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Abstract: In autonomous driving, the 3D LiDAR (Light Detection and Ranging) point cloud data of 

the target are missing due to long distance and occlusion. It makes object detection more difficult. 

This paper proposes Point Cloud Masked Autoencoder (PCMAE), which can provide pre-training 

for most voxel-based point cloud object detection algorithms. PCMAE improves the feature repre-

sentation ability of the 3D backbone for long-distance and occluded objects through self-supervised 

learning. First, a point cloud masking strategy for autonomous driving scenes named PC-Mask is 

proposed. It is used to simulate the problem of missing point cloud data information due to occlu-

sion and distance in autonomous driving scenarios. Then, a symmetrical encoder–decoder architec-

ture is designed for pre-training. The encoder is used to extract the high-level features of the point 

cloud after PC-Mask, and the decoder is used to reconstruct the complete point cloud. Finally, the 

pre-training method proposed in this paper is applied to SECOND (Sparsely Embedded Convolutional 

Detection) and Part-A2-Net (Part-aware and Aggregate Neural Network) object detection algorithms. 

The experimental results show that our method can speed up the model convergence speed and improve 

the detection accuracy, especially the detection effect of long-distance and occluded objects. 
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1. Introduction 

In the field of autonomous driving, 3D point cloud object detection has attracted 

much attention. Effective detection of traffic objects in complex environments will signif-

icantly improve the safety and efficiency of autonomous vehicles. The main sensors for 

autonomous driving are cameras and LiDAR. The image captured by the camera is 2D 

image data. Although rich environmental texture information is included, the depth of 

information of the image is lost. The LiDAR sensor acquires 3D point cloud data. The 

point cloud has rich depth value and shape information, which can more accurately per-

ceive the relative distance and significantly improve the understanding ability of 3D au-

tonomous driving scenes. In the field of 3D object detection, state-of-the-art performance 

has been achieved based on LiDAR-based models [1]. 

Although LiDAR sensors are widely used in 3D autonomous driving scenarios, in 

fact, LiDAR frames are technically 2.5D [2]. The LiDAR sensor fires off beams of laser light 

that return after hitting the first target, causing the information behind the target to be 

lost. For example, the LiDAR scans the autonomous driving scenarios (Figure 1a to obtain 

a set of point cloud data (Figure 1b). A tree (red circle in Figure 1) in the scene blocks the 

laser beam, resulting in the loss of all information behind the tree, which inevitably affects 

object perception. Through the research of KITTI dataset [3], it is found that there are three 

main reasons for the missing object shape. Take the target 1, 2 and 3 marked in Figure 1 
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as an example. First, for the close object (Car 1, Figure 1c marks the distance of the object, 

and Figure 1d shows the three views of target 1 in the first row), its parts on the far side 

are occluded by the parts on the near side. This situation is commonly called self-occlu-

sion. Second, for the occluded object (Car 2), its left side is partially occluded by target 1, 

resulting in a missing shape. This situation is commonly called external-occlusion. Third, 

for the long-range object (Car 3), which is not occluded by any object but is far away from 

the sensor, the number of points is relatively small compared with the number of close-

range objects, and it is difficult to obtain the complete object shape. This situation is com-

monly called signal miss. In autonomous driving scenarios, self-occlusion is unavoidable 

because on-board LiDAR sensors cannot achieve 360° scanning. Therefore, this paper aims 

to solve the difficult problem of 3D object detection in the case of external-occlusion and 

signal miss, wherein signal miss only represents in long-distance situations. 

 

Figure 1. (a) is the RGB image of the autonomous driving scene, (b) is the point cloud obtained from 

the LiDAR scanning scene, (c) is the BEV (Bird’s Eye View) image of the point cloud, marking the 

distance between the object and the sensor. Mark Car 1, Car 2 and Car 3 represent the close target, 

occluded target, and long-range target, respectively. (d) shows the three views of these three targets. 

