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Abstract: Conventional zero-shot learning aims to train a classifier on a training set (seen classes) to
recognize instances of novel classes (unseen classes) by class-level semantic attributes. In generalized
zero-shot learning (GZSL), the classifier needs to recognize both seen and unseen classes, which is a
problem of extreme data imbalance. To solve this problem, feature generative methods have been
proposed to make up for the lack of unseen classes. Current generative methods use class semantic
attributes as the cues for synthetic visual features, which can be considered mapping of the semantic at-
tribute to visual features. However, this mapping cannot effectively transfer knowledge learned from
seen classes to unseen classes because the information in the semantic attributes and the information
in visual features are asymmetric: semantic attributes contain key category description information,
while visual features consist of visual information that cannot be represented by semantics. To this
end, we propose a residual-prototype-generating network (RPGN) for GZSL that extracts the residual
visual features from original visual features by an encoder–decoder and synthesizes the prototype
visual features associated with semantic attributes by a disentangle regressor. Experimental results
show that the proposed method achieves competitive results on four GZSL benchmark datasets with
significant gains.

Keywords: deep learning; object recognition; generalized zero-shot learning; generative adversarial
network

MSC: 68T07

1. Introduction

The emergence of deep convolutional networks [1–4] has greatly developed image
recognition. However, the realistic category distribution is imbalanced, as some categories
have few or even no samples for training, which severely limits the performance of net-
works on unseen classes. Zero-shot learning [5] is proposed to solve this problem by
recognizing novel classes (unseen classes) solely through class-level semantic attributes and
knowledge learned from the existing training set (seen classes). Conventional zero-shot
learning has the strong assumption that all test samples are from unseen classes. In adapta-
tion to realistic scenarios, generalized zero-shot learning (GZSL) [6,7] has been proposed,
where seen classes and semantic attributes are used to train the model, and both seen and
unseen classes participate in the test.

The current mainstream solution to GZSL is feature generative methods [8–11] that use
semantic attributes as the cues to train a visual feature generator. The trained feature generator
can be used to synthesize unseen-class visual features by the attributes of unseen classes. The
synthetic unseen-class features and existing seen-class features are used to train a softmax
classifier in a supervised way. The synthetic features make up for the lack of unseen classes
and effectively avoid overfitting on seen classes. The generative methods use only semantic
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attributes as cues for synthesizing visual features, which can be considered attribute-to-feature
mapping. However, the visual features contain richer information than the semantic attributes,
thus the semantic attributes can only represent visual features that are highly relevant to the
category. Current generative methods concatenate Gaussian noises on the attributes to balance
the gap between the attributes and the features, but the introduction of a large amount of noise
seriously affects the mining of attributes, which restricts the attribute-to-feature inference of the
generative model.

Through the discussion above, a residual-prototype-generating network (RPGN) is
proposed, which consists of prototype generating and residual feature generating. Specif-
ically, considering that different dimensions of semantic attributes represent different
category information, such as white, furry, paws, etc., we propose a disentangle regressor
that first chunks the semantic attributes and regresses them separately and then regresses
the visual feature prototype. Through the disentangling operation, the visual feature proto-
type can fully explore the different information in the attribute and has excellent category
differentiation. Meanwhile, to ensure consistency between feature prototypes and semantic
attributes, the feature prototypes are reverted to the original semantic attributes as the
reconstruction constraint. In addition, we propose a residual variational auto-encoder
(rVAE) to extract the part of visual features (residual features) that cannot be represented
by semantic attributes from the original visual features. The residual features extracted
from original features have realistic and rich visual features and do not affect the mining
of attribute information. To finish, the feature prototypes and the residual features are
added to obtain the synthesized visual features, the category of which is determined by the
category to which the prototype belongs, and the residuals used to synthesize the features
can be synthesized with any visual features. This residual-prototype generation ensures
that the feature prototypes contain attribute-associated information, and the residual fea-
tures contain only attribute-independent information, which is indeed indispensable for
constructing a real visual feature.

