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Abstract: In this paper, we investigate the problem of optimal control of complex multistage chem-

ical reactions, which is considered a nonlinear global constrained optimization problem. This class 

of problems is computationally expensive due to the inclusion of multiple parameters and requires 

parallel computing systems and algorithms to obtain a solution within a reasonable time. However, 

the efficiency of parallel algorithms can differ depending on the architecture of the computing sys-

tem. One available approach to deal with this is the development of specialized optimization algo-

rithms that consider not only problem-specific features but also peculiarities of a computing system 

in which the algorithms are launched. In this work, we developed a novel parallel population algo-

rithm based on the mind evolutionary computation method. This algorithm is designed for desktop 

girds and works in synchronous and asynchronous modes. The algorithm and its software imple-

mentation were used to solve the problem of the catalytic reforming of gasoline and to study the 

parallelization efficiency. Results of the numerical experiments are presented in this paper. 

Keywords: parallel computing; global optimization; desktop grids; optimal control; chemical  

reactions 
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1. Introduction 

Many practical optimal control problems obtaining the optimal solution can be in-

sufficient because they cannot be applied owing to various physical restrictions [1,2]. Ad-

ditionally, modern systems that require any type of control are complex and usually de-

scribed by high-dimensional systems of ordinary differential equations (ODEs) that have 

only numeric solutions [3,4]. As a result, achieving optimal control is impossible without 

robust numerical solvers [5]. 

In this paper, investigate an optimal control problem as a global constrained optimi-

zation task. A similar approach was used in [6,7] to control a wheeled robot and in [8] for 

gas allocation control, as well as for some other applications [9–11]. This type of problem 

belongs to a class of numeric methods that can obtain an approximate solution to the op-

timal control problem [12,13]. 

In this paper, we consider a complex chemical reaction involving the catalytic re-

forming of gasoline [14]. The specified process is of significant practical importance, as it 

produces commercial gasoline for daily use; therefore the reaction must be controlled to 

increase output of the target product and to reduce the output of undesired components. 

However, this process, like other complex multistage chemical reactions [15–17], involves 

many internal stages and multiple intermediate complexes, which makes the optimization 

task computationally expensive. Thus, in order to obtain a solution within a reasonable 

time, parallel computing systems are required [18]. However, the design of such a parallel 

optimization algorithm is a multifaceted task [19]. The algorithm should take into account 
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not only problem-specific features but also peculiarities of the computing system in which 

the algorithms are launched. In other words, an algorithm must be designed that is capa-

ble of both localizing suboptimal solutions within a reasonable number of iterations [20] 

and efficiently utilizing all available computing resources [18]. 

In this study, we consider the emerging class of loosely coupled computing systems, 

in particular, grid systems comprising heterogeneous personal computers (desktop grids), 

which are widely used for scientific computations [21,22]. When developing an optimiza-

tion algorithm for this class of systems, communication expenses between computing 

nodes must be minimized. It is possible to achieve this task either with a peculiar optimi-

zation algorithm [23,24] or with a specific parallelization technique [22]. 

We propose a new parallel algorithm based on the mind evolutionary computation 

(MEC) algorithm [25] to solve an optimal control problem. The classical MEC algorithm 

appeared to be successful in solving real-world global optimization problems and to be 

suitable for parallelization [1,4,25], like similar population-based algorithms [24]. The pro-

posed method takes the architecture of the desktop grid into account by minimizing the 

number of information exchanges between computing nodes and can work both in syn-

chronous and asynchronous modes. In order to ensure the feasibility of solutions, the al-

gorithm includes several strategies that consider various constraints imposed on the con-

trol parameters. For example, it helps to control the speed of change in control tempera-

ture or the change in component concentration, as well as the smoothness of the control 

function. These constraints are important for practical implementation of the obtained 

control strategies [26,27]. 

The remainder of this paper is organized as follows. Section 2 is devoted to problem 

formulation. In Section 3, the model of the gasoline catalytic reforming is described, and 

the problem of optimal control is formulated and transformed into a nonlinear global op-

timization problem. In Section 4, we propose synchronous and asynchronous parallel 

mind evolutionary computation algorithms. In Section 5, the results of numerical experi-

ments are presented and analyzed both from the parallelization and chemical perspec-

tives. In Section 6, we present our conclusions, summarize the study, and suggest direc-

tions for further work. 