In 2D vision tasks, large-scale datasets (such as ImageNet [4]) are commonly used to 

pre-train models. Then, the pre-trained parameters are used as the initial values of the 

model, and the model is trained by transfer learning on small-scale datasets of specific 

downstream tasks, such as object detection and instance segmentation. Compared with 

random initialization, transfer learning is helpful to improve the performance of the 

model [5–7]. For point cloud object detection in autonomous driving scenarios, the pre-

training method is considered to solve the false and missed detections in the case of ex-

ternal occlusion and signal miss. However, in the field of 3D object detection, especially 

in autonomous driving scenarios, supervised learning is difficult because there is no large-

scale dataset containing category annotation like ImageNet. 

Therefore, a 3D point cloud pre-training dataset for autonomous driving scenarios is 

collected and produced. A masked method for autonomous driving point cloud data, PC-

Mask, is proposed to simulate signal miss caused by external occlusion and distance. A 
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Point Cloud Mask Autoencoder (PCMAE) is designed, which consists of an encoder and 

a decoder. The encoder extracts the point cloud features after PC-Mask, and the decoder 

is responsible for reconstructing the point cloud. Grid operation is introduced to solve the 

problem of irregular point cloud. Through this self-supervised learning method, the backbone 

of the target detection model is pre-trained to enhance the feature extraction ability of the point 

cloud target and improve the detection accuracy. On KITTI dataset, our pre-trained model 

improves the accuracy of the detection algorithm SECOND [8] and Part-A2-Net [9]. 

2. Related Work 

2.1. 3D Point Cloud Object Detection 

At present, 3D point cloud object detection methods are mainly divided into two cat-

egories: point-based and voxel-based. The point-based method takes the original point 

cloud as the input of the detector, extracts the point cloud feature set through iterative 

sampling and grouping, and then performs object detection [10]. The representative point-

base methods [11–13] mainly use the nearest neighbor search operation after the Farthest 

Point Sampling (FPS), which greatly limits its efficiency. Voxel-based methods divide the 

point cloud into a uniform grid for voxelization. Then the 3D convolutional neural net-

work is used for feature extraction to achieve object detection [14]. The advanced voxel-

based method [8,15,16] replaces CNN with sparse 3D convolution, which solves the prob-

lem of memory consumption and large computational load caused by empty voxels, but 

voxelization still brings inevitable information loss. This paper introduces Gridding [17] 

instead of voxelization to normalize the original point cloud. The above methods usually 

randomly initialize the model parameters at the beginning of training. In the field of object 

detection, initializing model parameters after pre-training can greatly improve the 

model’s ability to understand data [18]. Therefore, a PCMAE pre-training method is pro-

posed to improve the detection ability of 3D point cloud objects through transfer learning. 

2.2. Application of Transfer Learning in 3D Point Cloud 

Transfer learning is widely used in the field of deep learning. The backbone is pre-

trained with data-rich upstream tasks, and then transfer learning is used to initialize the 

downstream model weights. Compared with the features fine-tuned on the detection da-

taset or trained from scratch, Vasconcelos et al. [18] verified that the features learned in 

the upstream classification task are more suitable for object detection. However, there is 

little available research on the application of transfer learning in 3D object detection. The 

reason is that there are differences in point cloud data captured by different sensors or 

different natural scenes. Besides, there is a lack of large-scale datasets containing category 

annotations for autonomous driving scenarios, which cannot meet the pre-training method of 

supervised learning. Compared with supervised learning, He et al. [19] proved that reasona-

ble self-supervised learning pre-training on small-scale data can achieve better effects. 

Therefore, some work adopts self-supervised learning methods for pre-training. For 

example, Proxy tasks are constructed by deformation [20], rotation [21] and partial rear-

rangement [22]. Different from these methods, we propose a Proxy task for autonomous 

driving scenarios, PC-Mask, which performs self-supervised pre-training on the backbone 

of 3D object detection in a masked manner. 

