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Abstract: Queueing models have proven to be very useful in real-life applications to enable the
practitioners to optimize the limited resources to conduct their businesses as well as offer services
efficiently. In general, we can group such applications into two sectors: manufacturing and service.
These two sectors cover everything we deal with on a day-to-day basis. Queues in which the services
are offered in blocks (or groups or batches) are well established in the literature and have a wide
variety of applications in practice. In this paper, we look at one such queueing model in which the
arrivals occur according to a Markovian arrival process and the services are offered in batches of
varying sizes from 1 to a finite pre-determined constant, say, b. The service times are assumed to
be of phase type with representation depending on the size of the group. Thus, the distributions
considered are heterogeneous from both the representation and rate points of view. The model can
be studied as a GI/M/1-type queue or as a QBD-model. The model is analyzed in steady state by
establishing results including on the rate matrix and the waiting time distribution and providing a
number of illustrative examples.

Keywords: queueing model; Markovian arrivals; phase type service; QBD process;
matrix-analytic methods

MSC: 60K20; 60K30; 90B22

1. Introduction

It is well known that queueing models play a key role in many walks of life. Queues are
part and parcel of everything we do daily. These queues can be physical or virtual. Virtual
queues are more prevalent these days due to permeation of the Internet and e-commerce
into our daily activities. Various industries and businesses such as manufacturing, airlines,
package delivery, pharmaceutical, hospitals, restaurants, Internet, and supply chain, among
others, use queueing models to optimize their functions so as to efficiently serve the
customers/clients. In general, we can group such applications into manufacturing and
service sectors. These two sectors cover everything we deal with on a day-to-day basis. For
example, the cell phone which has integrated into our activities has manufacturing (using
needed raw materials to make it) and service (repairing and maintaining when needed)
aspects; when visiting a grocery store to pick up items for our daily consumption of food,
we notice that these items have all gone through some type of a “production“ process
involving manufacturing as well as service. Similarly, one can identify the components of
each and every item we consume or replace or replenish on a regular basis.

The study of the classical queueing models depends on the (a) type of arrival process
(renewal or correlated); (b) service times (general or specific ones such as phase-type
distribution); (c) service scheme (first-come-first-served, service in random order, priority,
etc); (d) number of servers; and (e) buffer capacity (finite or infinite), among others.

Queueing models in which the customers are served in batches (of size of 1 or more),
which is also referred to as general bulk service rule (see [1]), have been studied in the
literature for more than five decades. While to do an exhaustive literature survey on such
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models will itself constitute a separate (review) paper, which is probably overdue and
worthwhile, here we will mention a few references that contain a number of key references
to bulk queues. It should be pointed out that some of these references deal with variations to
the classical queueing models such as server vacations, server working vacations, inventory
(needed for offering services), and retrials, among others [1–9]. Note that these references
include a lot of other references, and for the sake of the length of the paper, we did not
include them and refer the reader to the quoted ones here.

As mentioned in [2,3], very few papers have focused on correlated arrival processes
with batch services such that the service times are non-exponential. Recently, a few authors
(see, [2–4,7,8]) studied batch service queueing models in which the arrivals occur according
to a Markovian arrival process, and the services are offered in batches of varying sizes.
The service times in [3,4,7,8] for a batch of size, say, r, is modeled using the maximum of r
identical PH−distributions, which again is of PH−type (see [10–13]). Normally, one uses
the maximum (which is an order statistic) of r distributions to model the services in the
context of a multi-server system so that the system can assign as many servers as the number
in a batch, and the service of the batch is over at the time when the last customer’s service
is completed. Such models have been studied in the context of cloud/grid computing (see,
e.g., [14]).

The model studied in [2] deals with a finite capacity queue, and the bulk services are
generally distributed. Furthermore, the service times depend on the size of the group, and
the authors use an embedded Markov renewal process approach to study the model in
steady state. The illustrative numerical examples presented assume phase-type services
with the rates depending on the number served in a batch.

In [3], the authors consider a MAP/PH/1 queueing model in which the services are
offered in batches of a fixed size, say, b. At a service completion, if the number of customers
waiting in the queue is at least b, the server offers a service by taking exactly b customers.
However, if the number waiting is less than b, a clock (referred to as an admission clock)
is started, whose lifetime is modeled using a PH-distribution. If before the expiration of
this clock, the number in the queue hits b, the clock is turned off, and a service begins with
b customers. If the clock expires before the bth customer arrives, then the server takes all
those customers waiting and offers a service. Thus, in this way, a service for a group of size
varying between 1 and b− 1 is offered. If the number of customers waiting in the queue is
0, a new admission period is started. Recall that in [2], the service times are of phase type
and are obtained as the maximum of a finite number (which is the size of the group that is
offered a service) of identical phase-type distribution.

The model studied in this paper differs from the above two papers as follows.

• Compared to [2], here, we look at an infinite capacity system, and the study is based
on using the QBD process. Furthermore, we use Neuts’ caudal characteristic curve
analysis to bring out the qualitative nature of the model under study. Such a study has
not been fully explored in the literature. While the approach presented in [2] is appli-
cable to services having varying dimensions for the underlying PH−distributions, the
numerical examples presented there are for the case where only the rates are varied.