2. Problem Formulation 

In this paper, we consider a deterministic global constrained nonlinear minimization 

problem: 

min
𝑋∈𝐷⊂𝑅𝑛

Φ(𝑋) = Φ(𝑋∗) = Φ∗. (1) 

Here, Φ(𝑋) is the scalar objective function, Φ(𝑋∗) = Φ∗  is the required minimal 

value, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the 𝑛-dimensional vector of variables, 𝑅𝑛  is the 𝑛-dimen-

sional arithmetical space, and 𝐷 is the constrained search domain. 

Feasible domain 𝐷 is determined with inequality constraints 

𝐷 = {𝑋|𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥, 𝑖 ∈ [1: 𝑛]} ⊂ 𝑅𝑛. (2) 

Most chemical reactions within a class of problems under consideration are described 

by systems of ODEs [3,4]. However, it is difficult to find such a control function—𝑇(𝑡), 

where 𝑡 is the reaction time—that can provide the required output characteristics for a 

reaction, for instance, the maximum of the target product and/or the minimum of unde-

sired substances. 

In this work, the optimal control problem was transformed into a global optimization 

problem in the following manner. The integration interval [𝑡𝑠𝑡𝑎𝑟𝑡; 𝑡𝑒𝑛𝑑] is discretized so 

that the length of one section [𝑡𝑖; 𝑡𝑖+1] meets the restrictions imposed by the experimental 

unit. The values of 𝑇(𝑡𝑖), are the components of vector 𝑋 = (𝑥1 … 𝑥𝑛). A piecewise linear 
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function is used for approximation of the function 𝑇(𝑡). The objective function is trans-

formed into a function that minimizes the difference between current and required be-

havior: 

𝐽(𝑇(𝑡))  → min
𝑇(𝑡)

 (3) 

3. Optimal Control of the Catalytic Reformation of Gasoline  

In this paper, we study a non-isothermal industrial reaction of the catalytic refor-

mation of gasoline over a bimetallic catalyst (𝑃𝑡 − 𝑅𝑒/Al2O3). The output of such a reaction 

is commercial gasoline for daily use. 

During the catalytic reformation of gasoline, aromatic hydrocarbons are formed, 

which increase the octane number of the gasoline, which is the main purpose of the pro-

cess. In addition, reformation is also used for the separate production of aromatic hydro-

carbons, which are used in petrochemical processes. The octane number of gasoline de-

termines its class and therefore its price. 

Catalytic reforming is one of the main sources of aromatics in gasoline, along with 

catalytic cracking of vacuum gas oil and low-temperature catalytic isomerization of the 

pentane-hexane fraction. According to current standards, the main requirement is to re-

duce the proportion of benzol and aromatics in the gasoline composition. Therefore, one 

of the crucial tasks associated with the catalytic reforming of gasoline is to reduce the 

amount of aromatic hydrocarbons and benzol with minimal changes in the octane number 

[14]. 

The problem of aromatic hydrocarbon and benzol content, is solved as follows: pre-

fractionation of raw materials (i.e., benzol-forming components are removed) or removal 

of excess aromatic hydrocarbons from commercial gasoline. In the first case, raw materials 

deteriorate, and productivity decreases [28]. In the latter case, the cost of the product in-

creases. A possible solution to the above problem is the optimization of the reactor unit 

itself, which requires a detailed kinetic model of the process based on the fundamental 

laws of chemical transformations. 

The target reactions of catalytic reforming are the reactions of formation of high-oc-

tane components: dehydrocyclization, dehydrogenation of naphthenes, isomerization of 

naphthenic, and dehydrogenation of naphthenic hydrocarbons [29–31]. Reactions that re-

sult in the splitting of a molecule into several smaller molecules are undesirable, as they 

form gases, which reduce the yield of the target reformate product. Target reactions have 

a total endothermic effect of about 200 kJ, and side reactions are exothermic. 

The use of adiabatic reactors in the process affects the non-thermal nature of catalytic 

reforming. Therefore, in the kinetic model, it is necessary to take into account the change 

in temperature during the reaction in each adiabatic reactor. 

In the kinetic model, individual hydrocarbons are represented as 37 groups, includ-

ing normal paraffins (𝑛𝑃𝑖), isoparaffins (𝑖𝑃𝑖), five-membered naphthenes (𝐴𝐶𝑃𝑖), six-mem-

bered naphthenes (𝐴𝐶𝐻𝑖), and aromatic hydrocarbons (𝐴𝑖), where 𝑖 is the number of car-

bon atoms in the molecular structure, and hydrogen. 

