper-bound composite interval approximation of the
Q-function) in designing wireless communication systems for an accurate estimation
of the expected QoS (quality of service);

- We demonstrate the usefulness of our proposal in issues occurring in designing scalar
quantizers for the Gaussian source.

In Table 1 we present the symbols used in paper and their brief description.

Table 1. Table of important symbols used throughout the paper, in order of appearance.

Symbol Brief Description

Q(x) Gaussian Q-function

er f c Complementary error function

Q[11] Jang’s Q-function approximation

Q[12] Q-function approximation by Chiani et al.

Q[13] Abreu’s Q-function approximation

Q[14] Q-function approximation by Borjesson et al.

Q1
[7] and Q1

[7] Q-function approximations by Gasull and Utzet

Qcom_1 and Qcom_2 Q-function approximations by authors

Pb Conditional SEP over the Nakagami-m fading channel amplitude for the assumed modulation format

Eb and N0 Average bit energy and the one-sided noise power spectral density, respectively,

fx(x) PDF of the Nakagami-m fading channel amplitude

Ω Average signal power

m Inverse normalized variance of x

Γ(m) Special gamma function

fγ(γ) Nakagami-m PDF of the signal-to-noise ratio (SNR) per symbol

γ̄ Average SNR per symbol

γ
Relation between received carrier amplitude under fading influence x, its mean squared value Ω, and the
instantaneous signal-to-noise power ratio (SNR) per symbol.

2. Related Work and Motivation

The main motivation of numerous research studies [7–15], including the one presented
in this paper, is to solve the problem of deriving closed-form expressions for the SEP
evaluation for signals with a Gaussian probability density function (PDF). In particular, the
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problem reduces to providing a closed-form formula that approximates the Q-function,
given by [25,26]:

Q(x) =
1√
2π

∫ ∞

x
exp

{
− t2

2

}
dt . (1)

The Gaussian Q-function can be expressed in terms of the complementary error
function:

Q(x) ∆
=

1
2

erfc
(

x√
2

)
, (2)

given by [18,19]:

er f c(x) =
2√
π

∫ ∞

x
exp

{
−t2

}
dt. (3)

In [11], Jang proposed a simple upper-bound approximation of the Gaussian Q-
function for x ≥ 0, in the form

Q[11](x) =
1√
2π

1
x

(
1− exp

{
−
√

π

2
x
})

exp
{
− x2

2

}
. (4)

Chiani derived analytically an even simpler upper-bound approximation of the Q-
function in the form of the sum of two exponential functions [12]:

Q[12](x) =
1

12
exp

{
− x2

2

}
+

1
4

exp
{
−2x2

3

}
, (5)

which is the upper-bound approximation of the Q-function for x > 0.5.
Although it has been highlighted in [11,16,17,27] that the bounds for the Q-function

could have complex mathematical forms, nevertheless, an upper-bound approximation
on the Q-function that was very accurate for small argument values and less accurate for
higher argument values was proposed in ([13] Equation (12)) as:

Q[13](x) =
1
50

exp
{
−x2

}
+

1
2(x + 1)

exp
{
− x2

2

}
. (6)

Another useful and practical Q-function approximation that we took into consideration
in this paper was given in ([14], Equation (9)):

Q[14](x) =
1√
2π

1√
x2 + 1

exp
{
− x2

2

}
. (7)

As already mentioned, we chose two upper-bound approximations of the Q-function
from [7]:

Q[7]
1 (x) =

1√
2π

π

2x +
√
(π − 2)2x2 + 2π

exp
{
− x2

2

}
, (8)

and

Q[7]
2 (x) =

1√
2π

4

3x +
√

x2 + 8
exp

{
− x2

2

}
, (9)

and analytically determined the disjoint intervals of the value of the argument x in which it
was convenient to apply these approximations so that the accuracy due to the approximation
of the Q-function by the considered upper-bound approximations was the highest possible.

3. Two Novel Interval Upper-Bound Q-Function Approximations

Lemma 1. There exists a unique x1 ∈ [0,+∞) such that Q[7]
1 (x) ≤ Q[7]

2 (x) if and only if x ≤ x1
(x ∈ [0,+∞]).



Mathematics 2022, 10, 3590 5 of 15

Proof. Inequality Q[7]
1 (x) ≤ Q[7]

2 (x) is equivalent to

(3π − 8)x + π
√

x2 + 8 ≤ 4
√
(π − 2)2x2 + 2π.