The work and contributions in this paper are threefold:

• We propose a disentangle regressor to generate class prototypes by first chunking the
attributes and regressing them separately for fully mining visual information.

• We design a residual-prototype-generating network (RPGN) that can synthesize di-
verse unseen-class features with the help of real seen-class features, greatly enhancing
the diversity of synthesized features.

• The proposed method achieves state-of-the-art (SOTA) results on four public
GZSL datasets.

2. Related Work
2.1. Conventional Zero-Shot Learning

Zero-shot learning (ZSL) relies on class-level semantic descriptions or features, such as
semantic attributes and word vectors, which are used to transfer models from seen classes
to unseen classes. Early ZSL research work focused on traditional ZSL problems, in which
semantic embedding was the most important approach. Semantic embedding methods
can learn to embed visual features into semantic space. By doing this, visual features and
semantic features are located in the same space, and ZSL classification can be accomplished
by searching for the nearest semantic descriptor.

2.2. Generalized Zero-Shot Learning

Currently, generative approaches dominate in GZSL [6,7]; these exploit existing ad-
versarial generative networks (GAN) [12–14] or variational auto-encoders (VAE) [15,16]
to synthesize visual features from class-level semantic attributes and random noise.
Examples such as f-CLSWGAN [8], cycle-UWGAN [11] and LisGAN [10] introduce the
Wasserstein generative adversarial network (WGAN) [17] paired with a pre-trained
classifier to synthesize visual features for unseen classes, transforming the GZSL task
into a fully supervised classification issue. RFF [18] combines the traditional projection
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method and GAN to initially map visual features to a new redundancy-free feature space
and then to judge the veracity of the mapped features. To enhance the performance of
the generator, some works [9,19–21] formulate GAN into the variational auto-encoder
(VAE) model to fit the class-specific latent distribution and highly discriminative feature
representations. The combination of GAN and VAE greatly enhances the performance
of the generative model in GZSL and becomes the benchmark method for many new
methods [22,23].

To enhance the generalization of the model from seen classes to unseen classes, some
studies introduce meta-learning. Meta-learning methods for GZSL [24–26] simulate the
setting of zero-shot learning in the training stage so that the model can effectively learn
the ability to transfer knowledge. ZSML [25] first introduces meta-learning into GZSL and
combines meta-learning with GAN, which gives the generator better knowledge transfer
capability. E-PGN [24] first introduces an episode-based paradigm in the training phase;
this divides the training set into pseudo-multiple zero-shot learning subsets and then takes
these subsets as multiple tasks to train the model. By training on multiple tasks, the model
can effectively transfer the knowledge learned from the seen classes to the task of the unseen
classes. Furthermore, to solve the problem of task inconsistency in the meta-learning model,
TGMZ [26] proposed a task alignment module to make the tasks of seen classes and unseen
classes more similar.

3. Method
3.1. Notations and Definitions

In the GZSL task, we define the dataset of seen classes as S = {(xs, ys, as) | xs ∈
X s, ys ∈ Y s, as ∈ As}, where X s, Y s and As represent the set of visual features, labels and
attributes of seen classes, respectively. Similarly, the unseen class dataset is denoted as
U = {(xu, yu, au) | xu ∈ X u, yu ∈ Yu, au ∈ Au}, where X u, Yu and Au denote the set of
visual features, labels and attributes of unseen classes, respectively. Note that the label set
of seen and unseen classes do not intersect, which is Y s ∩ Yu = ∅. The main goal of the
GZSL task is to train a classifier f : X s ∪ X u → Y s ∪ Yu that can recognize both seen and
unseen classes by only using the seen-class dataset (S) and attributes of unseen classes (Au)
for training.

3.2. Overview

The framework of the proposed approach, called residual-prototype-generating network
(RPGN), is shown in Figure 1 and contains five modules: ResNet-101 [4] as a backbone, an
encoder (En), a decoder (De), a disentangle regressor (Rd), an attribute regressor (Ra), and a
discriminator (D).
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Figure 1. The overall framework of our proposed residual-prototype-generating network (RPGN).