• Compared to [3], here, the server offers services as long as there is at least one customer
waiting in the queue. Thus, upon the completion of a service, if the queue is non-
empty, the server will offer services to the minimum of the number in the queue
and b. Otherwise, the server will remain idle until a new arrival occurs. Note that
if the rate of the admission period is increased to infinity (i.e, the admission period
instantaneously expires, leading the server to offer services to the waiting customers
as long as the queue is non-empty), their model should lead to the model studied here.
However, it is not clear from the presentation in [3] how their results including the rate
matrix, R, in the limiting case look like. As pointed out above, we use Neuts’ caudal
characteristic curve analysis to bring out the qualitative nature of the model under
study. Thus, our paper can be viewed as a companion to [3] as well as the limiting
case (as the admission rate approaches infinity).
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The paper is organized as follows. In Section 2, we present the model studied in this
paper, and the steady-state analysis of the model, including some key results, are discussed
in Section 3. Illustrative numerical examples to bring out the qualitative nature of the
model are discussed in Section 4, and finally, in Section 5, we present a summary and future
work on this model.

We use the following notations which are consistent with the ones set forth in the
literature. The dimensions of the vectors and the matrices will be of appropriate size as
dictated in the context where these are used. When further clarifications are needed, we
will denote the dimension in the context.

• e is a column vector of 1s.
• “T” appearing in the superscript stands for transpose. Thus, eT is a row vector of 1s.
• ei is a column vector with 1 in the ith position and 0 elsewhere.
• I is an identity matrix.
• ∆(a) is a diagonal matrix whose diagonal elements are given by the entries of the

vector a.
• ⊗ and ⊕, respectively, are the Kronecker product and Kronecker sum.

2. Description of the Model

We consider a single server queue in which arrivals occur according to an MAP
with an irreducible representation (D0, D1) of dimension m, where D0 governs transitions
corresponding to no arrivals and D1 governs those that result in arrivals. Let δ denote the
invariant vector of the generator D = D0 + D1. That is, δ satisfies

δD = 0 and δ e = 1. (1)

The arrival rate, λ, is thus given by λ = δD1e. The Markovian arrival process has
been introduced by Neuts in a more general setup as a versatile Markovian arrival process
in the 1970s, and since then, these processes have found enormous applications in practice.
For details on MAP and associated processes, we refer the reader to [10–12,15–22].

There is a single server who offers services in batches of varying sizes from 1 to b,
where b is a pre-determined finite positive integer. Upon completion of a service, the
server will become idle if there is no customer waiting in the queue. Otherwise, the server
will offer services to the waiting customers by picking the minimum of b and the number
waiting from the head of the queue. Thus, the services can be for b or less depending
on the size of the queue. The service times are assumed to be of phase type (PH) whose
representation depends on r, the number served in the group, and is given by (βr, Sr) of
order nr, for 1 ≤ r ≤ b. Let µr = [βr(−Sr)−1e]−1, 1 ≤ r ≤ b, denote the service rate
when the server is serving a batch of r customers. PH-distributions were introduced by
Neuts [23], and their simple matrix formalism makes it much more efficient to use in
stochastic modeling, which has been amply demonstrated in the queueing literature. For
more details on PH-distributions and their properties, we refer the reader to [10–13]. For
later use, we define

ζr = µrβr(−Sr)
−1, 1 ≤ r ≤ b. (2)

note that ζr is the invariant vector of the irreducible generator Sr + S0
r βr, where S0

r is such
that Sre + S0

r = 0, 1 ≤ r ≤ b. While there needs to be no restriction on the service rates
for the analysis to be carried out later, we do assume (for practical reasons) that µ1 ≥
µ2 ≥ · · · ≥ µb. The rationale for this restriction, as it helps to devise illustrative numerical
examples, is as follows. When serving more than one customer, it is natural that the service
time may be longer on average as compared to serving only one customer. Furthermore,
the time to serve a batch of customers should not be the sum of the individual service
times of the customers in the batch. In [3,8], the authors assume, for the sake of generating
numerical examples, that the service time of a batch of r customers is obtained as the
maximum of r identical PH-distributions, which again is of phase type (see, e.g., [10–13]).
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Obviously, the means of the PH-distributions will increase as r is increased. Or equivalently,
the rates of the services will decrease as r is increased.

Upon completion of a service, the server will (a) become idle due to an empty queue
or (b) serve a batch of min{b, Nq} customers, where Nq is the number in the queue at
that moment.

The system described above can be studied as a Markov process as follows. Suppose
that we define

• N(t) = number of customers in the queue at time t.
• M1(t) = phase of the service, if any, at time t.
• M2(t) = phase of the arrival process at time t.
• Ω = {(0, k) : 1 ≤ k ≤ m}⋃{(i, jr, k) : 1 ≤ jr ≤ nr, 1 ≤ r ≤ b, 1 ≤ k ≤ m, i ≥ 0}.
• ∗ = {(0, k) : 1 ≤ k ≤ m}.
• (i, j) = {(i, r, k) : 1 ≤ r ≤ nj, 1 ≤ k ≤ m}, for 1 ≤ j ≤ b, i ≥ 0.
• i = {(i, 1), (i, 2), · · · , (i, b)}, for i ≥ 0.
• n = n1 + · · ·+ nb.

The three-dimensional process {(N(t), M1(t), M2(t)) : t ≥ 0} is a Markov process on
the state space Ω as defined above. Note that level ∗ consisting of m states corresponds to
the system (or the server) being in idle state; the level (i, j), consisting of m nj, 1 ≤ j ≤ b,
states, corresponds to the case where there are i customers in the queue and the server is
busy serving a batch of j customers. Finally, the level i, for i ≥ 0, consisting of m n states,
corresponds to the case where the system has i customers in the queue and that the server
is busy serving a batch of customers. The batch size could be anywhere from 1 to b. The
generator of the Markov process is given by

Q =

* 0 1 2 3 · · · b b
+

1

b
+

2

b
+

3
· · ·



* D0 (β1 ⊗ D1, 0) 0 0 0 · · · 0 0 0 0 · · ·
0 C0 A1 A0 0 0 · · · 0 0 0 0 · · ·
1 0 C1 A1 A0 0 · · · 0 0 0 0 · · ·
2 0 C2 0 A1 A0 · · · 0 0 0 0 · · ·
...