Squaring both sides and regrouping factors yields

x
√

x2 + 8 ≤ x2 +
4(4− π)

3π − 8
.

Again, squaring both sides of the inequality and rearranging terms gives

x ≤ x1 :=
4− π√

2(π − 3)(3π − 8)

That finishes the proof of the lemma.

Let us define the following composition of the Q-function approximations, Qcom_1(x),
such that Qcom_1(x) = Q[7]

1 (x) for x ∈ [0, x1) and Qcom_1(x) = Q[7]
2 (x) for x ∈ [x1,+∞). In

other words, let

Qcom_1(x) =


1√
2π

π

2x+
√

(π−2)2x2+2π
exp

{
− x2

2

}
, 0 ≤ x < x1

1√
2π

4
3x+
√

x2+8
exp

{
− x2

2

}
, x ≥ x1

. (10)

According to the previous lemma, function Qcom_1(x) is continuous and Qcom_1(x) =
min{Q[7]

1 (x), Q[7]
2 (x)} for every x ∈ [0,+∞). This means that Qcom_1(x) is a tighter upper

bound of the Q-function than both Q[7]
1 (x) and Q[7]

2 (x). The fact that the value for x1 can
be obtained analytically widens the possible applications of Qcom_1(x) in both analytical
and numerical computations.

Lemma 2. There exist values t1 ∈ (0, x1) and t2 ∈ [x1,+∞) such that Q[13](ti) = Qcom_1(ti)
(i = 1, 2).

Proof. One can verify by direct computation that Q[13](0) > Qcom_1(0) = Q[7]
1 (0), Q[13](x1)

< Qcom_1(x1) and Q[13](2) > Qcom_1(2) = Q[7]
2 (2). According to that, equations Q[13](x)−

Q[7]
1 (x) = 0 and Q[13](x) − Q[7]

2 (x) = 0 have at least one root on intervals (0, x1) and
(x1,+∞), respectively.

Note that numerical evaluations suggest that values t1 and t2 from the previous lemma
are unique and approximately equal to t1 ≈ 0.499286 and t2 ≈ 1.72519. Therefore, one can
conclude that Q[13](x) ≤ Qcom_1(x) if and only if x ∈ [t1, t2]. Using that fact, we can define
the following composite upper bound for the Q-function:

Qcom_2(x) =


1√
2π

π

2x+
√

(π−2)2x2+2π
exp

{
− x2

2

}
, 0 ≤ x < t1

1
50 exp

{
−x2}+ 1

2(x+1) exp
{
− x2

2

}
, t1 ≤ x < t2

1√
2π

4
3x+
√

x2+8
exp

{
− x2

2

}
, x ≥ t2

. (11)

Although the approximation of the Q-function by Qcom_1(x) is simpler, if a higher
accuracy is demanded, then a better choice is the approximation of the Q-function with
Qcom_2(x).

4. Accuracy Analysis of the Q-Function Approximations

Figure 1 presents the comparison of the Q-function and its approximations, where
along with the selected approximations of the Q-function from the literature [7,11–14], two
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novel approximations of the Q-function are presented as well. Although it is not very
visible from Figure 1, we show below that the proposed composite approximation of the
Q-function, specified for x1 = 1.3514, that is, for intervals determined from Lemma 1 as [0,
1.3514) and [1.3514, ∞), outperforms in terms of accuracy the Q-function approximations
used for comparison purposes. The results of approximating the Q-function for different
values of x are presented in Table 2.

1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

 

 

Q
-fu

nc
tio

n 
an

d 
its

 a
pp

ro
xi

m
at

io
ns

x

 Q(x)
 Qcom_1(x)
 Qcom_2(x)
 Q[14](x)
 Q[7]

1 (x)

 Q[7]
2 (x)

 Q[11](x)
 Q[12](x)
 Q[13](x)

Figure 1. Comparison of several Q-function approximations.