When developing a model for the catalytic reforming of gasoline, it is necessary to 

take into account the change in the number of molecules due to chemical transformations 

based on the scheme of transformations and grouping of individual components [16]. Be-

cause adiabatic reactors are used for reactions with heat absorption, the temperature of 

the mixture decreases along the catalyst bed (up to 80 °C), leading to a decrease in reaction 

rates. In the reforming model, it is necessary to describe the change in temperature over 

the catalyst bed. 

Thus, the mathematical description of the non-isothermal reaction of the catalytic re-

forming of gasoline is expressed as (4)–(7). The mathematical model consists of 40 differ-

ential equations (group component equations, temperature change and moles) with initial 

data, with the following initial conditions: 𝑦𝑖(0) = 𝑦𝑖
0. 
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𝑑𝑦𝑖

𝑑𝜏
= ∑ 𝑣𝑖𝑗𝑤𝑗

𝐽

𝑗=1

, 𝑖 = 1, . . , 𝐼; (4) 

𝑑𝑇

𝑑𝜏
= −

∑
𝑑𝑦𝑖

𝑑𝜏
𝐼
𝑖=1 ∆𝐻𝑖(𝑇)

∑ 𝑦𝑖𝐶𝑝𝑖(𝑇)𝐼
𝑖=1

;   

𝑇(0) = 𝑇0;  

∆𝐻𝑖(𝑇) =  ∆𝐻𝑖(298) + ∫ 𝐶𝑝𝑖(𝑇)𝑑𝑡;
𝑇

298

  

𝐶𝑝𝑖(𝑇) = 𝑎𝑖 + 𝑏𝑖𝑇 + 𝑐𝑖𝑇
2 + 𝑑𝑖𝑇

3 + 𝑒𝑖𝑇
4; 

(5) 

𝑑𝑄

𝑑𝜏
= ∑

𝑑𝑦𝑖

𝑑𝜏
;

𝐼

𝑖=1

 𝑄(0) = 𝑄0;     

𝑤𝑗 = 𝑘𝑗 ∙ ∏(
𝑦𝑖

𝑄
)|𝛼𝑖𝑗|

𝐼

𝑖=1

− 𝑘−𝑗 ∙ ∏(
𝑦𝑖

𝑄
)𝛽𝑖𝑗

𝐼

𝑖=1

; 

(6) 

𝑘𝑗 = 𝑘𝑗
0 exp (−

𝐸𝑗

𝑅𝑇
) ; (7) 

where 𝑦𝑖 is the concentration of reaction reagents (mol/L); 𝜏 is the conditional contact 

time (kg·min/mol); 𝐽 is the number of stages; 𝐼 is the number of substances; 𝑣𝑖𝑗 is the 

coefficients of the stoichiometric matrix; 𝑤𝑗 is the rate of the 𝑗-th stage (1/min); 𝑘𝑗 and 

𝑘−𝑗 are the rate constants of direct and inverse reactions, respectively (1/min); 𝛼𝑖𝑗 is the 

negative elements of the matrix (𝑣𝑖𝑗 ); 𝛽𝑖𝑗  is the positive elements of the matrix (𝑣𝑖𝑗 ); 

𝑘𝑗
0 and 𝑘−𝑗

0  are the pre-exponential factors (1/min); 𝐸𝑗+  and 𝐸𝑗− are the activation energies 

of the direct and inverse reactions, respectively (kcal/mol); 𝑅  is the gas contact (2 

cal/(mol·K)); 𝑇 is the temperature (K); 𝑡∗ is the duration of the reaction (min); ∆𝐻𝑖(𝑇) is 

the formation enthalpy of the 𝑖-th component at temperature 𝑇 (J/mol); 𝐶𝑝𝑖(𝑇) is the 

specific thermal capacity of the 𝑖-th component at temperature 𝑇 (J/(mol·K)); 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 ,

and 𝑒𝑖 are the coefficients of thermal capacity’s temperature dependance of the 𝑖-th com-

ponent; and 𝑄 is the mole discharge of the flow (mol/min). 

The main challenges associated with the catalytic reforming of gasoline are re-

strictions on the content of benzol and the amount of aromatic hydrocarbons in the final 

reformate. As a result, a restriction is imposed on the introduction of the product of the 

process into commercial gasoline in terms of the content of these components. However, 

the main purpose of the catalytic reforming process is to increase the octane number (ON) 

of the gasoline. Therefore, along with environmental criteria, the necessary criterion of the 

optimal control task is to maintain the high value of the octane number of the mixture, 

which depends on the composition of the product. 