2.3. Masked Self-Supervised Pre-Training 

Self-supervised learning designs Proxy Tasks to mine the representation features of 

data and use them as supervision information to improve the feature extraction ability of 

the model. Compared with the supervised learning method, self-supervised learning can 

achieve good results without label data. The self-supervised pre-training method based 

on masked methods is widely used in various fields due to its simple concept and easy 

expansion. There are Bert [23], Bart [24], GPT [25–27] and so on in NLP. In the field of 2D 

image processing, there are DAE [28], Igpt [29], MAE [19], etc. In the field of 3D point 
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cloud processing, Point-bert [30] uses dAVE mapping for mask point modeling. The dis-

advantage is that it relies on complex data augmentation and costly two-stage pre-train-

ing. Zhang et al. [31] proposed a one-stage pure masked auto-encoding method using 

transfer learning for 3D object detection. However, due to differences in application meth-

ods and scenarios, this method is not suitable for autonomous driving scenarios. Of 

course, mask pre-training also has some shortcomings. For example, masked data usually 

exist only in pre-training, not in downstream tasks. Source domain bias is generated, 

which leads to data mismatch between pre-training stage and fine-tuning stage, and the 

poor effect of transfer learning [32]. Therefore, the proposed PC-Mask strategy is used for 

pre-training on the source domain of the dataset, which alleviates the source domain bias 

problem caused by data mismatch in the traditional mask strategy. 

3. Approach 

This paper proposes PCMAE, which can provide pre-training for the Backbone of the 3D 

Object Detection algorithm by means of transfer learning, as shown in Figure 2. In this section, 

the overall architecture of the PCMAE model and the details of each module are described. 

  

Figure 2. (a) PCMAE structure. (b) Shared pre-trained model weights through transfer learning. (c) 

3D object detection model. 

3.1. Framework 

The pre-training of PCMAE adopts the method of Auto-encoding. The network struc-

ture mainly includes three parts: PC-Mask module, encoder and decoder modules, as 

shown in Figure 2a. Firstly, the PC-Mask module masks the original point cloud to simu-

late the missing point cloud caused by the two cases of external occlusion and signal miss. 

Then, the obtained subset of point clouds is used as the input of the model and sent to the 

Gridding layer for normalization. The 3D backbone network, which needs to be pre-

trained, is used as the encoder to learn the 3D features of a subset of point clouds. The 

encoder consists of 3D Sparse Convolution [8], and the decoder consists of 3D Sparse In-

verse Convolution. The decoder and encoder are symmetrical. The decoder is used to re-

construct the sparse 3D features output by the encoder. After that, the coarse point cloud 

is obtained through the Gridding Reverse layer. Finally, a three-layer MLP is used to re-

store the details to complete the point cloud reconstruction.  
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3.2. Point Cloud Masking 

In autonomous driving scenarios, the original point cloud obtained through LiDAR 

usually has two types of problems: external-occlusion and signal miss. PC-Mask is pro-

posed to simulate the above two missing point clouds, as shown in Figure 3. For external-

occlusion, three points are randomly selected within the original point cloud to form a 

plane, which is cut into two parts, as shown in Figure 3b. Then the parts with fewer points 

are deleted and the ones with more points are kept. This operation can not only simulate 

the real situation more realistically, but also retain most of the structure of the target, 

which is beneficial to the reconstruction of the target. For signal miss caused by long dis-

tance, random sampling operation of high masking ratio is performed on the point cloud 

after simulated external-occlusion, as shown in Figure 3c. The high masking ratio follows 

a uniform distribution, which can eliminate redundancy to some extent [19], and the 

shape information of the point cloud is preserved to the greatest extent. It makes pre-

training more efficient. 

 

Figure 3. The procedure of point cloud mask. (a) is the original point cloud of a car, (b) is an exam-

ple of simulated “External-occlusion”, (c) is an example of simulated “Signal miss”. 