Table 2. Comparison of several Q-function approximations for discrete values of argument x.

x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 1 x = 5 x = 10 x = 15 x = 20

Q(x) 0.46017 0.38209 0.30854 0.24196 0.15866 2.8665× 10−7 7.6199× 10−7 3.6710× 10−51 2.7536× 10−89

Q[14](x) 0.39498 0.36530 0.31490 0.25581 0.17110 2.9157× 10−7 7.6564× 10−24 3.6790× 10−51 2.7570× 10−89

Q[7]
1 (x) 0.46030 0.38281 0.30975 0.24336 0.15989 2.8771× 10−7 7.6286× 10−24 3.673× 10−24 2.755× 10−89

Q[7]
2 (x) 0.50725 0.40743 0.3221 0.24912 0.16131 2.8667× 10−7 7.6199× 10−24 3.671× 10−51 2.7536× 10−89

Q[11](x) 0.46759 0.39842 0.32786 0.26056 0.17287 2.9678× 10−7 7.6946× 10−24 3.6871× 10−51 2.7605× 10−89

Q[12]x) 0.33126 0.31511 0.28516 0.24556 0.17890 3.2500× 10−7 1.6073× 10−23 1.1553× 10−50 1.1532× 10−88

Q[13](x) 0.4721 0.38597 0.30974 0.24246 0.15899 3.1055× 10−7 8.767× 10−24 4.3323× 10−51 3.2949× 10−89

Qcom_1(x) 0.46030 0.38281 0.30975 0.24336 0.15989 2.8771× 10−7 7.6286× 10−24 3.673× 10−51 2.7550× 10−89

Qcom_2(x) 0.46029 0.38279 0.30973 0.24246 0.15899 2.8667× 10−7 7.6199× 10−24 3.671× 10−51 2.7536× 10−89

Figure 2 presents the comparison of the absolute relative error calculated for the
proposed first interval upper-bound approximation of the Q-function and selected ones
from the literature [7,11–14]. As visible from Figure 2, the approximation specified by
Lemma 1 for x1 = 1.3514 has a minimal absolute relative error and is more accurate than other
considered Q-function approximations in almost the entire observed range of argument values.
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Figure 2. The comparison of the absolute relative errors of the first interval upper-bound approxima-
tion of the Q-function and selected ones from the literature [7,11–14].

Figure 3 presents the comparison of the absolute relative errors of the two novel
interval upper-bound approximations of the Q-function with the one from [13]. Although
with the first interval upper-bound approximation of the Q-function, Qcom_1(x), a better
approximation (lower values of the absolute relative error) has been obtained in a wide
range of argument values compared to the Q-function approximation from [13], there is still
an interval in which better results in terms of accuracy can be obtained by using a slightly
more complex second interval upper-bound approximation of the Q-function, Qcom_2(x). In
other words, we ascertained that an additional improvement of the accuracy in the whole
range of argument values could be obtained by prudently forming the second composite
interval upper-bound approximation of the Q-function specified by Lemma 2.
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Figure 3. The comparison of the absolute relative errors of the two novel interval upper-bound
approximations of the Q-function with the one from [13].

5. Application to Fading Channels Performance Analysis

Let us now exploit the advantages of the application of the proposed Q-function
approximations in the ASEP evaluation over Nakagami-m fading channels when a BPSK
modulation is assumed. To numerically evaluate the ASEP, we need to average the ex-
pression for the conditional SEP over the Nakagami-m fading channel amplitude for the
assumed modulation format, i.e., to evaluate the following expression:

Pb =
∫ ∞

0
Q

(√
2Eb
N0

x

)
fx(x)dx, (12)

where fx(x) is the PDF of the Nakagami-m fading channel amplitude. Eb and N0 denote the
average bit energy and the one-sided noise power spectral density, respectively.
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The Nakagami-m distributed channel envelope has a PDF given by [6]:

fx(x) =
2

Γ(m)

mm

Ωm x2m−1 exp
{
−m

x2

Ω

}
. (13)

Ω denotes the average signal power, m stands for the inverse normalized variance of x,
describing the fading severity [6]. Γ(m) represents the special Gamma function defined
with [16]:

Γ(m) =
∫ ∞

0
xm−1 exp{−x}dx. (14)

The Nakagami-m fading model fits data obtained in scenarios with multipath scat-
tering and presents large delay-time spreads with different clusters of reflected waves [1].
This model provides the best fits for channel data within satellite-to-indoor and satellite-to
outdoor radio communication and also fits data within observed land–mobile and iono-
spheric radio links [28]. As a general fading model, the Nakagami-m fading model can be
reduced to the Rayleigh fading model (by setting the parameter m value to m = 1), and
the one-sided Gaussian fading model (for m = 1/2) [29]. The Nakagami-m fading model
closely approximates the Nakagami-q model as well for m ≤ 1, and it could approximate
the Rician model for m > 1 [30].