...
...

...
...

... · · ·
...

...
... · · ·

b 0 Cb 0 0 0 · · · A1 A0 0 0 · · ·
b + 1 0 0 A2 0 0 · · · 0 A1 A0 0 · · ·
b + 2 0 0 0 A2 0 · · · 0 0 A1 A0 · · ·

...
...

...
...

...
...

...
...

...
... · · ·

, (3)

where

C0 =


S0

1 ⊗ I

S0
2 ⊗ I

...
S0

b ⊗ I

, Cj =


0 · · · 0 S0

1βj ⊗ I 0 · · · 0

0 · · · 0 S0
2βj ⊗ I 0 · · · 0

... · · ·
...

...
... · · ·

...
0 · · · 0 S0

bβj ⊗ I 0 · · · 0

, 1 ≤ j ≤ b, (4)

A0 = In ⊗ D1, A1 = ∆(S1 ⊕ D0, S2 ⊕ D0, · · · , Sb ⊕ D0), A2 = Cb. (5)

it is worth pointing out the interpretation of the entries of Q. An idle system (namely,
system in level ∗) will enter into level 0 through an arrival. At that instant, a new service
for a batch of size 1 will begin. This transition is governed by the entry (β1 ⊗ D1, 0). When
the system is in level 0 and should there be a transition out of this level, it has to be to either
level ∗ through a service completion or to level 1 through an arrival. These are, respectively,
governed by the entries C0 and A0. The entry A1 governs the transitions within level 0.
Due to the services being offered in groups of size not exceeding b, it is clear that when the
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system is in level r, 1 ≤ r ≤ b, the possible transitions out of level r are either to level 0 or
to level r + 1 and these are, respectively, governed by Cr and A0. The transitions within
level r are governed by A1.

Note that the generator Q given in Equation (3) is of GI/M/1-type queue, and one can
apply the results for such a paradigm developed by Neuts (see, e.g., [10,13,24]). However,
by combining the levels in a certain way, we can the study the model under consideration as
a QBD-process. As mentioned in [24], there are advantages and disadvantages as the size of
the problem increases going from a GI/M/1-type to QBD-process. However, the sparsity
of the coefficient matrices enables one to exploit the structure, as we will demonstrate below.

3. Analysis of the Model in Steady State

In this section, we perform the steady-state analysis of the model under study. Toward
this end, we first establish the stability condition.

Theorem 1. The model under study is stable if and only if the condition

λ < b µb. (6)

Proof. Suppose we denote the level ĩ = {b(i− 1) + 1, · · · , b i}, for i ≥ 1. Then, the
generator, say, Q̃ of the Markov process of the model under study is of the form

Q̃ =



D0 (β1 ⊗ D1, 0) 0 0 0 0 · · ·
C0 A1 eT

1 ⊗ A0 0 0 0 · · ·
0 C̃ Ã1 Ã0 0 0 · · ·
0 0 Ã2 Ã1 Ã0 0 · · ·
0 0 0 Ã2 Ã1 Ã0 · · ·
...

...
...

. . . . . . . . . · · ·


, (7)

where

C̃ =


C1
C2
...

Cb

, Ã0 =


0 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
A0 0 · · · 0

, Ã1 =


A1 A0 0 0 · · · 0
0 A1 A0 0 · · · 0
0 0 A1 A0 · · · 0
...

...
...

. . . · · ·
...

0 0 0 0 · · · A1

,

Ã2 = Ib ⊗ A2.

(8)

We now have a QBD process for the model under study and can apply the known
tools (see, e.g., [10,13,24]). We will briefly outline the steps including the ones for exploiting
the structure of the coefficient matrices.

Let π̃ be the invariant vector of the generator Ã = Ã0 + Ã1 + Ã2 so that we have
π̃ Ã = 0 and π̃ e = 1. Noting that

Ã =



A1 + A2 A0 0 0 · · · 0 0
0 A1 + A2 A0 0 · · · 0 0
0 0 A1 + A2 A0 · · · 0 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · A1 + A2 A0

A0 0 0 0 · · · 0 A1 + A2


(9)
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is cyclic, the vector π̃ is of the form

π̃ =
1
b
(eT ⊗π), (10)

with π being the invariant vector of the generator A = A0 + A1 + A2. Since

A =


S1 ⊕ D 0 0 0 · · · 0 S0

1βb ⊗ I
0 S2 ⊕ D 0 0 · · · 0 S0

2βb ⊗ I
...

...
...

... · · ·
...

...
0 0 0 0 · · · 0 (Sb + S0

bβb)⊕ D

, (11)

is reducible, it is clear that we have

π = (0, 0, · · · , 0, µbβb(−Sb)
−1 ⊗ δ). (12)

Using the fact that the model under study is a QBD-process, the stability condition is
given by (see, e.g., [13,24])

π̃ Ã0e < π̃ Ã2e. (13)

For our model, the condition given in Equation (13) with the help of Equations (10)

and (12) immediately yields
λ

b
< µb and hence the stated result.

The rate matrix, denoted by R̃, plays an important role in matrix–analytic methods
(see, e.g., [10,12,13,21,24,25]). We briefly discuss the structure of this rate matrix. Here, the
rate matrix satisfies the following matrix–quadratic equation

R̃2 Ã2 + R̃Ã1 + Ã0 = 0, (14)

and the following theorem establishes the structure of R̃.