The reactor block of the catalytic reforming process consists of three adiabatic reac-

tors, each of which receives a mixture heated to the required temperature. The reactor 

block is represented by a cascade of successive adiabatic displacement reactors, 

𝑅1, 𝑅2, and 𝑅3, filled with a catalyst. Before entering each of the reactors, raw materials are 

heated in ovens. Due to the strong endothermic effect of the reactions, as the reaction mix-

ture passes through the catalyst layer, the temperature of the reaction mixture decreases, 

which negatively affects the rates of chemical reactions. In industry, the temperature at 

the inlet to each of the three reactors is kept within the range of 480–500 °C [32]. In this 

work, the following initial temperatures were used: 𝑇𝑅1
0 = 489 °C , 𝑇𝑅2

0 = 489 ℃ , and 

𝑇𝑅3
0 = 489 ℃. 
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The optimality criterion for the catalytic reforming of gasoline is based on the octane 

number of the reformate—the higher, the better. 

𝑌𝑂𝑁(𝑇) = ∑ 𝑦𝑖(𝑇1, 𝑇2, 𝑇3) ∙ 𝑂𝑁𝑖

𝐼

𝑖=1

 → 𝑚𝑎𝑥, (8) 

where 𝑂𝑁𝑖 is the octane number of the 𝑖-th component. 

An increase in the octane number of gasoline during reformation is achieved due by 

the complete conversion of naphthenic (cyclic) hydrocarbons into arenes (aromatic hydro-

carbons) with a high octane number, as well as by the partial conversion of paraffins into 

naphthenic hydrocarbons, which, in turn, are converted into arenes. However, according 

to environmental requirements, the contents of aromatic hydrocarbons 𝑌𝐴(𝑇) and benzol 

𝑌𝐵(𝑇) are limited to 40% and 2%, respectively. We treat these requirements as constraints 

in our optimization problem. 

Another criterion with respect to the optimality of the catalytic reforming of gasoline 

is the yield of the target product, i.e., the reformate (𝑌𝑅(𝑇)), which is calculated as the 

product of the process minus cracking gases. We use this criterion for reference only. 

The resulting objective function and the constraints are presented below: 

𝐽(𝑇(𝑡)) = −𝑌𝑂𝑁(𝑇(𝑡𝑒𝑛𝑑))  → min
𝑇(𝑡)

;  

𝑌𝐴(𝑇(𝑡𝑒𝑛𝑑)) < 0.4;  

𝑌𝐵(𝑇(𝑡𝑒𝑛𝑑)) < 0.02. 

(9) 

In this reaction, the temperature cannot be used as a control parameter, as it changes 

in each reactor. However, extra heating or cooling can be added to each reactor. In the 

model, this can be achieved by adding an extra summand to the equation that describes 

the change in temperature. In other words, we can control the first derivative (𝑇𝑒𝑥𝑡𝑟𝑎
′ (𝑡)) 

or the speed of extra heating or cooling of each reactor. The working temperature range 

for the catalytic reforming of gasoline is approximately 𝑇(𝑡)  ∈ [400 ℃; 500 ℃]; consider-

ing the duration of this reaction and the initial temperatures for every reactor, the follow-

ing constraints were determined: 𝑇𝑒𝑥𝑡𝑟𝑎
′ (𝑡) ∈ [−0.002; 0.002]. The piecewise linear func-

tion was selected for approximation of the function 𝑇𝑒𝑥𝑡𝑟𝑎
′ (𝑡)  on the interval 𝑡 ∈

[0; 89321] seconds. The reasonable time step differs slightly for each reactor and equals 

240 seconds on average, thus the dimension of the optimization problem is 𝑛 = 378. 

4. Parallel Mind Evolutionary Computation Algorithms 

In this work, we propose a novel parallel optimization algorithm based on the clas-

sical mind evolutionary computation algorithm [25]. The original MEC algorithm (simple 

MEC, SMEC) simulates some aspects of human behavior. An individual (𝑠) is considered 

an intelligent agent that operates in a group (𝑆) composed of analogous individuals. Dur-

ing the evolution process, every individual is affected by other individuals within the 

group. In order to achieve a high position within the group, an individual has to learn 

from the most successful individuals in the group, whereas groups should follow the same 

logic in intergroup competition. 

The algorithm is composed of three main stages: initialization of groups, similar taxis, 

and dissimilation. Operations of similar taxis and dissimilation are repeated iteratively, 

while the best obtained value of an objective function (Φ(𝑋)) changes. When the best ob-

tained value stops changing, the winner of the best group among a set of leading groups 

is selected as a solution to the optimization problem [33]. 