After substituting our expressions for the Q-function approximations, Equations (10)
and (11), along with (20) into (12), we could efficiently evaluate values for the ASEP
over Nakagami-m fading conditions. Comparisons of the ASEP values over Nakagami-m
fading channels for various values of parameter m, obtained by applying our Q-function
approximations and selected ones from the literature are provided in Tables 3–5.

Table 3. Comparison of ASEP values over Nakagami-m fading channels for parameter m = 2,
obtained by applying our Q-function approximations and selected ones from the literature.

EbN0 (dB) Exact (m = 2) Qcom_2(x) Qcom_1(x) Q[14] (x) Q[11](x) Q[12] (x) Q[13] (x) Q1
[7](x) Q2

[7] (x)

−10 3.3893× 10−1 3.398× 10−1 3.399× 10−1 3.3308× 10−1 3.563× 10−1 2.953× 10−1 3.416× 10−1 3.399× 10−1 3.582× 10−1

0 1.151× 10−1 1.154× 10−1 1.158× 10−1 1.223× 10−1 1.247× 10−1 1.270× 10−1 1.154× 10−1 1.159× 10−1 1.175× 10−1

10 5.528× 10−3 5.543× 10−3 5.558× 10−3 5.891× 10−3 6.015× 10−3 6.568× 10−3 5.563× 10−3 5.573× 10−3 5.585× 10−3

20 7.256× 10−5 7.276× 10−5 7.292× 10−5 7.721× 10−5 7.890× 10−5 8.663× 10−5 7.312× 10−5 7.315× 10−5 7.321× 10−5

30 7.475× 10−7 7.495× 10−7 7.512× 10−7 7.952× 10−7 8.127× 10−7 8.928× 10−7 7.534× 10−7 7.536× 10−7 7.541× 10−7

40 7.497× 10−9 7.517× 10−9 7.534× 10−9 7.976× 10−9 8.151× 10−9 8.955× 10−9 7.557× 10−9 7.559× 10−9 7.563× 10−9

Table 4. Comparison of ASEP values over Nakagami-m fading channels for parameter m = 4, obtained
by applying our Q-function approximations and selected ones from the literature.

EbN0 (dB) Exact (m = 4) Qcom_2(x) Qcom_1(x) Q[14] (x) Q[11](x) Q[12] (x) Q[13] (x) Q1
[7](x) Q2

[7] (x)

−10 3.332× 10−1 3.343× 10−1 3.344× 10−1 3.314× 10−1 3.514× 10−1 2.947× 10−1 3.354× 10−1 3.343× 10−1 3.509× 10−1

0 0.975× 10−1 0.977× 10−1 0.982× 10−1 1.047× 10−1 1.063× 10−1 1.132× 10−1 0.978× 10−1 0.983× 10−1 0.988× 10−1

10 1.038× 10−3 1.041× 10−3 1.042× 10−3 1.097× 10−3 1.126× 10−3 1.264× 10−3 1.052× 10−3 1.047× 10−3 1.042× 10−3

20 3.038e× 10−7 3.044× 10−7 3.045× 10−7 3.189× 10−7 3.276× 10−7 3.622× 10−7 3.102× 10−1 3.062× 10−7 3.045× 10−1

30 3.450× 10−11 3.455× 10−11 3.457× 10−11 3.617× 10−11 3.716× 10−11 4.100× 10−11 3.526× 10−11 3.476× 10−11 3.457× 10−11

40 3.494× 10−15 3.500× 10−15 3.502× 10−15 3.664× 10−15 3.764× 10−15 4.152× 10−15 3.572× 10−15 3.521× 10−15 3.502× 10−15
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Table 5. Comparison of ASEP values over Nakagami-m fading channels for parameter m = 6, obtained
by applying our Q-function approximations and selected ones from the literature.