Theorem 2. The rate matrix, R̃, of dimension n b2 is of the form

R̃ =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
R R2 R3 · · · Rb

, (15)

where the matrix R of dimension n b is given by

R =


R1 0 0 · · · 0 R̂1
0 R2 0 · · · 0 R̂2
...

...
... · · ·

...
...

0 0 0 · · · Rb−1 R̂b−1
0 0 0 · · · 0 Rb

. (16)

The elements of R are obtained as follows. The matrices Rj, 1 ≤ j ≤ b− 1, of dimension
njm are explicitly computed as

Rj = (I ⊗ D1)[−(Sj ⊕ D0)
−1], 1 ≤ j ≤ b− 1, (17)

and Rb is the minimal non-negative solution to

Rb+1
b (S0

bβb ⊗ I) + Rb(Sb ⊕ D0) + (I ⊗ D1) = 0. (18)
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The rest of the (block) elements of R are obtained in terms of the other (block) matrices as

Rb+1
j (S0

j βb ⊗ I) +
b

∑
k=0

Rb−k
j R̂jRk

b(Sb ⊕ D0) = 0, 1 ≤ j ≤ b− 1. (19)

Proof. The fact that R̃ has only the last (block) row entries to be nonzero follows immedi-
ately on noting that (a) R̃Ã2e = Ã0e, (b) Ã0e has the only nonzero block entry occurring in
the last row; and (c) R̃ is non-negative. The probabilistic interpretation of the rate matrix in
continuous-time (this is the approach we have taken here), in general, (see, e.g., [10,13,25])
states that for states away from the boundary, the (j, k)th entry of the rate matrix gives the
average time (calculated in terms of the units of the sojourn time in state (i, j)) spent in state
(i + 1, k) before reaching level i, given that we started in state (i, j). In our context, due to
the three-dimensional process as well as grouping b states as ĩ = {b(i− 1) + 1, · · · , b i} to
obtain the QBD process, this probabilistic interpretation together with the structure of the
coefficient matrices yields the structure of the last (block) row of R̃ as given in Equation (15).
There is a similar probabilistic interpretation for the states within level ĩ; on noting the
structure again and for the levels away from the boundary, it is clear that we have the
structure for R as given in Equation (16). The key here is that away from the boundary, the
server upon completing a service will always offer services to a group of b customers. The
stated Equations (17) through (19) follow immediately by expanding Equation (14) with
the help of the structures given in Equations (15) and (16).

Remark 1. (1) The equations given in Equation (19) have explicit solutions. To see this, suppose
that we denote τ(B) to be the direct (row) sum of the matrix B. Recall that τ(B) is obtained by
stringing the rows of B into one long row vector. Thus, if B is an p× q matrix, then τ(B) is a row
vector of dimension pq obtained by stringing the rows of B into one row. Using the properties of the
direct sum (see, e.g., [10] for a summary of these), we can write Equation (19) as, for 1 ≤ j ≤ b− 1,

τ(R̂j) = τ(Rb+1
j )(I ⊗ S0

j βb ⊗ I)
(
−

b

∑
k=1

[(
Rb−k

j
)T ⊗ Rk

b(S
0
j βb ⊗ I)

]
− I ⊗ (Sb ⊕ D0)

)−1
. (20)

(2) The coefficient matrices appearing in Equations (17) through (20) are so sparse that one can
exploit them, especially when the dimensions are large. For example, to compute Rj, 1 ≤ j ≤ b, we
proceed as follows. Let B = {Brk} = −(Sj ⊕D0)

−1. Note that Brk, 1 ≤ r, k ≤ b, are of dimension

m. Denoting by S(rk)
j the (r, k)th element of Sj, it is easy to verify the following system of equations

Brk =
[
δrk I +

nj

∑
t=1, t 6=k

BrtS
(tk)
j

]
(−S(kk)

j I − D0)
−1, 1 ≤ r, k ≤ nj, (21)

where δrk is the Kronecker delta taking values of 0 or 1 depending on whether r = k or r 6= k. Since
the right-hand side of the above equation has matrices that are all non-negative, the equations are
numerically stable. Once B is computed, the (r, k)th element of Rj is calculated as D1Brk. Similarly,
the other matrices are computed by exploiting the special structure produced by Kronecker products
and sums.

We are now ready to discuss the steady-state probability vector of the generator Q. Let
x = (x∗, x0, x1, · · · ) denote the steady-state vector of Q such that

xQ = 0 and x e = 1. (22)
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Note the following interpretations of the components of x.

• x∗, of dimension m, gives the steady-state probability vector that the system is idle
with the arrival process in one of the m phases.

• xi, of dimension m n, gives the steady-state probability vector that the system has
exactly i customers in the queue and the server and the arrival process are in various
phases.

Defining x̃i = (xb(i−1)+1, · · · , xbi), i ≥ 1, we see that Equation (22) is equivalent to

(x∗, x0, x̃1, x̃2, · · · )Q̃ = 0 and (x∗, x0, x̃1, x̃2, · · · )e = 1. (23)

We now state the result on the steady-state vector.

Theorem 3. The steady-state vector x̃ is obtained by solving the following equations

x∗D0 + x0C0 = 0,

x∗(β1 ⊗ D1, 0) + x0 A1 +
b
∑

k=1
xkCk = 0,

xj−1 A0 + xj A1 + xbRj A2 = 0, 1 ≤ j ≤ b,

xi = xbRi−b, i ≥ b,

x∗e +
∞
∑

i=0
xie = 1.

(24)

Proof. Starting at the macro level, we see that the steady-state vector x is written as

x∗D0 + x0C0 = 0,

x∗(β1 ⊗ D1, 0) + x0 A1 + x̃1C̃ = 0,

x0(eT
1 ⊗ A0) + x̃1[Ã1 + R̃Ã2] = 0,

x̃i = x̃1R̃i−1, i ≥ 1,

x∗e + x0e + x̃1(I − R̃)−1e = 1.