The backbone is ResNet-101 pre-trained on ImageNet to extract visual features of
images, and its parameters are fixed and no longer fine-tuned in any of the experiments.



Mathematics 2022, 10, 3587 4 of 13

The main function of disentangling regressor Rd is to generate a prototype feature
of a certain class based on attributes, and its structure is a block connection multilayer
perceptron (MLP) (see Figure 2 for details) for capturing complex semantic relationships
between attributes. To contain richer information on attributes, the generated prototype
feature reconstructs the attributes through an attribute regressor (Ra).

Figure 2. Illustration of the proposed disentangle regressor; C denotes concatenate operation.

The encoder (En) and decoder (De) form the proposed residual variational auto-
encoder (rVAE), which generates residual features. Unlike the traditional variational auto-
encoder that synthesizes features directly, the proposed rVAE is used to extract semantically
irrelevant visual feature residuals from real features. The prototype features synthesized
by the disentangle regressor (Rd) only have semantic information and do not contain
other information that constitutes visual features; thus the residual features can be used to
compensate for the missing prototype feature information. Further, through generating
prototype features and residual features, RPGN can make the final synthesized visual
features contain more semantic information and be more realistic.

The discriminator (D) mainly distinguishes between real features and synthetic
features and makes the distribution of synthetic features converge to the distribution
of real features through adversarial learning loss. The attribute regressor reconstructs
the prototypes back to the attributes, ensuring that the prototypes and attributes are
strongly correlated.

3.3. Prototype Generation

The prototype feature is generated through the proposed disentangle regressor (Rd),
which is illustrated in Figure 2. The reason for this design is that there are strong dependen-
cies between attributes; for example, the presence of a bird’s beak in an attribute necessarily
results in the presence of a bird’s claw, which leads to coupling between attributes. To
solve this problem, the attributes (a) are divided into K blocks (a1, a2, · · · , aK) randomly to
reduce the dependencies between attributes. Each attribute block (ai) is input to the hidden
layer ( fi) to get the result, and then all of them are concatenated together and input to the
output layer ( fo) to get the prototype feature xp with the following equation:

xp = Rd(a) = fo([ f1(a1), f2(a2), · · · , fk(ak)]), (1)

where ai denotes the attribute of the i-th block, and [a1, a2, · · · , aK] = a.
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To make the prototype contain the common features of a certain class, all the visual
features (x) of this class are used to constrain the prototype (xp). Usually, L2 loss is used
to achieve this, but each class has only one prototype, which will inevitably lead to some
features of this class being greatly different from the prototype, causing too much L2 loss;
that is, it is easy to have a gradient explosion. To avoid this problem, smooth L1 loss [27] is
used here, which is as follows:

LSmoth =

{
0.5Ex[‖ xp − x ‖2

2 /α], ‖ xs
p − xs ‖2

2< α,

Ex[‖ xp − x ‖1]− 0.5α, otherwise,
(2)

where α is a hyper-parameter and is set to 1 in all the experiments according to the sugges-
tion of [27].

To further constrain the prototype features to be as relevant as possible to the attributes
and to contain all the attribute information, the prototype is reconstructed back to the
attributes, and an exponential loss function is used to make the projected attributes to be as
similar as possible to the real attributes:

Lexp = Exp [e
−R(xp)·a]. (3)

The purpose of exponential loss is to produce a high dot-product similarity between
the reconstructed attributes and the real ones.