3.3. Gridding and Gridding Reverse 

Since point clouds are unordered and irregular, it is necessary to normalize them. Con-

verting point clouds into a 3D voxel and then performing a convolution operation is a com-

monly used method. However, two problems arise: first, the voxelization process introduces 

a quantization effect, which will lead to the irreversible loss of geometric information; the sec-

ond is that voxelization is not differentiable and is not suitable for point cloud reconstruction. 

To solve the above problems, Gridding [17] is introduced to normalize the original 

point cloud. The input of the Gridding layer is the subset of point clouds after PC-Mask, 
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boring points, the value of 
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x y z  are the coordinates of the vertex, and , ,x y z  are the coordinates of its 

neighboring original point cloud.  i
v  is the number of neighboring points of 

i
v  , 

and the value of each vertex is related to the number and distance of its neighboring 

points. Compared with voxelization, gridding can better preserve some details of objects, 

and gridding is differentiable. 

 

Figure 4. Point cloud normalization. (a) is voxelization, (b) is gridding, (c) is gridding reverse. 

Gridding Reverse is to convert the regular feature grid output by the network into 

an irregular point cloud  
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where v
  represents the coordinates  iv


∣  of the 8 vertices of the cell, and w


  rep-

resents the corresponding values  iw

 ∣  of each vertex. When the weighted sum of the 

corresponding values of the 8 vertices of a cell is 0, no point cloud is generated in the cell. 

3.4. Loss-Function in Pre-Training 

The unordered and irregular point clouds make it difficult to calculate the loss di-

rectly. The original and reconstructed point clouds are gridding processed to obtain 3D 

grids ,gt gt

gt
V W   and pred pred 

pred 
,V W  , respectively. To reduce the influ-

ence of outliers in the original point cloud on training, the L1 distance is calculated as the 

pre-training loss: 

 pred pred 

3

1
, gt gt
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W W W W
N

   (4)

where 
3

pred GNW  , 
3
GNgtW  , and G

N  is the resolution of the two 3D grids. 
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4. Pre-Training Experiments 

4.1. Pre-Training Datasets 

The pre-training data are obtained from the KITTI dataset. Including single, close and 

no external-occlusion ground-truth. There are four targets: car, cyclist, pedestrian and 

background. For car and background, the extraction ranges are z: [−3 m, 1 m], y: [−20 m, 

20 m], x: [5 m, 20 m]. For cyclist and pedestrian, the extraction ranges are z: [−3 m, 1 m], 

y: [−10 m, 10 m], x: [2 m, 10 m]. Among them, z represents the vertical direction, y repre-

sents the left and right direction, and x represents the front and rear direction coordinates. 

Figure 5 shows the visualization of the target. In particular, the KITTI dataset is obtained 

by on-board LiDAR sensors. For the same object, its parts on the far side are occluded by 

the parts on the near side, which is called self-occlusion. This is an inevitable situation in 

autonomous driving scenarios, so we treat the target with self-occlusion as a complete 

target. As a result, 18,866 instances were extracted. Next, individual targets are processed 

using PC-mask. In order to simulate the actual possible external-occlusion situation, the 

occluded mask operation is performed on each target once and twice, and two sets of 

training data are obtained to simulate the occlusion situation. Then random sampling of 

high masking ratio is performed. To simulate the signal miss situation at different dis-

tances, a random mask ratio of 25%, 45%, 65%, and 85% is set. Based on the above opera-

tions, the total number of point cloud samples in the pre-training dataset is 18,866 × 2 × 4 

= 150,928. The subset of point clouds after PC-Mask is used as the input of PCMAE, and 

the original point cloud is used as the label. The data are divided into training, validation 

and test sets according to 7:1:2. 

 

Figure 5. Visualization of different classes of targets in the KITTI dataset. 

4.2. Pre-Training Implementation Details 

Two commonly used 3D backbone networks, SpMiddleFHD [8] and SparseCon-

vUNet [9] are used as encoders for PCMAE. The pre-training process includes a training 

phase and a validation phase, as shown in Figure 6. 
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Figure 6. Pre-training flow. (a) Training phase. (b) Validation phase. 