(25)

Due to the structures of R̃ (see Equation (14)) and R (see Equation (16)), the above equations
can further be simplified to yield the stated result.

Remark 2. (1) Note that the vectors xi, i ≥ b + 1, as given in Equation (24), are explicitly
known from the knowledge of xb and R. Thus, obtaining the steady-state vector x̃ reduces to
solving the first three equations given in (24) along with the normalizing equation given by

x∗e +
b−1
∑

j=0
xje + xb(I − R)−1e = 1.

(2) The steady-state equations can be solved using one of several methods such as the (block)
Gauss–Seidel method by exploiting the structure of the coefficient matrices. For example, one can
exploit the structure of the coefficient matrices appearing in Equation (24). For example, the first
equation given there is simplified as

x∗ =
b

∑
k=1

nk

∑
r=1

x0krS0
kr(−D0)

−1,
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where x0 is partitioned into vectors of dimension m as

x0 = (x011, · · · , x01n1 , · · · , x0b1, · · · , x0bnb
)

and S0
kr is the rth component of the vector S0

k .

Stationary Waiting Time in the Queue

We now focus on the stationary waiting time (in the queue) distribution of an arriving
customer. Toward this end, we first define the steady-state vector at arrivals to be z =
(z∗, z1, z2, · · · ) such that z∗ gives the probability that an arriving customer finds the system
empty and hence the waiting time in the queue will be zero, and zi, of dimension n, gives
the steady-state probability vector that an arriving customer will see the system busy with
i in the queue (including the arrived one) and the server is busy with 1 or more (but up
to b) in service and the phase of the current service in various states. Note that to find
the waiting time distribution in the queue, one does not need to keep track of the arrival
phase. However, one needs to keep track of the phase of the arrival process for deriving an
expression for the waiting time in the system. This is due to the fact that the service time
depends on the batch size, and if the arrived customer is not the bth customer in a batch,
then there is a possibility that the future arrivals might make a difference in the service of
time of the batch that has the arrived customer. It is easy to verify that

z∗ =
1
λ

x∗D1e and zi =
1
λ

xi−1(I ⊗ D1e), i ≥ 1. (26)

The following theorem gives an expression for the Laplace transform of the stationary
waiting time in the queue of an arrival.

Theorem 4. The Laplace transform (LT), w∗q(s), of the stationary waiting time in the queue of an
arrival is given by

w∗q(s) = z∗ +
∞

∑
i=1

ẑi[(sI − S)−1F]i−1(sI − S)−1S0, Re(s) ≥ 0, (27)

where

ẑi =
bi

∑
k=b(i−1)+1

zk, i ≥ 1. (28)

F =


0 0 · · · S0

1 βb
0 0 · · · S0

2 βb
...

... · · ·
...

0 0 · · · S0
b βb

, S = ∆(S1, S2, · · · , Sb), S0 =


S0

1
S0

2
...

S0
b

. (29)

Proof. First, observe that for the waiting time in the queue, we do not need to keep track of
the phase of the arrival process once the tagged customer enters into the system. Secondly,
an arriving customer finding the system idle will enter service immediately, and so, the
waiting time in the queue is zero. This occurs with probability z∗ and hence justifies the
first term of the LT. Suppose now that the tagged customer finds the server busy with i− 1
customers waiting in the queue. At this instant, the number waiting (including the tagged
customer) is i. If i ≤ b, the waiting time of the tagged customer is the remaining service time
of the current one. Basically, the number of service completions needed before the tagged
customer enters service depends on how many batches of size b are formed. The actual
position within the batch of the tagged customer does not matter. These observations enable
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us to see that the waiting time in the queue can be modeled as the time until absorption in
a continuous-time Markov chain with the generator given by

QWq =



0 0 0 0 0 0 · · ·
e⊗ S0 I ⊗ S 0 0 0 0 · · ·

0 I ⊗ F I ⊗ S 0 0 0 · · ·
0 0 I ⊗ F I ⊗ S 0 0 · · ·
0 0 0 I ⊗ F I ⊗ S 0 · · ·
...

...
...

...
...

... · · ·


(30)

The stated result follows immediately on noting that (a) the continuous-time Markov chain
with generator QWq given in Equation (30) has the initial probability vector (z∗, z1, z2, · · · ). This
is based on (a) what an arriving customer will see as the state of the system at that epoch and
the fact that (b) (−S)−1Fe = e and F(−S)−1e = µ′bS0.

Corollary 1. The mean waiting time in the queue is given by

µ′Wq
= −

dw∗(s)
ds

]
s=0

=
1
λ

b−1
∑

k=0

b
∑

j=1
xkj

(
(−Sj)

−1e⊗ D1e
)

+
µ′b
λ

xb(I − R)−1
[
(I − Rb)−1 + I

]
(e⊗ D1e).

(31)

4. Illustrative Numerical Examples

In this section, we present a few illustrative examples to point out the qualitative
behavior of the model under study. For this, we need to define a number of system
performance measures. These are as follows.

System Performance Measures: Here, we list a few key system performance measures
along with their formulas.

1. P (system or server is idle) = x∗e.
2. P (server is busy) = 1 − x∗e.
3. Given that the server is busy, the conditional PMF, {ξ j}, of the number in service is

ξ j =
1

1− x∗e

[
b−1

∑
i=0

xi + xb(I − R)−1

]
(ej ⊗ e), 1 ≤ j ≤ b.

with the knowledge of {ξ j}, we can compute the (conditional) mean, µNiS, number in
service and other measures.