3.4. Residual Generation

Residual generation is implemented through the proposed residual variational auto-
encoder (rVAE), which first encodes visual feature (x) as a hidden variable (denoted as
h). Here, we use the re-parameterization trick in VAE [28] to represent h as h = µ + σ ∗ z,
where [σ, µ] = En(x), z ∼ N (0, 1), and the distribution of h is consistent with the standard
normal distribution through the following Kullback–Leibler divergence loss:

LKL =
1
2
Eµ,σ[

d

∑
i=1

(µ2
i + σ2

i − log(σ2
i )− 1)], (4)

where σi, µi are the i-th dimension values of σ and µ, respectively.
The latent variables are used to decode the residual features with the

following equation:

xr = De(h) = De(µ + σ ∗ z), (5)

where z is Gaussian noise; that is, z ∼ N (0, 1). In the absence of confusion, the process of
synthesizing residual features by the residual generator is abbreviated as xr = GR(x, z).
Here, the final residual features are not expected to be the same as the initial visual features
as in traditional VAE, but are expected to contain the attribute-independent part of a visual
feature, which is precisely the part that makes the final synthesized visual features more
realistic and more diverse. The information of residual features cannot be obtained by
traditional generators through random noise alone, and the proposed method greatly
avoids the problem of missing the diversity of synthetic features by traditional generators.

3.5. Generative Adversarial Network

The final synthetic features combine the results of the prototype generator and the
residual generator as follows:

x̂ = xp + xr. (6)

Note that the residual features xr are synthesized using the real features of any seen
classes, not necessarily the same class as the prototype features xp, and the final synthesized
features x are determined by the class to which the prototype belongs. This way of synthe-
sizing residual features without using visual features of the same class can significantly
improve residual generation to capture attribute-independent feature information, which
can greatly enhance the authenticity of the synthesized features. For convenience, the
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overall generation process is denoted as x̂ = G(a, x, z), where x is the real feature used to
extract the residual feature, z is sampled from N (0, 1) for re-parameterization, and a is the
attribute vector to control the class of synthesized feature x̂.

To improve the authenticity of the synthetic features and to make their distribution
closer to that of the real features, the generative adversarial loss is introduced as:

LD =E[D(x, a)]−E[D(x̂, a)]

− βE[(||∇ẋD(ẋ, a)||2 − 1)2]
(7)

where β is a hyper-parameter. The last term is the Wasserstein loss [17] by enforcing
the Lipschitz constraint [29], where ẋ = γx + (1− γ)x̂ with γ ∼ U(0, 1). As suggested
in [17], we fix β = 10.

In summary, the total objective loss is as follows:

max
D

min
En,Dn,Rd,Ra

L = LD + LKL + LSmoth + λLexp, (8)

where λ is a hyper-parameter to control the effect of attribute reconstruction.

3.6. Classification

In the classification stage, the goal is to train a classifier capable of classifying both
seen and unseen classes. To compensate for the lack of unseen class data, a synthetic
unseen class dataset is forged through feature generation. Specifically, given the au

y of
any unseen class y ∈ Yu, and with sampling noise z and seen-class feature xs, the visual
features of unseen classes can be synthesized through x̂ = G(au, xs, z). After repeating this
feature-generation process for every unseen class, a synthetic unseen dataset Ū is obtained.
As the last step, synthetic unseen classes Ū and real seen classes S are used to train a
classifier in a supervised way.

4. Experimental Results
4.1. Experimental Setup

Datasets. The proposed method is evaluated on four benchmark datasets: Animals
with Attributes (AWA1) [30], renewed Animals with Attributes (AWA2) [6], Caltech USCD
Birds-2011 (CUB) [31] and Oxford Flowers (FLO) [32]. We use the category splitting
strategy in [6]. Concretely, AWA1 and AWA2 are two coarse-grained datasets that consist
of different visual images from the same 50 animal classes; each class is labeled with 85-
dimensional category attributes. Forty classes in AWA1 and 2 are split into seen classes,
and the other 10 classes are split into unseen classes. CUB is a fine-grained dataset with
11,788 images from 200 different classes of birds with 1024-dimensional attributes extracted
by CNN-RNN [33]. A total of 150 classes in CUB are split into seen classes, and the other
50 classes are split into unseen classes. FLO is a fine-grained dataset that consists of
8189 images from 102 flower classes with 1024-dimensional attributes extracted by CNN-
RNN [33], similar to CUB. A total of 82 classes in FLO are split into visible classes, and another
20 classes are split into unseen classes. A summary of the datasets is given in Table 1.