The SMEC algorithm can be interpreted as a multipopulation problem. A multipopu-

lation consists of independent subpopulations with different instances of the SMEC algo-

rithm. Each subpopulation is composed of leading groups (𝑆𝑏 = (𝑆1
𝑏 , 𝑆2

𝑏 , … , 𝑆
|𝑺𝑏|
𝑏 )) and lag-

ging groups (𝑆𝑤 = (𝑆1
𝑤 , 𝑆2

𝑤 , … , 𝑆|𝑺𝑤|
𝑤 )). The number of individuals within each group is set 

to be the same and equals |𝑆|. 
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Every subpopulation has its own communication environment called a local black-

board, denoted as 𝐶𝑘
𝑙 , 𝑘 ∈ [1: 𝐾], where 𝐾 is the number of subpopulations. In addition, 

the whole multipopulation has a general global blackboard, i.e., 𝐶𝑔. 

A multipopulation version of the SMEC algorithm can be used to decompose a prob-

lem and map it onto computing nodes of the loosely coupled system. In such a case, each 

subpopulation or group of subpopulations evolves independently on separate computa-

tional nodes. On the other hand, the absence of communication between nodes reduces 

the efficiency of optimization. In order to avoid this, different dynamic adaptation strate-

gies should be added to the algorithm [34]. 

In this work, we incorporated the following changes into the multipopulation SMEC 

algorithm: a step adaptation strategy [35], projection onto a search domain technique to 

handle constraints [36], and a smoothing method to producing control strategies that can 

be put into practice [17]. For the purpose of parallelization, the master–slave paradigm 

was used [18]. The description of the proposed parallel algorithm is presented below, and 

a flow chart diagram is displayed in Figure 1. 

1. Initialization of groups within the search domain (𝐷) and problem decomposition. 

This stage is performed on the master CPU. 

a. Generate a given number (𝛾) of groups (𝑆𝑖 , 𝑖 ∈ [1: 𝛾]); 𝛾 is the free parameter of 

the algorithm; 

b. Generate a random vector (𝑋𝑖,1). In this work, an 𝐿𝑃𝜏 sequence was used [37]. 

Identify this vector with the individual (𝑠𝑖,1) of the group (𝑆𝑖); 

c. For every 𝑋𝑖 , 𝑖 ∈ [1: 𝛾], calculate the corresponding values of the objective func-

tion (Φ𝑖); 

d. Randomly divide a set of vectors (𝑋1, 𝑋2, … , 𝑋𝛾) into 𝐾 subpopulations, where 

K is the number of available computing nodes. The next steps are performed for 

each sub-population; 

e. In every group (𝑆𝑘,𝑖 , 𝑘 ∈ [1: 𝐾], 𝑖 ∈ [1: 𝛾/𝐾]), determine the initial coordinates of 

the rest of individuals in the group (𝑆𝑘,𝑖,𝑗 , 𝑗 ∈ [2: |𝑆|]) according to the following 

formula: 

𝑋𝑘,𝑖,𝑗 = 𝑋𝑘,𝑖,1 + 𝑁|𝑋|(0, 𝜎). (10) 

Here, |𝑆| is the number of individuals in each group; 

f. Calculate the scores of all individuals in every subpopulation and put them on 

the corresponding local blackboards (𝐶𝑘, 𝑘 ∈ [1: 𝐾]); 

g. Create leading 𝑆𝑏 and lagging 𝑆𝑤 groups based on the obtained scores. The 

ratio between leading and lagging groups is determined by the free parameter 

𝜂. In this work, the number of lagging and leading groups is the same (𝜂 = 0.5), 

corresponding to a situation in which there is a balance between exploration and 

exploitation. 

2. The modified similar-taxis stage is launched independently on every parallel com-

puting node and works with a subset of 𝛾/𝐾 groups determined during the initiali-

zation stage. We describe the process for one computing node. 

a. Take information on the current best individual (𝑠𝑖,𝑗 , 𝑗 ∈ [1: |𝑆𝑖|]) of the group 

(𝑆𝑖) from the blackboard (𝐶𝑘); 

b. The value of parameter 𝜎 used to generate new agents decreases depending on 

the number of iterations: 

𝜎 = {

𝜎0, 𝑖𝑓 𝜆 < 𝜆̂,
1

(𝜆 − 𝜆̂)
𝜃

+ 𝜀, 𝑖𝑓𝜆 ≥ 𝜆̂. (11) 