4. The mean number of customers in the queue is calculated as

µNq =
b−1

∑
i=1

i xie + xb(I − R)−2e + (b− 1)xb(I − R)−1e.

5. The spectral radius, say η, of the rate matrix R plays an important role in matrix–
analytic methods. Neuts [26] introduced the term caudal characteristic curve obtained

by plotting η against the traffic intensity ρ =
λ

bµ
. This is applicable to all models

that possess the matrix–geometric solution. Basically, this curve tells the behavior of
the queue length with regard to its upsurges (i.e., queues staying in longer duration
whenever they become longer). Because of this behavior, one cannot use the mean
queue length as a reliable measure in comparing various models. We refer the reader
to [26] as well as [24] for more details on this.
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6. Using probabilistic interpretation, the mean recurrence time to an empty system
(i.e., the mean of the times between the system reaching an idle state) is given by
µ′RT = [x0Fe]−1 = [x∗D1e]−1.

7. With the knowledge of the mean recurrence time, we can obtain the mean idle time as
µ′I = µ′RT x∗e and the mean busy period as µ′BP = µ′RT − µ′I .

Accuracy checks: One of the key aspects in numerical computation is to make sure the
results have internal accuracy checks. Toward this end, we list the following accuracy
checks. For use in the sequel, we define a = (a1, a2, · · · , ab) as

a =
b−1

∑
i=0

xi + xb(I − R)−1.

Note that aj, of dimension mnj, gives the probability vector that the server is busy serving j
customers with the arrival process and the service in various phases.
Accuracy check 1: One of the properties of the rate matrix in the QBD model is R̃Ã2e = Ã0e.
In our model under study, due to the structure of R̃ (see Equation (14)), this reduces to

(I − R)−1R(I − Rb)(S0 ⊗ e) = (e⊗ D1e).

The above equation can be rewritten in terms of smaller dimensions by exploiting the
structure of the R matrix as given in Equation (16). The details are similar to the exploitation
mentioned earlier and hence omitted.
Accuracy check 2: This one is intuitively clear, as in steady state, the phase of the arrival
process should be equal to the one obtained directly (see Equation (1)). That is,

x∗ + a(e⊗ I) = δ.

Accuracy check 3: This one is intuitively clear, as in steady state, the joint phases of the
arrival process and the service should be equal to the one obtained directly (see Equations (1)
and (2)). That is,

1
θj

a(ej ⊗ I) = (ζ j ⊗ δ), 1 ≤ j ≤ b,

where θj is the probability that the server is busy with a batch of j customers and is given by

θj = aje, 1 ≤ j ≤ b.

Accuracy check 4: This one is intuitively clear, as in steady state, the average rate of arrivals
should be equal to the average rate of departures. That is,

b

∑
j=1

jaj(S0
j ⊗ e) = λ.

for our illustrative examples, we look at five different MAPs covering renewal and cor-
related arrivals. We use the following notation for ease of display. ERL(k, τ) denotes an
Erlang distribution of order k with rate τ in each of the k phases. HE(p, ϑ) denotes an
hyperexponential distribution with parameter vector ϑ = (ϑ1, · · · , ϑk) with mixing proba-
bility vector p = (p1, · · · , pk). That is, we have an hyperexponential distribution involving
k exponentials with parameters ϑr with corresponding probability pr, for 1 ≤ r ≤ k.

The five MAPs for the arrival processes include three renewal processes, one nega-
tively correlated process and one positively correlated process. Note that for the renewal
process, we use special cases of phase-type distribution, and the corresponding representa-
tion in terms of MAP parameters is clear (see, [10]). Thus, if we use a PH-distribution with
representation, say (α, L) of order m, then the corresponding MAP representation is given
by D0 = L and D1 = L0α, where L0 = −Le.
ERA: This is ERL(5, 5).
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EXA: This is ERL(1, 1), that is, we have a Poisson process with parameter 1.
HEA: This is HE(p, ϑ) with

p = (0.5, 0.3, 0.15, 0.04, 0.01) and ϑ = (2.18, 1.09, 0.545, 0.2725, 0.13625).

The two correlated, negative and positive, processes are as follows:
NCA: This is negatively correlated MAP with representation matrices given by

D0 =


−2.25 2.25 0 0 0

0 −2.25 2.25 0 0
0 0 −2.25 2.25 0
0 0 0 −2.25 0
0 0 0 0 −4.5

, D1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0225 0 0 0 2.2275
4.455 0 0 0 0.045

.

PCA: This is negatively correlated MAP with representation matrices given by

D0 =


−2.25 2.25 0 0 0

0 −2.25 2.25 0 0
0 0 −2.25 2.25 0
0 0 0 −2.25 0
0 0 0 0 −4.5

, D1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2.2275 0 0 0 0.0225
0.045 0 0 0 4.455

.

All the above five MAPs have an arrival rate of 1. The standard deviations of the inter-
arrival times are, respectively, 0.44721, 1, 1.69710, 1.01227, and 1.01227. The 1-lag correlation
coefficient of the successive inter-arrival times are, respectively, 0, 0, 0, −0.57855, and
0.57855.

For services, we look at the following PH-distributions. Since we discuss examples
with b = 5, only sets of five distributions are needed.
ER1 : This is ERL(5, 5µ1).
ER2 : This is ERL(4, 4µ2).
ER3 : This is ERL(3, 3µ3).
ER4 : This is ERL(2, 2µ4).
ER5 : This is ERL(1, µ5).
HE1 : This is HE(p, ϑ) with p = (0.6, 0.2, 0.15, 0.04, 0.01) and ϑ = µ5(10, 5, 3, 2, 1).
HE2 : This is HE(p, ϑ) with p = (0.7, 0.15, 0.10, 0.05) and ϑ = µ4(10, 5, 2, 1).
HE3 : This is HE(p, ϑ) with p = (0.8, 0.15, 0.05) and ϑ = µ3(10, 5, 1).
HE4 : This is HE(p, ϑ) with p = (0.9, 0.1) and ϑ = µ4(10, 1).
HE5 : This is exponential with parameter µ5. That is, HE(p, ϑ) with p = 1 and ϑ = µ5.