Table 1. Statistics of five benchmark datasets. From left to right, the columns show the dataset name,
the class attribute dimensionalityA, the number of seen classes Y s and unseen classes Yu, all training
instances S tr, and testing seen instances S te and unseen instances U te.

Dataset A Y s Yu S tr S te U te

CUB 1024 150 50 11,788 1764 2967
AWA1 85 40 10 30,475 5685 4958
AWA2 85 40 10 37,322 5882 7913
FLO 1024 82 20 5394 1640 1155
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Evaluation Protocol. The proposed method is evaluated in terms of the average per-
class Top-1 accuracy (ACC). In addition, we follow the protocol proposed in [6] for the
GZSL task, in which the ACCs of both seen class S and unseen class U are calculated, as
well as the harmonic mean H = 2× S×U/(S + U).

Implementation Details. Following [6], we use the 2048-dimensional global features
extracted by ResNet-101 [4], which is pre-trained on ImageNet for visual features. As a
pre-processing step, we also normalize the visual features such as that of f-CLSGAN [8]. En,
De, D and Ra all adopt a three-layer multilayer perceptron (MLP), which employs 4096 units
in the hidden layer. Meanwhile, they all apply LeakReLU as the activation function on the
hidden layer. The difference is that the De, Rd and Ra apply ReLU [34,35] as the activation
function of the output layer, while D and En do not use the activation function on the output
layer. For all datasets, En, De, D, Rd and Ra are optimized by Adam [36] with learning rate
0.0001, batch size 512, β1 = 0.999 and β2 = 0.5.

4.2. Comparison with SOTA Methods

Results on public zero-shot learning datasets are reported in Table 2. RPGN outperforms
all generative and non-generative methods on AWA2, a coarse-grained dataset, and FLO, a
dataset with non-manually labeled attributes, especially on the FLO dataset, where the pro-
posed method is only 3% away from reaching 80% accuracy. On AWA1, RPGN outperforms
all the generative methods by 1.1% over the second place CE-GZSL [37], which is a very big
improvement. On CUB, a fine-grained dataset, RPGN is below CE-GZSL [37] in the genera-
tive method, but it is much better than the algorithm on other datasets, which shows that the
proposed method can be applied to all datasets and does not cause significant performance
degradation due to changes in the dataset. In addition, the unseen class accuracy U of RPG
is the highest on AWA2 compared with the generative method; our method is higher than
TGMZ [26] by 4.2%, which is a good indication that our model is able to synthesize more
truly diverse unseen-class features, and although the unseen-class accuracy of our method is
not the highest on FLO, we have the highest seen-class accuracy, which also shows that our
synthesized unseen-class features are not strongly biased towards the seen class; therefore,
they do not affect the accuracy of the seen class too much.

Table 2. Comparative results with other methods. Red font and blue font denote the highest and the
second highest results, respectively.

Methods CUB AWA1 AWA2 FLO

U S H U S H U S H U S H

N
on

-G
en

er
at

iv
e

SE-ZSL [38] 41.5 53.3 46.7 56.3 67.8 61.5 58.3 68.1 62.8 - - -
ABP [39] 47.0 54.8 50.6 57.3 67.1 61.8 55.3 72.6 62.6 - - -

COSMO [40] 44.4 57.8 50.2 52.8 80.0 63.6 - - - 59.6 81.4 68.8
ZSML [25] 60.0 52.1 55.7 57.4 71.1 63.5 58.9 74.6 65.8 - - -

DAZLE [41] 59.6 56.7 58.1 - - - 75.7 60.3 67.1 - - -
DVBE [42] 53.2 60.2 56.5 - - - 63.6 70.8 67.0 - - -
E-PGN [24] 52.0 61.1 56.2 62.1 83.4 71.2 52.6 83.5 64.6 71.5 82.2 76.5

GCM-CF [43] 61.0 59.7 60.3 - - - 60.4 75.1 67.0 - - -
SR2E [44] 61.6 70.6 65.8 - - - 58.0 80.7 67.5 - - -

AGZSL [45] 41.4 49.7 45.2 - - - 65.1 78.9 71.3 - - -
IPN [46] 73.8 60.2 66.3 - - - 79.2 67.5 72.9 - - -
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Table 2. Cont.