Here, 𝜆̂ is the threshold number of iterations; when 𝜆 ≥ 𝜆̂, the standard devia-

tion (𝜎) begins to decrease; 𝜎0 is the initial value of the standard deviation; 𝜃 is 



Mathematics 2022, 10, 3589 7 of 14 
 

 

the speed parameter (the recommended value 𝜃 = 0.2); and 𝜀 is the tolerance 

used to identify the stagnation. 

c. Check for constraint violations: 

i. If any component of vector 𝑋 is outside of domain 𝐷, it is projected back 

on to the boundary of domain 𝐷 [24]; and 

ii. The difference between any two nearby components of vector 𝑋 is modi-

fied in order not to overcome the specified limit from physical experiments. 

This procedure is performed in random order [3]. 

d. Create new leading groups (𝑆𝑏 = (𝑆1
𝑏 , 𝑆2

𝑏 , … , 𝑆
|𝑆𝑏|
𝑏 )) and lagging groups (𝑆𝑤 =

(𝑆1
𝑤 , 𝑆2

𝑤 , … , 𝑆|𝑆𝑤|
𝑤 )) around current best individuals (𝑠̃𝑖,𝑗) using Formula (10); 

e. Put information on the new winner on the corresponding local blackboard (𝐶𝑘) 

and the global blackboard (𝐶𝑔) available to the master. 

3. The dissimilation stage is also performed on every parallel computing node. 

a. Read the scores of all groups (Φ𝑖
𝑏, Φ𝑗

𝑤 , 𝑖 ∈ [1: |𝑆𝑏|], 𝑗 ∈ [1: |𝑆𝑤|]) from the global 

blackboard (𝐶𝑔); 

b. Compare all the scores. If the score of any leading group (𝑆𝑖
𝑏) is less than score 

of any lagging group (𝑆𝑗
𝑤), than the lagging group becomes a leading groups, 

and the first group becomes a lagging group. If score of a lagging group (𝑆𝑘
𝑤) is 

lower than the scores of all leading groups for 𝜔 consecutive iterations, then it 

is removed from the population; 

c. Each removed group is replaced with a new group via an initialization proce-

dure. 

4. For this study, the maximum allowed value of the objective function’s evaluation 

𝜆𝑚𝑎𝑥  was used as the termination criterion [36]. The synchronous approach was 

used, as the master node waits for the results or termination messages (via time out) 

from all computing nodes before composing the solution. 

Without any preliminary problem analysis and/or load-balancing procedure, the 

synchronous approach can be inefficient; some computational nodes can sit idle, whereas 

others still operate. As we focused on parallelization for desktop grids, dynamic load bal-

ancing would be impractical, as our goal was to minimize communication between the 

nodes. 

Considering these aspects, we propose asynchronous parallel modification of the 

MEC algorithm. The idea of asynchronous learning was inspired by the [38], in which it 

was used for deep evolutionary reinforcement learning for large-scale problems. The idea 

is to update the evolutionary information every time a computing node finishes optimi-

zation. 

The asynchronous update is performed by the master CPU after every new message 

received from the nodes and can be described as follows. 

a. Read the scores of all groups (Φ𝑖
𝑏, Φ𝑗

𝑤 , 𝑖 ∈ [1: |𝑆𝑏|], 𝑗 ∈ [1: |𝑆𝑤|]) from the global black-

board (𝐶𝑔); 

b. Compare all the scores. If score of any leading group (𝑆𝑖
𝑏) is less than the score of any 

lagging group (𝑆𝑗
𝑤), then the lagging group becomes a leading group, and the first 

group becomes a lagging group. If the score of a lagging group (𝑆𝑘
𝑤) is lower than 

scores of all leading groups for 𝜔 consecutive iterations, then it is removed from the 

population; 

c. Each removed group is replaced with a new group with via the initialization proce-

dure; 

d. If a lagging group (𝑆𝑗
𝑤) was deleted while being processed on another computing 

node, its results are kept in order to form a new group as soon as another group is 

removed in order to maintain a constant number of groups and individuals and pre-

vent information loss. 
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Figure 1. General flow chart of the parallel algorithm for synchronous and asynchronous versions 

of the PMEC algorithm. 