The parameter µ1 will be chosen so that for a given ρ, µ1 =
λ

ρ
. The other parameters

here are chosen as µr =
µ1

r
, 2 ≤ r ≤ 5. This guarantees that ρ =

λ

5µ5
and also satisfies the

property µ1 ≥ µ2 ≥ µ3 ≥ µ4 ≥ µ5.

Example 1. In this example, we look at the five MAPs mentioned above as input to the system
where the server can offer services to batches of size up to five customers. The service time for a batch
of size r is taken to be ERr, for 1 ≤ r ≤ 5, as listed above. We vary ρ from 0.2 to 0.99. The plots
of µNiS, µNq , µ′I , µ′RT , and η are displayed in Figures 1–5, respectively, under various scenarios.
In Figure 6, we display the scatter plot of the mode of the PMF of the number in service. A brief
summary of key observations from these figures follows.
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Figure 1. Conditional mean number in service (µNiS) for example 1.
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Figure 2. Mean number in queue (µNq ) for example 1.
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Figure 3. Mean idle time (µ′I) for example 1.
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Figure 4. Mean recurrence time (µ′RT) for example 1.
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Figure 5. Spectral radius (η) of the matrix R for example 1.
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Figure 6. Scatter plot of the mode of the conditional PMF of the number in service for example 1.

1. The measures µNiS and µNq , as functions of b when ρ is fixed as well as functions of
ρ when b is fixed, appear to be non-decreasing for all arrival processes considered.
However, the interesting fact is when ρ is initially increased from 0.2 to 0.5, we see the
PCA case produces the largest rate of increase in these two measures, even though
the variability in the inter-arrivals times is less than that of the HEA. Comparing both
NCA and PCA cases, it is clear that the positively correlated arrivals tend to yield a
large value for µNiS.

2. In the case of all arrivals, we notice that the measure, µ′I , is not significantly affected
by the values of b. However, when ρ is varied (for fixed b), we see an interesting
pattern based on the type of arrival processes. In the case of ERA and NCA arrivals,
we see that µ′I decreases as ρ is increased. In the case of Poisson (EXA) arrivals, it is
constant as it should be. For HEA, we see this measure increases as ρ is increased, and
for the PCA case, the measure initially increases and then decreases as ρ is increased.
The increasing phenomenon is somewhat counter-intuitive, but we note that fixing ρ
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and modifying the service rates accordingly might explain this, especially when the
inter-arrival times have a large variability.

3. Looking at µ′RT , the plots show the anticipated behavior of an increasing trend when ρ
is increased in all cases. It is worth pointing out (not seen from the 3D plot displayed
here but from the data) that (a) both HEA and PCA processes dominate the other
three under all scenarios; and (b) when comparing HEA and PCA arrivals, we notice
that for initial values of ρ (up to around 0.4 to 0.5), the PCA dominates with a large
value over HEA, and then, the roles are reversed in that HEA dominates PCA. This
indicates not only the variability but also that the 1-lag (positive) correlation plays a
key role.

4. The spectral radius, η, of the rate matrix indicates an interesting behavior under
various scenarios. First, we notice that both ERA and NCA arrivals indicate similar
patterns: low values of ρ yielding low values for η for b up to 3. However, for
other values of b, η appears to have reasonably moderate values, indicating that the
queue lengths probably stay at moderate values for significant times, and it takes
significant times to clear. For Poisson arrivals, it is known that ρ = η when b = 1,
and this is also confirmed in the 3D plot. However, as expected, the linearity slowly
becomes nonlinear as b is increased. As in the ERA and NCA cases, we do notice
some moderate upsurges in the queue lengths when b is close to 5. In the case of HEA
arrivals, we see significant upsurges in the queue lengths when ρ is moderately large
to large (i.e., 0.9 to 0.99) and for all values of b considered. When looking at PCA
arrivals, we see the queue lengths show significant upsurges starting with even low
values of ρ (i.e., ρ > 0.2) and for all values of b. Even though the standard deviation
of the inter-arrival times for this MAP is smaller than that of the HEA, the values of η
indicate the significant role played by the 1-lag positive correlation.

5. We see an interesting pattern for the mode of the PMF of the number of customers
in service. First, note that there is nothing to plot when b = 1. Secondly, under all
scenarios, the mode occurs at extreme points, 1 or b. However, the transition point
(from 1 to b) depends on the type of the arrival process as well as the traffic intensity,
ρ. While for ERA, EXA, and NCA, the transition point is close to moderate to large
values of ρ (for example, in the case of ERA, the traffic intensity has to be greater than
0.8 for all b = 2, 3, 4, 5, whereas for the HEA, ρ has to be more than 0.5; and for PCA,
the values of ρ need to just be more than 0.1). In summary, we see that for the arrival
process with either a large variability or with a positive correlation, the server seems
to be busy with the maximum batch size even for low to moderate traffic intensity.