EbN0 (dB) Exact (m = 6) Qcom_2(x) Qcom_1(x) Q[14] (x) Q[11](x) Q[12] (x) Q[13] (x) Q1
[7](x) Q2

[7] (x)

−10 3.313× 10−1 3.325× 10−1 3.326× 10−1 3.307× 10−1 3.497× 10−1 2.945× 10−1 3.333× 10−1 3.325× 10−1 3.484× 10−1

0 0.913× 10−11 0.916× 10−1 9.205× 10−2 0.983× 10−1 0.997× 10−1 1.080× 10−1 0.916× 10−1 0.921× 10−1 0.924× 10−1

10 3.814× 10−4 3.820× 10−4 3.821× 10−4 3.996× 10−4 4.109× 10−4 4.551× 10−4 3.894× 10−4 3.843× 10−4 3.821× 10−4

20 3.803× 10−9 3.806× 10−9 3.807× 10−9 3.945× 10−9 4.053× 10−9 4.334× 10−9 3.940× 10−9 3.828× 10−9 3.807× 10−9

30 5.089× 10−15 5.093× 10−15 5.094× 10−15 5.273× 10−15 5.417× 10−15 5.771× 10−15 5.285× 10−15 5.122× 10−15 5.094× 10−15

40 5.244× 10−21 5.248× 10−21 5.249× 10−21 5.433× 10−21 5.581× 10−21 5.944× 10−21 5.447× 10−21 5.278× 10−21 5.249× 10−21

From Tables 3–5, it can be noticed that the values of the ASEP for a BPSK modulation
and a Nakagami-m fading channel could be efficiently and accurately evaluated by using
the proposed composite interval approximation Qcom_1 for all assumed values of parameter
m in a wide range of the observed argument values. Furthermore, it can be concluded
that by using Qcom_2 composite interval approximation, an additional improvement in the
bounding average bit error rate (ABER) values in the whole range of fading conditions
was provided.

To point out an excellent match of the values of the ASEP for a BPSK modulation,
calculated with the proposed composite approximations Qcom_2(x) and Qcom_1(x), and the
exact ones, in Figure 4, we present the values for the absolute relative error of the BER for
m = 2. By using Qcom_2(x) and Qcom_1(x), very tight approximations (lower values of the
absolute error of BER) were obtained in a wide range of argument values compared to
cases utilizing the Q-function approximations from the literature selected for comparison
purposes and used for the ASEP values computation.

-10 0 10 20 30 40

0.01

0.1

A
bs

ol
ut

e 
re

la
tiv

e 
er

ro
r o

f B
ER

x

m=2
 Qcom_1(x)
 Qcom_2(x)
 Q[14](x)
 Q[7]

1 (x)

 Q[7]
2 (x)

 Q[11](x)
 Q[12](x)
 Q[13](x)

 

 

Figure 4. Absolute relative error of determining ASEP for BPSK modulation: comparison of the
applied proposed approximations and the selected ones from the literature.

Our proposed Q-function approximations can also be applied for the ASEP evalu-
ation for the assumed differentially encoded quadrature phase-shift keying (DE-QPSK)
modulation format and Nakagami-m fading channels. The ASEP of DE-QPSK is given
by [31]

Pb =
∫ ∞

0
Pb · fγ(γ)dγ, (15)

where fγ(γ) is the Nakagami-m PDF of the signal-to-noise ratio (SNR) per symbol, dis-
tributed as specified in [32]:

fγ(γ) =
mm

Γ(m)γ̄m γm−1 exp
{
−m

γ

γ̄

}
, (16)

and
Pb = 4Q(

√
γ)− 8Q2(

√
γ) + 8Q3(

√
γ)− 4Q4(

√
γ), (17)
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where γ̄ represents the average SNR per symbol. As is well-known from the telecommuni-
cation theory, the relation between the received carrier amplitude under fading influence
x, its mean squared value Ω, and the instantaneous signal-to-noise power ratio (SNR)
per symbol, γ, is given with γ = x2γ̄/Ω. Similarly, the PDF of γ could be obtained by
introducing a change of variables in the expression for the fading amplitude PDF, px(x),
yielding [19]:

pγ(γ) = p

(√
γ

Ω
γ̄

)
|J|, (18)

and
|J| = dx

dγ
=

1

2
√

γ γ̄
Ω

. (19)

A comparison of the exact and approximated values of the ASEP for the DE-QPSK
modulation are presented in Tables 6–8. The exact values of the ASEP were calculated by
means of numerical integration using Equation (1). For determining the approximated
values, Equations (10) and (11) were applied as well as the corresponding ones from the
literature, carefully chosen for comparison purposes.