In the training phase, PCMAE is based on PyTorch [33], and both 3D backbones are 

trained with the same configuration and parameters. The models are optimized with an 

AdamW [34] optimizer with β1 = 0.9 and β2 = 0.999. The network trained with a batch size 

of 16 on two NVIDIA Quadro RTX 6000 GPUs. Initial learning rate as 5 × 10−4 and weight 

decay as 1 × 10−3. The optimization is set to stop after 160 epochs. 

In the validation phase, a linear SVM (Support Vector Machine) is trained to verify 

the effect of pre-training. Since the effect of pre-training depends on the quality of the 

sparse 3D features extracted by the encoder, the pre-trained encoder is frozen. The linear 

SVM classifier is trained by extracting sparse 3D features of the point cloud subset after 

PC-Mask. The classification accuracy of SpMiddleFHD is 83.4%, and the classification ac-

curacy of SparseConvUNet is 87.1%. Using a confusion matrix to show the classification 

results, as shown in Figure 7, The horizontal axis shows the Predicted label, and the ver-

tical axis shows the True label. Each cell represents the probability that a ‘True Label’ is 

predicted to be a ‘Predicted Label’. For the model SpMiddleFHD (Figure 7a), take the first 

row as an example. For all samples with the true label “car”, 87.1% were predicted cor-

rectly, 0.9% were predicted as “Cyclist”, 0.2% were predicted as “Pedestrian”, and 11.8% 

were predicted as “Background”. The probability of “car” being mispredicted as “Back-

ground“ is high because the background includes many objects similar to “car”, such as 

trucks, buses, etc. In addition, “Cyclist“ and “Pedestrian“ also have high similarities, re-

sulting in a high probability of being wrongly detected by each other, as shown in the 

second and third rows. This is hard to avoid, especially after simulating external occlusion 

and loss of signal. The classification results of the two models are credible, of which the 

SparseConvUNet model is relatively good. After pre-training, the different target features 

extracted by the 3D backbone can be distinguished by the linear SVM classifier, which 

proves that the PCMAE pre-training effect is better. 

 

Figure 7. Confusion matrix. (a) shows the classification results of SpMiddleFHD. (b) shows the classifi-

cation results of SparseConvUNet. The horizontal axis shows Predicted label, and the vertical axis shows 

True label. Each cell represents the prediction probability of the output. For darker colors, the prediction 

probability is larger. The main diagonal cell represents the probability of correct classification. 
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4.3. Visualization of Point Clouds in PCMAE 

The reconstruction results on the test set are visualized as shown in Figure 8. For the 

four types of targets of car, cyclist, pedestrian and background, after simulating the in-

complete point cloud in the case of external-occlusion and signal miss through PC-Mask, 

the PCMAE model can complete the reconstruction well. 

 

Figure 8. Test set reconstruction visualization. The first row is the original point cloud. The second 

row is the subset of point clouds after PC-Mask, which is used as the input of PCMAE. The third 

row is the reconstruction result of PCMAE. 

The reconstruction results of the real scene are visualized, as shown in Figure 9. The 

object of the real scene is extracted from the KITTI dataset and reconstructed with 

PCMAE. The model can better complement the real object’s shape. 

 

Figure 9. Visualization of the reconstructed target. The first column is the RGB image of the real 

scene. The second column is the LiDAR scan. The third column is the incomplete point cloud ex-

tracted from the real scene. The fourth column is the reconstruction result. 

PCMAE can not only reconstruct the point cloud in the case of simulating external-

occlusion and signal miss, but it can also better supplement the object shape in the real 

scene. It is proved that PC-Mask can better simulate the point cloud of the real scene and 

the pre-training model has certain robustness.  
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5. 3D Object Detection Experiments 

This section introduces 3D object detection experiments. PCMAE pre-trains the back-

bone of the 3D object detection model, and then initializes the 3D backbone with pre-

trained weights through transfer learning. Then compare it with the way of random ini-

tialization. Experimental design is presented in Section 5.1, experimental details are pre-

sented in Section 5.2, quantitative evaluation and qualitative results are presented in Sec-

tions 5.3 and 5.4, respectively. 