Methods CUB AWA1 AWA2 FLO

U S H U S H U S H U S H

G
en

er
at

iv
e

GAZSL [47] 31.7 61.3 41.8 29.6 84.2 43.8 35.4 86.9 50.3 28.1 77.4 41.2
f-CLSGAN [8] 43.7 57.7 49.7 57.9 61.4 59.6 56.1 65.5 60.4 59.0 73.9 65.6

cycle-UWGAN [11] 45.7 61.0 52.3 56.9 64.0 60.2 - - - 59.2 72.5 65.1
LisGAN [10] 46.5 57.9 51.6 52.6 76.3 62.3 47.0 77.6 58.5 57.7 83.8 68.3

f-VAEGAN [9] 48.4 60.1 53.6 - - - 56.8 57.6 70.6 63.5 74.9 64.6
CADA-VAE [19] 51.6 53.5 52.4 57.3 72.8 64.1 55.8 75.0 63.9 - - -

DE-VAE [20] 52.5 56.3 54.3 59.6 76.1 66.9 58.8 78.9 67.4 - - -
OCD-CVAE [21] 44.8 59.9 51.3 - - - 59.5 73.4 65.7 - - -

RFF [18] 52.6 56.6 54.6 59.8 75.1 66.5 - - - 65.2 78.2 71.1
FREE [23] 55.7 59.9 57.7 62.9 69.4 66.0 60.4 75.4 67.1 67.4 84.5 75.0
HSVA [48] 52.7 58.3 55.3 59.3 76.6 66.8 56.7 79.8 66.3 - - -

CE-GZSL [37] 63.9 66.8 65.3 65.3 73.4 69.1 63.1 78.6 70.0 69.0 78.7 73.5
TGMZ [26] 60.3 56.8 58.5 65.1 69.4 67.2 64.1 77.3 70.1 - - -

RPGN(Ours) 61.0 62.2 61.6 64.0 77.8 70.2 68.3 78.8 73.2 68.2 88.9 77.0

As for the reason why our method is not in the leading position on CUB, a fine-grained
dataset, but is superior on AWA1, AWA2 and coarse-grained datasets, the analysis is as
follows. Other generative methods only use attributes and Gaussian noise to synthesize
unseen class data. If the attributes are coarse-grained and provide less information, the
Gaussian noise alone cannot provide other information about a visual feature; therefore,
the unseen-class features synthesized by other generative methods are bound to face
problems of poor realism and lack of diversity. In contrast, our RPGN uses the residuals
generated by real seen-class features. Due to the authenticity and richness of seen-class
features, the generated residuals must also contain a large amount of information on real
features, which can make up for the lack of information provided by attributes. As for
CUB, a fine-grained dataset, the attributes already provide sufficient information; therefore,
other generative methods obtain better performance. In summary, our method is more
suitable for coarse-grained datasets than other methods. In addition, it is observed that
many non-generative methods [44,46] can obtain very good performance on CUB, which
is also because the attributes of CUB contain enough information that extra synthetic
unseen-class features are not necessary to compensate for the absence of the unseen class,
and the model can infer the relationship between features and attributes to complete
zero-shot recognition.

4.3. Ablation Study

We perform ablation experiments to determine whether or not to use the following
key components: (a) residual variational auto-encoder to generate residual features; (b) the
disentangle regressor to synthesize the prototype; and (c) smooth L1 loss [27]. Results of
the ablation study are reported in Table 3.