Table 6. Values of the exact and approximated ASEP of the DE-QPSK for parameter m = 2.5.

EbN0
(dB)

Exact
(m = 2.5) Qcom_2(x) Qcom_1(x) Q[14] (x) Q[11](x) Q[12] (x) Q[13] (x) Q1

[7](x) Q2
[7] (x)

−10 7.1833× 10−1 7.1872× 10−1 7.188× 10−1 7.0980× 10−1 7.2608× 10−1 6.7508× 10−1 7.2013× 10−1 7.1873× 10−1 7.2865× 10−1

0 4.8137× 10−1 4.8220× 10−1 4.8344× 10−1 4.9996× 10−1 5.0492× 10−1 5.0609× 10−1 4.8222× 10−1 4.8340× 10−1 4.8760× 10−1

10 0.4325× 10−1 0.4338× 10−1 0.4344× 10−1 0.4570× 10−1 0.4655× 10−1 0.5122× 10−1 0.4352× 10−1 0.4357× 10−1 0.4350× 10−1

20 3.0977× 10−4 3.1053× 10−4 3.1074× 10−4 3.2642× 10−4 3.3358× 10−4 3.6930× 10−4 3.1288× 10−4 3.1196× 10−4 3.1095× 10−4

30 1.0814× 10−6 1.0838× 10−6 1.0845× 10−6 1.1389× 10−6 1.1642× 10−6 1.2888× 10−6 1.0928× 10−6 1.0889× 10−6 1.0851× 10−6

40 3.4546× 10−9 3.4621× 10−9 3.4642× 10−9 3.6378× 10−9 3.7190× 10−9 4.1169× 10−9 3.4911× 10−9 3.4783× 10−9 3.4664× 10−9

Table 7. Values of the exact and approximated ASEP of the DE-QPSK for parameter m = 3.5.

EbN0
(dB)

Exact
(m = 3.5) Qcom_2(x) Qcom_1(x) Q[14] (x) Q[11](x) Q[12] (x) Q[13] (x) Q1

[7](x) Q2
[7] (x)

−10 7.1831× 10−1 7.1870× 10−1 7.1880× 10−1 7.0995× 10−1 7.2617× 10−1 6.7514× 10−1 7.2012× 10−1 7.1871× 10−1 7.2893× 10−1

0 4.7634× 10−1 4.7716× 10−1 4.7854× 10−1 4.9639× 10−1 5.0089× 10−1 5.0448× 10−1 4.7717× 10−1 4.7848× 10−1 4.8237× 10−1

10 0.2889× 10−1 0.2898× 10−1 2.9003× 10−2 0.3053× 10−1 0.3119× 10−1 0.3479× 10−1 0.2913× 10−1 0.2911× 10−1 0.2901× 10−1

20 4.0809× 10−5 4.0824× 10−5 4.0833× 10−5 4.2775× 10−5 4.3866× 10−5 4.8609× 10−5 4.1412× 10−5 4.1042× 10−5 4.0838× 10−4

30 1.5659× 10−8 1.5645× 10−8 1.5648× 10−8 1.6377× 10−8 1.6800× 10−8 1.8571× 10−58 1.5894× 10−8 1.5728× 10−8 1.5649× 10−6

40 5.052× 10−12 5.049× 10−12 5.047× 10−12 5.282× 10−12 5.418× 10−12 5.988× 10−12 5.127× 10−12 5.073× 10−12 5.048× 10−9

Table 8. Values of the exact and approximated ASEP of the DE-QPSK for parameter m = 4.5.

EbN0
(dB)

Exact
(m = 2.5) Qcom_2(x) Qcom_1(x) Q[14] (x) Q[11](x) Q[12] (x) Q[13] (x) Q1

[7](x) Q2
[7] (x)

−10 7.1829× 10−1 7.1869× 10−1 7.188× 10−1 7.1004× 10−1 7.2622× 10−1 6.7517× 10−1 7.2011× 10−1 7.1870× 10−1 7.2908× 10−1

0 4.7344× 10−1 4.7420× 10−1 4.7572× 10−1 4.9435× 10−1 4.9859× 10−1 5.0365× 10−1 4.7424× 10−1 4.7564× 10−1 4.7934× 10−1

10 0.2154× 10−1 0.2160× 10−1 2.1611× 10−2 0.2273× 10−1 0.2327× 10−1 0.2610× 10−1 0.2176× 10−1 0.2171× 10−1 0.2161× 10−1