5.1. Experimental Design 

To demonstrate the wide applicability of the PCMAE pre-training method to 3D ob-

ject detection algorithms, representative SECOND [8] and Part-A2-Net [9] algorithms are 

selected for experiments. The SECOND algorithm designed a 3D backbone called SpMid-

dleFHD, and first proposed to replace the traditional 3D convolution with sparse 3D con-

volution. This backbone reduces the massive memory consumption and computational 

load of empty voxels, an approach that continues to this day. The Part-A2-Net algorithm 

designs a 3D backbone similar to UNet, namely SparseConvUNet, including part aware-

ness and part aggregation. It makes full use of the internal location information in the 

label and is a very popular 3D backbone network at present. This paper pre-trains the 

above two 3D backbones in Section 4 and verifies that pre-training can perform effective 

feature extraction for self-occlusion and long-distance targets. Therefore, in this section, 

two sets of comparative experiments are conducted using PCMAE pre-training (pre-train-

ing parameters to initialize model weights) and no pre-training (randomly initializing 

model weights). The first group is the comparison between SECOND and PCMAE + SEC-

OND. The second group is the comparison of Part-A2-Net and PCMAE + Part-A2-Net. 

Use the same hyperparameters to verify whether PCMAE can improve the detection per-

formance of SECOND and Part-A2-Net algorithms. 

5.2. Implementation Details 

The experiment is carried out on KITTI dataset, which has 7481 training samples. 

These training samples are divided into the train set (3712 samples) and validation set 

(3769 samples) as the frequently used partition of KITTI dataset. In order to verify the 

universality of PCMAE, experiments are performed based on SECOND and Part-A2-Net 

algorithms, respectively. In order to verify the effectiveness of PCMAE pre-training, a 

comparison experiment is performed with the way of randomly initializing weights, and 

the same hyperparameters are used. 

Experiment 1 trains SECOND by using SpMiddleFHD 3D backbone, the trained 

model weights are initialized with two strategies: random initialization and initialization 

from ImageNet checkpoints. There is a total of 3 point clouds per minibatch using the 

Adam optimizer running on an NVIDIA Quadro RTX 6000 GPU. All models were trained 

for 42,000 iterations. The initial learning rate was 0.0002, with an exponential decay factor 

of 0.8 and a decay every 3712 iterations. A decay weight of 0.0001, a β1 value of 0.9 and a 

β2 value of 0.999 were used. The experimental process is shown in Figure 10a. After 42,000 

iterations, the random initialization method (gray) converges around 35,000 times (The 

way to judge the convergence is that the change in loss is small, and the accuracy of the 

validation set no longer increases). The mAP (mean Average Precision) of the validation 

set is 65.89. The weights are initialized by pre-training (purple) to converge at around 

15,000 times, and the mAP of the validation set is 67.85. 
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Figure 10. (a) SECOND training process. (b) Part-A2-Net training process. The Grey curve repre-

sents parameters that are randomly initialized. The purple curve represents the parameters initial-

ized by PCMAE pre-training. 

Experiment 2 trains Part-A2-Net by using SparseConvUNet backbone, the model 

weights were initialized for training using two strategies: random initialization and ini-

tialization from ImageNet checkpoints. The entire network was trained end-to-end using 

the Adam optimizer and a batch size of 6 for 78,000 iterations. The cosine annealing learn-

ing rate strategy is used with an initial learning rate of 0.001. The experimental process is 

shown in Figure 10b. After 78,000 iterations, the random initialization experiment converges 

around 66,000 times, and the validation set mAP is 70.44. The weights are initialized by pre-

training to converge at around 40,000 times, and the mAP of the validation set is 71.92. 