Example 2. In this example, we look at the five MAPs as input to the system where the server can
offer services to batches of size up to five customers. The service time for a batch of size r is taken
to be HEr, for 1 ≤ r ≤ 5, as listed above. We vary ρ from 0.2 to 0.99. The plots of µNiS, µNq , µ′I ,
µ′RT , and η are displayed in Figures 7–11, respectively, under various scenarios. In Figure 12, we
display the scatter plot of the mode of the PMF of the number in service. A brief summary of key
observations from these figures follows.
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Figure 7. Conditional mean number in service (µNiS) for example 2.
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Figure 8. Mean number in queue (µNq ) for example 2.
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Figure 9. Mean idle time (µ′I) for example 2.
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Figure 10. Mean recurrence time (µ′RT) for example 2.
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Figure 11. Spectral radius (η) of the matrix R for example 2.
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Figure 12. Scatter plot of the mode of the PMF of number in service for example 1.

1. Most of the observations related to the measures µNiS, µNq , µ′I , and µ′RT established in
Example 1 hold good here but of course with different values for these measures. So,
we will only list additional points related to the current example.

2. For all except PCA arrivals, we notice that µNq decreases from b = 4 to b = 5
under all scenarios. This is due to having a large variability in services (such as
hyperexponential here as compared to Erlang services in Example 1) that probably
clears the queue faster frequently and once in a while takes a longer time to process a
batch, resulting in this behavior.

3. The caudal characteristic curve here shows a different behavior for all but PCA
arrivals. For PCA arrivals, we noticed in Example 1 significant upsurges in the queue
lengths even for Erlang services, and so here with hyperexponential services, one
would expect similar upsurges. In the case of all other arrival processes, we see the
plot indicates moderate to large upsurges in the queue lengths. Furthermore, we see
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that η increases (for fixed ρ) as b increases initially and then η decreases. This further
explains the same phenomenon seen in µNq .

4. The interesting pattern for the mode of the PMF of the number of customers in service
is similar to the one discussed in the previous example except that the transition point
occurs at or earlier than values of ρ for almost all arrivals.

Example 3. In this example, we look at the five MAPs as input to the system where the server can
offer services to batches of size up to five customers. The service time for a batch of size r, 1 ≤ r ≤ b,
is taken to be ER1, as listed above. That is, we take the same representation for all batch sizes but
with varying rates. We vary ρ from 0.2 to 0.99. The measures, µNiS, µNq , µ′I , and µ′RT behave
similar to the ones discussed in Example 1 except for the values. However, the caudal characteristic
curve shows a different behavior. The plot of the measure η is displayed in Figure 13. Compared
to Example 1, here, we do not see upsurges in the queue lengths for ERA, EXA, HEA, and NCA
cases. However, for PCA the upsurges are similar.

Figure 13. Spectral radius (η) for example 3.
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Example 4. In this example, we look at the five MAPs as input to the system where the server can
offer services to batches of size up to five customers. The service time for a batch of size r is taken to
be HE1, as listed above. That is, we take the same representation for all batch sizes but with varying
rates. We vary ρ from 0.2 to 0.99. The measures, µNiS, µNq , µ′I , and µ′RT behave similar to the ones
discussed in Example 3 except for the values. However, the caudal characteristic curve shows a
different behavior. The plot of the measure η is displayed in Figure 14. Compared to Example 3, here,
we do see significant upsurges in the queue lengths, especially for b ≥ 2, for all arrivals. In the PCA
case, even for b = 1, we notice significant upsurges. This again shows that a large variability in the
services will lead to the queue lengths exhibiting a large value and takes a long duration to clear.

Figure 14. Spectral radius (η) for example 4.

Example 5. In this example, we look at the five MAPs as input to the system where the server can
offer services to batches of size up to five customers. The service time for a batch of size r, 1 ≤ r ≤ 2,
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is taken to be ER1 and ER2, respectively, and for r, 3 ≤ r ≤ 5, it is taken to be HE3, HE4, and HE5,
respectively. The purpose of this choice of the service time distribution is to see how a combination of
Erlangs for b = 1, 2, and hyperexponentials for the other values of b, will affect the spectral radius of
the rate matrix R. We vary ρ from 0.2 to 0.99. The plot of the measure η is displayed in Figure 15.
Compared to Examples 1 and 2, here, we do see some interesting patterns for all but PCA arrivals.
We notice an increasing/decreasing trend in this measure as b is increased. For the PCA arrivals,
the pattern is similar to the earlier examples.

Figure 15. Spectral radius (η) for example 5.

Example 6. In this example, we look at the five MAPs as input to the system where the server can
offer services to batches of size up to five customers. The service time for a batch of size r, 1 ≤ r ≤ 2,
is taken to be HE1 and HE2, respectively, and for r, 3 ≤ r ≤ 5, it is taken to be ER3, ER4, and ER5,
respectively. The purpose of this choice of the service time distribution is to see how a combination of
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hyperexponentials for b = 1, 2, and Erlangs for the other values of b, will affect the spectral radius
of the rate matrix R. We vary ρ from 0.2 to 0.99. The plot of the measure η is displayed in Figure 16.
Compared to Examples 1 and 2, here, we do see some interesting patterns for all but PCA arrivals.
We notice an increasing/decreasing/increasing trend in this measure as b is increased. For the PCA
arrivals, the pattern is similar to the earlier examples.

Figure 16. Spectral radius (η) for example 6.

5. Conclusions

In this paper, we considered a queueing model in which arrivals occur according to
a Markovian arrival process and the services are offered in batches of varying sizes. The
service times are modeled using phase-type distributions with representations depending
on the number served in a batch. Illustrative numerical examples point out that having a
large variability or a 1-lag positive correlation in the inter-arrival times results in the queue
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lengths exhibiting upsurges. Furthermore, if the service times have a significant variability,
the upsurges in the queue lengths appear to occur even when the inter-arrival times have a
small variability such as the Erlang distribution. The model studied here can be extended
to include BMAP arrivals, which is currently being investigated.
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