Residual feature generation: If only Gaussian noise is used to synthesize the residual
features, this synthesis is similar to other generative methods, but the authenticity and
diversity of the visual features synthesized by relying only on random noise to obtain
information other than attributes of a visual feature are deficient because random noise
does not provide as much information as the real visual features. In contrast, our method
synthesizes residual features by random noise and real seen-class features; these residual
features contain information other than the attributes in real visual features, and the
richness and authenticity of the visual features synthesized with this residual feature
method are guaranteed. Thus, comparing the first and second columns of Table 3 after
using our method to synthesize visual features shows improvements of 5.0%, 6.2% and
6.1% on CUB, AWA2 and FLO, respectively. Comparing the fifth and eighth rows reveals
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that removing the innovation reduces performance by 3.6%, 4.0% and 5.2% on the three
datasets, respectively, which fully illustrates the effectiveness of the innovation.

Table 3. Results of ablation study: usage of (a) real seen classes to synthesize residual features; (b) a
multi-headed MLP to synthesize the prototype; and (c) smooth L1 loss.

CUB AWA2 FLO

a b c U S H U S H U S H

50.5 52.6 51.5 57.4 66.8 61.7 60.5 74.0 66.6
X 55.5 57.6 56.5 63.6 72.9 67.9 66.6 80.1 72.7

X 54.8 56.8 55.8 62.5 73.6 67.6 64.2 79.9 71.2
X 53.9 56.7 55.3 62.9 70.0 66.3 63.8 77.0 69.8

X X 57.8 58.2 58.0 64.6 74.4 69.2 65.0 80.3 71.8
X X 59.4 60.2 59.8 67.8 76.5 71.9 67.8 85.5 75.6
X X 60.0 61.1 60.5 68.0 77.0 72.2 66.9 87.8 75.9
X X X 61.0 62.2 61.6 68.3 78.8 73.2 68.2 88.9 77.0

Disentangle regressor: If only ordinary MLP is used to capture the semantic rela-
tionships between attributes, there will be strong dependencies between some attributes
and confusion will arise between them, and some attributes will even be useless. The
proposed disentangle regressor first randomizes attributes to different blocks, reducing
the probability of having attributes with strong dependency in the same block and thus
achieving better mining of the semantic relationships between attributes. This enables the
synthesized prototype to make full use of all the attributes. Comparing the first and third
rows of Table 3 shows that the model improves by 4.3%, 5.9% and 5.6% for CUB, AWA2
and FLO, respectively, after using the multi-headed MLP. Comparing the sixth and eighth
rows reveals that the model’s performance decreases by 1.8%, 1.3% and 1.4% for the three
datasets, respectively, after removing the innovation, which fully indicates that the more
complex structure can better generate prototypes containing attribute information, thus
improving the zero-shot recognition performance of the model.

Smooth L1 loss: If the traditional L2 loss is used to constrain the prototypes and
training features, there are bound to be many features that are far different from the
prototypes, for there is only one prototype for each class. This will result in larger loss
and will potentially lead to gradient explosion. In fact, the prototypes are expected to
represent the universal and common information of a class, so if some features are more
different than other features of the same class, then such features should not provide too
much reference to the prototype. L2 loss would give such features more attention, which is
obviously unreasonable. Comparing the first and third rows of Table 3, the model improves
by 3.3%, 4.6% and 3.2% on CUB, AWA2 and FLO, respectively, after using the smooth L1
loss, while comparing the seventh and eighth rows after removing the innovation, the
model’s performance decreases by 1.1%, 1.0% and 1.1% on the three datasets, respectively,
which fully illustrates the effectiveness of the loss and shows that the loss is more helpful
to synthesize better prototypes.