20 6.9898× 10−6 6.9988× 10−6 7.1100× 10−6 7.2615× 10−6 7.4592× 10−6 8.1755× 10−6 7.1104× 10−6 6.9990× 10−6 6.9595× 10−6

30 3.043× 10−10 3.017× 10−10 3.015× 10−10 3.142× 10−10 3.227× 10−10 3.519× 10−10 3.087× 10−10 3.015× 10−10 3.015× 10−10

40 9.949× 10−15 9.854× 10−15 9.851× 10−15 1.026× 10−14 1.054× 10−14 1.149× 10−14 1.009× 10−14 9.851× 10−15 9.850× 10−15

From Tables 6–8 and Figure 5, it can be concluded that the approximate values of the
ASEP for DE-QPSK over Nakagami-m fading channels could be efficiently and precisely
evaluated for different values of the parameter m by utilizing the proposed approximations.



Mathematics 2022, 10, 3590 11 of 15

By using the approximations of the Q-function given by Equations (10) and (11), the
ABER measures were bounded more closely than by using the closed-form Q-function
approximations selected from the literature, in the whole range of fading conditions.
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Figure 5. Absolute relative error of determining ASEP for DE-QPSK modulation: comparison of the
applied proposed approximations and the selected ones from the literature.

Figure 5 presents the values of the absolute relative error of the ASEP DE-QPSK ap-
proximations for a Nakagami-m channel and m = 2.5, to point out the smallest possible
deviation of the approximated ASEP DE-QPSK values from the exact ones in case of apply-
ing the proposed Q-function approximations. In other words, the presented results provide
an additional justification for the benefits of using the proposed composite improved
interval approximation of the Q-function (our second upper bound composite interval
approximation of the Q-function) in designing wireless communication systems for an
accurate estimation of the expected QoS (quality of service).

6. Application in Designing a Quantizer with Equiprobable Cells for Gaussian Sources

Let x be a Gaussian random variable with probability density function:

p(x) =
1√
2π

exp
{
− x2

2

}
, −∞ < x < +∞. (20)

To represent this variable with a finite number of bits R, the range of possible am-
plitude values (−∞, +∞) should be partitioned into N = 2R disjoint cells, whereby one
representation value should be assigned to each cell. Due to the symmetry of the Gaus-
sian probability density function, the symmetry should also exist in the quantization,
allowing us to observe only a partition of the amplitude range for positive values. There-
fore, let ti, i = 0, 1, ..., N be the thresholds that partition the positive part of the ampli-
tude range and let yi, i = 1, 2, . . . , N be the representation levels, whereby it holds that
t0 < y1 < t1 < y2 < . . . < tN/2−1 < yN/2−1 < tN/2 and t0=0, tN/2 = +∞. Then,
quantization FQ is the following function:

FQ(x) = yi sgn(x) if ti−1 ≤ |x| < ti, (21)

where sgn() is the sign function. In other words, the quantization transforms a variable x
into FQ(x), producing the error x− FQ(x). Then, the performance of the quantization can be
measured by estimating the mean squared error or distortion D:

D =
1
M

M

∑
i=1

(xi − yi)
2 (22)
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and the signal-to-quantization-noise ratio SQNR:

SQNR =
∑M

i=1 x2
i

∑M
i=1(xi − yi)

2 , (23)

where M is a big enough number of variables.
Based on the above, it is clear that a symmetric N-level quantization is defined with

thresholds ti, i = 0, 1, . . . , N/2 and representation levels yi, i = 1, 2, . . . , N/2, which means
that the quantization design involves the determination of these levels subject to a certain
criterion. In the literature the commonly used criterion is the minimum distortion or a
constant signal-to-quantization-noise ratio, while in this paper, as in [24], we designed
the quantization subject to the criterion that the probability of a variable with a Gaussian
probability density function belonging to a cell is the same for all cells. Actually, we focused
on providing a quantization with equiprobable cells. In doing so, we encountered the
Q-function. Namely, the probability that a variable having a Gaussian probability density
function belonged to a certain cell was:

Pi =
∫ ti

ti−1
p(x)dx = Q(ti−1)−Q(ti) =

1
N

, i = 1, 2, . . . , N/2 (24)

thus forming a systems of N/2-1 integral equations that should be solved per ti, i =
1, . . . , N/2− 2, since t0 = 0 and tN/2 = +∞ implies Q(t0) = 1/2 and Q(tN/2) = 0:

Q(ti) =
1√
2π

∫ +∞

ti

exp
{
− x2

2

}
dx =

N − 2i
2N

, i = 1, 2, . . . , N/2− 1. (25)

Using a closed-form approximation for the Q-function can reduce the complexity
of the above system of equations, which is what we did in this paper by applying the
composite upper-bound approximation given by (10):

Qcom_1(ti) =
N − 2i

2N
, i = 1, 2, . . . , N/2− 1. (26)

After that, we solved the resulting system of nonlinear equations using the bisection
method.

Similarly, we determined the representation levels from the condition that Q(yi) were
in the middle between Q(ti−1) and Q(ti), forming in that manner a system of N/2 integral
equations, that could be solved as was previously described, that is, by solving the following
system of equations:

Qcom_1(yi) =
N − 2i + 1

2N
, i = 1, 2, . . . , N/2. (27)

The results we obtained for the design parameters using the Q-function approximation
are presented in Table 9. In addition to the design parameters, Table 9 also tabulates the
values for the distortion and signal-to-quantization-noise ratio estimated by running a
simulation of the proposed quantization. In the Matlab software package, we generated
and quantized according to Equation (21) M =108 Gaussian variables. By comparing the
generated and quantized values, as Equations (22) and (23) specify, we estimated the
quantization performance for bit rates of 2, 3 and 4 bits/sample.
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Table 9. Scalar quantization designed to have equiprobable cells when quantizing a Gaussian
variable with zero mean value and unit variance

R (Bits/Sample) xi, i = 0, 1, . . . , N/2 yi, i = 1, . . . , N/2 D SQNR (dB)

2 0 0.1458 8.36
0.6787 0.3205

+∞ 1.1555

3 0 0.0578 12.38
0.3207 0.1582
0.6788 0.4924
1.1551 0.8923

+∞ 1.5375

4 0 0.0235 16.30
0.1581 0.0788
0.3203 0.2383
0.4923 0.4053
0.6789 0.5830
0.8923 0.7810
1.1553 1.0148
1.5371 1.3227

+∞ 1.8646

The approximation of the Q-function has a wide range of applications. We listed two. It
can be applied in all areas where data are modeled by a Gaussian PDF. Further, the theory of
quantization, besides big data theory, can be used in neural networks, MIMO systems, signal
transmission, 5G networks, as well as in Internet-of-things source coding. The Gaussian
PDF is the most common data model encountered and also has applications in signal
processing. A further application of the proposed approximation can be considered in areas
described in [33–38]. Some of these applications will be the focus of our future research.

7. Conclusions

In this paper, two novel interval upper-bound approximations of the Q-function were
proposed. The first one had a simpler analytical form and, therefore, could be applied in a
simpler manner, whereas the second one was more accurate. In addition, by comparing
both approximations with the Q-function approximations of similar analytical forms from
the literature, we ascertained noticeable improvements in terms of the accuracy achieved by
the proposed interval upper-bound approximations of the Q-function in the whole domain
of the function argument.

In addition, comparisons of the estimated ASEP values for Nakagami-m fading chan-
nels for several values of parameter m were given in the paper for two modulation types,
BPSK and DE-QPSK, to demonstrate the usefulness of the proposed Q-function approxima-
tions. Furthermore, we showed that the closed-form approximation of the Q-function could
be used in the quantization design for variables from Gaussian sources, whereby using the
closed-form Q-function approximation avoided solving the integral equations. Another
advantage of the new composite approximation formulas was a very small increase in
computational complexity. That made them suitable for various applications including the
analysis of the performance of various communication channels.

In brief, for the observed applications, we showed the superiority of our proposal over
the Q-function approximations previously used in the literature, considered in the paper
for comparison purposes. Due to the relatively small absolute relative errors that the novel
Q-function approximations provide, we can anticipate that they can find applications in a
variety of problems encountered not only in communication theory, but also in a number
of analyses involving the estimation of the Q-function.
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16. Nikolić, J.; Perić, Z.; Jovanović, A. Novel approximations for the Q-function with application in SQNR calculation. Digit. Signal

Process. 2017, 65, 71–80. [CrossRef]
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