5. Computational Experiments and Analysis 

Both synchronous parallel MEC (sPMEC) and asynchronous parallel MEC (aPMEC) 

algorithms were implemented using a combination of Python and Wolfram Mathematica. In 

addition, the sequential version of the modified algorithm was implemented for the effi-

ciency study. Finally, we implemented another parallel version of the algorithm in which 

instead of problem decomposition, parallel computing nodes were utilized only for eval-

uation of the objective function (every individual is evaluated at the available node), 

whereas the general logic remained sequential. We refer to this algorithm as oPMEC (ob-

jective PMEC). It will be used only at the master node (multicore CPU), as it requires many 

information exchanges between nodes. 

The specified problem of optimal control of the catalytic reforming of gasoline was 

used to compare the efficiency of the proposed parallelization techniques. For the experi-

ments, a computational limit of 32,000 objective function evaluations was set for all four 

algorithms. The backward differentiation formula solver in Wolfram Mathematica was uti-

lized to solve systems of ODEs. Computations for sPMEC and aPMEC were performed 

using a desktop grid composed of sixteen personal computers connected physically via a 

local network. 

The following free-parameter values of the algorithm were utilized: the number of 

groups (𝛾 = 32), the number of individuals in each group (|𝑆| = 15), the removing fre-

quency (𝜔 = 30 iterations), and the initial value of the standard deviation (𝜎0 = 0.0001). 

5.1. Study of the Parallelization Efficiency 

A sequential experiment with one node was performed at the master node only, 

which is a personal computer with four CPU cores. For the specified computational limit, 

the sequential experiment took 159,217 seconds. In other words, one objective function 

evaluation takes approximately 5 s. 

Parallelization with the oPMEC algorithm was also performed at the master node 

with four CPU cores (𝑁 = 4). In this work, we used the parallelization speedup (S) and 
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the efficiency of parallelization (E) as two criteria for comparison of the algorithms [7]. 

The speedup is calculated as the ratio of program execution time on one node (𝑇1) to the 

execution time on N nodes (𝑇𝑁). The efficiency of the parallelization is calculated as the 

speedup (𝑆𝑁) divided by the number of nodes (𝑁). Because this type of parallelization 

does not involve any algorithm modification, its speedup and efficiency are poor (Figure 

2); the exact values are presented in Table 1. 

 

Figure 2. The speedup (S, red) and the efficiency (E, green) of the parallelization depending on the 

number of computing nodes (N) for the oPMEC algorithm; the maximum possible speedup is indi-

cated by a blue dashed line. 

Table 1. Speedup and parallelization efficiency for the oPMEC algorithm. 

Number of Nodes, N Speedup, 𝑺𝑵 Efficiency, 𝑬𝑵 

4 1.61 40.3% 

We also analyzed the sPMEC algorithm (Figure 3), which achieved relatively good 

speedup and efficiency when the number of nodes was low, although it scales up poorly. 

The parallelization efficiency is only 60% when the number of nodes is N = 16 (Table 2), 

mainly due to the absence of load balancing as a result of the loosely coupled architecture. 

As a result, some computing nodes took up to 75% more time to finish computations than 

others. 

 

Figure 3. The speedup (S, red) and the efficiency (E, green) of the parallelization depending on the 

number of computing nodes (N) for the sPMEC algorithm; the maximum possible speedup is indi-

cated by a blue dashed line. 
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Table 2. Speedup and parallelization efficiency for the sPMEC algorithm. 

Number of Nodes, N Speedup, 𝑺𝑵 Efficiency, 𝑬𝑵 

2 1.84 92.2% 

4 3.46 86.7% 

8 6.11 76.4% 

16 9.91 61.9% 

Finally, we analyzed the aPMEC algorithm (Figure 4). This algorithm scales up better 

than the synchronous algorithm, resulting an efficiency of more than 80% when N = 16 

(Table 3). Asynchronous evolution helped to avoid unnecessarily lengthy computation in 

the beginning of the process and resulted in high efficiency, as there were few steps per-

formed at the master node. 

 

Figure 4. The speedup (S, red) and the efficiency (E, green) of the parallelization depending on the 

number of computing nodes (N) for the aPMEC algorithm; the maximum possible speedup is indi-

cated by a blue dashed line. 

Table 3. Speedup and parallelization efficiency for the aPMEC algorithm. 

Number of Nodes, N Speedup, 𝑺𝑵 Efficiency, 𝑬𝑵 

2 1.92 96.0% 

4 3.72 93.1% 

8 6.95 86.8% 

16 13.31 83.1% 

5.2. Analysis from the Chemical Perspective 

The introduction of temperature control throughout the process means determining 

the cooling regime to achieve the optimum according to the given criterion. In Figures 5 

and 6, the vertical lines indicate the boundaries of the process by reactors (the reactor 

block of catalytic reforming consists of three reactors). The red dashed curves represent 

the scenario without 𝑇𝑒𝑥𝑡𝑟𝑎
′ (𝑡), which is used as a baseline. 