4.4. Hyper-Parameter Analysis

Hyper-parameter K: We evaluate the effect of K as shown in Figure 3. We found
that the effect of K on the accuracy of the model is smaller in a certain range. On the
AWA2 datasets, the model gets the best performance when K is four, but on FLO and
CUB, the model gets the best performance when K is 8. This is because the attributes of
FLO and CUB are 1024 dimensions, which is far more than the other datasets, so they
should be divided into more groups for the attributes. It can be seen that the number
of groups should be positively correlated with the dimensionality of the attributes, and
the larger the dimensionality of the attributes, the more the number of groups should be
appropriately increased.
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Figure 3. The effect of hyper-parameter K: (a) CUB; (b) AWA2; and (c) FLO.

Hyper-parameter λ: We evaluate the effect of λ as shown in Figure 4. This hyper-
parameter controls the regression loss of the prototype projected back to the attribute space,
and by the same token, the prototype is also controlled by the adversarial loss. If this
hyper-parameter is too large, it will lead to a lower percentage of adversarial loss, which
will lead to lower authenticity of the final synthesized features. If this hyper-parameter is
too small, then it will lead to a lower correlation between the prototype and the attributes.
Thus, λ is set to one to achieve the best results on all datasets.
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Figure 4. The effect of hyper-parameter λ: (a) CUB; (b) AWA2; and (c) FLO.

4.5. Zero-Shot Bai Character Recognition

In addition to the public datasets, we create a new zero-shot dataset: the Chinese and
Bai Character (CBC) dataset. Bai script is an ancient script similar to Chinese script and is
composed of 32 strokes, similar to Chinese (see Figure 5). Specifically, we take 503 Chinese
characters as seen classes and 400 Bai characters as unseen classes and use the 32-stroke
information of each character as attributes.

Bai characters

Chinese

English spring sparrow up likewise hit no

Figure 5. Excerpts of Chinese and Bai characters.

Results on CBC are reported in Table 4. We transplanted eight of the latest GZSL
methods (ZSML [25], f-CLSGAN [8], LisGAN [10], f-VAEGAN [9], RFF [18], CE-GZSL [37]
and FREE [23]) to the CBC dataset, and the best-performing RFF [18] has a recognition
accuracy of 80.9% on the term of H. This is because these generative methods use Gaussian
noise plus attribute-synthesized features; therefore, these synthesized features are less
realistic and less diverse, while our RGPN uses residual features generated by real seen
classes and prototype-synthesized features generated by attributes; therefore, our model
synthesizes features that are more realistic and diverse. In addition, our method obtains
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an accuracy of 79.4% on the unseen class and is 5.4% higher than FREE [23], which fully
illustrates that the unseen-class features synthesized by our method are far better than
other methods. Finally, on the index H, our method is also higher than the second place by
3.1%, which shows the superiority of our method. To be as fair as possible, the above eight
GZSL methods all require careful hyper-parameter tuning to obtain comparable results.

Table 4. Comparative results with other methods on CBC. Red font and blue font denote the highest
and the second highest results, respectively.

Methods
CBC

U S H

f-CLSGAN [8] 43.5 63.5 51.6
LisGAN [10] 40.9 72.7 52.3

f-VAEGAN [9] 42.7 71.1 53.4
ZSML [25] 53.4 67.7 59.7
RFF [18] 44.2 72.6 54.9

CE-GZSL [37] 52.2 70.4 59.9
FREE [23] 48.9 68.4 57.3

RPGN (Ours) 52.8 76.1 62.3

5. Conclusions

Current generative methods for GZSL are facing bottlenecks as a consequence of the
fact that these methods use only Gaussian noise and attributes to synthesize unseen-class
features. To get out of this predicament, we propose a novel residual-prototype adversarial
generation network that can use real seen-class features to assist in synthesizing unseen-
class features, greatly improving the richness and authenticity of unseen-class features.
Experiments on multiple datasets, rich ablation experiments and hyper-parameter analysis
experiments show that our method is comparable or superior to existing methods. Further-
more, we constructed a GZSL-compliant task with the Chinese and Bai character (CBC)
dataset and applied eight SOTA methods to the CBC dataset to compare the performance.
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