The cooling mode for the existing technological process shows the need for constant 

heat removal in the first and second reactors, as well as at the beginning of the third reac-

tor; then, a decrease in cooling occurs, which is associated with the criterion of the optimal 

control problem to reduce the yield of aromatics. The authors of [28,29] showed that in 

the first and second reactors, as well as at the beginning of the third reactor, there is a 

constant accumulation of aromatic hydrocarbons at an elevated temperature; then, the 

content of aromatics decreases somewhat. Possible means of consumption include alkyl-

ation, hydrocyclization, and cracking reactions of alkyl substituents, which predominate 

in the third reactor. The task of temperature control enables a reduction in the yield of 
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aromatics to 36%, which is more than 20% less than without control (Table 4). The calcu-

lation is conducted as follows: 0.47 − 0.24 × 0.47 = 0.47 − 0.11 = 0.36; the calculation is 

conducted in a similar manner for all other rows in Table 4. Furthermore, the yield of 

benzene was reduced from 3 to 2%. Such a reduction in the yield of aromatic hydrocar-

bons and benzene allows the process product to comply with environmental restrictions. 

The value of ON decreases slightly, but it is not crucial for the quality of the commercial 

gasoline, as it also contains products of isomerization of the pentane-hexane fraction, 

which compensate for the drop. In turn, the aromatic hydrocarbons are generated only at 

this stage, and their decrease significantly improves the ecological properties of the gaso-

line. Furthermore, the yield of the reformate, i.e., the reaction product, increases from 86 

to 93. 

 

Figure 5. The reaction temperature in all three reactors for three different scenarios: red—no control; 

blue—obtained control; vertical dashed lines represent times in each reactor. 

 

Figure 6. Obtained 𝑇𝑒𝑥𝑡𝑟𝑎
′ (𝑡) for all three reactors 𝑅1, 𝑅2, and 𝑅3; vertical dashed lines represent 

times in each reactor. 

In general, the control of the thermal regime in reactors plays an important role, as 

the reaction rates change, which can lead to a change in the material balance and proper-

ties of the obtained products. Technological examples include when a heat exchanger and 

a refrigeration equipment are used in catalytic reforming units [39]. In the presented work, 

the optimal control of the catalytic reforming of gasoline is calculated, which makes it 

possible to provide specific technological recommendations with respect to operating con-

ditions with heat removal in each reactor of the cascade throughout the entire process. 
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Table 4. Target characteristics of the reaction with and without control. 

Output Characteristic Without Control With Obtained Control Change in % 

Octane Number 91.36 86.23 −6% 

Target Product 86.57 93.74 +8% 

Benzol 0.03 0.02 −33% 

Aromatic Hydrocarbons 0.47 0.36 −24% 

6. Conclusions 

In this paper, we present a new parallel asynchronous MEC algorithm designed for 

optimal control of multistage catalytic reactions using desktop grids. Instead of a tradi-

tional evolution paradigm, the aPMEC algorithm operates in the asynchronous parallel 

mode, so learning is not required across the entire population before subsequent steps. 

Once local optimization is performed for any group, the master process can immediately 

perform another step of the algorithm. As a result, it rearranges computations to avoid 

down time in the beginning of the evolution process. The algorithm is also capable of 

finding feasible solutions by taking practical constraints into account. 

The proposed algorithm and its software implementation were used to obtain feasi-

ble control for the catalytic reforming of gasoline. The results of the conducted numerical 

experiments and the obtained control are presented in this paper. The algorithm enabled 

improvement of the reaction characteristics. The yield of the reformate, i.e., the reaction 

target product, was increased from 86 to 93, and all environmental requirements were 

satisfied: the content of aromatic hydrocarbons was maintained under 40%, and that of 

benzol was maintained under 2%, from initial contents of 47% and 3%, respectively. Ad-

ditionally, the parallelization efficiency was studied for the aPMEC algorithm and its syn-

chronous variant. The asynchronous approach improved the parallelization efficiency for 

16 computing nodes from 60% to 82%. 

Future research will be devoted to investigating the performance of the proposed 

algorithm using hybridization with local search methods and other parallel architectures. 

Another possible research direction involves the concept of landscape analysis [24] and 

its importance for parallelization, as the results obtained during the landscape analysis 

stage can be used not only to tune the optimization algorithm but also for initial load 

balancing. 
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