The above two experimental results show that the pre-training method based on 

PCMAE has faster convergence, lower loss and higher accuracy. The importance of the 

pre-training scheme is demonstrated. 

5.3. Quantitative Evaluation 

The PCMAE pre-training method proposed in this paper is applied to the SECOND 

[8] and Part-A2-Net [9] 3D object detectors, respectively, and compared with the original 

algorithm. The evaluation indicators refer to the AP under 40 recall thresholds (Apr40) of 

SECOND and Part-A2-Net. The KITTI dataset divides the detection difficulty into three 

levels: easy, moderate, and hard according to the size of the object, the occlusion, and the 

degree of truncation. Table 1 shows the quantitative evaluation of the two groups of ex-

periments. Reported the 3D APs of three types of objects at different difficulty levels under 

Apr40. SECOND and Part-A2 in the table use the training method of randomly initializing 

weights. After adding PCMAE, the training method of pre-training initialization weight 

is adopted. The blue part shows the gain of PCMAE to the two algorithms. It can be seen 

that after PCMAE pre-training, the detection accuracy of the two 3D object detectors has 

been improved, indicating that the PCMAE pre-training method has wide applicability. 

It is particularly noted that the performance gain mainly comes from the two detection 

levels of moderate and hard. Among them, for moderate, the SECOND algorithm im-

proves each category by 0.55%, 3.49%, and 2.71%, respectively. The Part-A2-Net algorithm 

improves each category by 1.40%, 2.95%, and 0.31%, respectively. For the hard difficulty 

level, the SECOND algorithm improves each category by 1.67%, 3.11%, and 2.93%, respec-

tively. The Part-A2-Net algorithm improves each category by 1.53%, 2.67%, and 1.57%, 

respectively. It is shown that the PC-Mask proposed in this paper simulates real scenes 
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and performs self-supervised pre-training, which can improve the detection effect of oc-

cluded and long-distance situations. 

Table 1. Comparisons on the KITTI validation set, evaluated by the 3D Average Precision (AP) un-

der 40 recall thresholds (R40). The rotated IoU (Intersection-over-Union) threshold is 0.7 for the car 

and 0.5 for the pedestrian/cyclist. The two comparison experiments are shown separately as test 

results (The difference between each comparative experiment is whether the PCMAE pre-training 

parameters are used for initialization, and the model structure and hyperparameters are the same), 

the blue part shows the gain of PCMAE to the two algorithms. 

Method 
Car 3D Apr40 Ped 3D Apr40 Cyc 3D Apr40 

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 

SECOND 90.97 79.94 77.09 58.01 51.88 47.05 78.50 56.74 52.83 

PCMAE + SECOND 91.09 80.49 78.76 59.85 55.37 50.16 79.71 59.45 55.76 

Improvement +0.12 +0.55 +1.67 +1.84 +3.49 +3.11 +1.21 +2.71 +2.93 

Part-A2 89.42 79.13 78.51 58.21 54.07 49.74 86.76 71.38 66.71 

PCMAE+ Part-A2 89.63 80.53 80.04 59.56 57.02 52.41 88.09 71.69 68.28 

Improvement +0.21 +1.40 +1.53 +1.35 +2.95 +2.67 +1.33 +0.31 +1.57 

5.4. Qualitative Results 

Figure 11 shows the 3D point cloud detection results and the corresponding 2D im-

ages on the KITTI test set. 

 

Figure 11. Qualitative results on the KITTI test set. (a1–a4) Detection results of the original algo-

rithm. (b1–b4) The optimized algorithm detection results. Green boxes represent cars. Blue boxes 

represent pedestrians. Yellow boxes represent cyclists. Red ovals indicate missed detections. Purple 

ovals indicate false detections.  



Mathematics 2022, 10, 3549 13 of 15 
 

 

6. Discussion and Conclusion 

In the field of deep learning, transfer learning is one of the most successful cases. The 

resulting model of after pre-training on a large-scale dataset is transferred to subtasks and 

fine-tuned, and its performance is much higher than the training method with random 

initialization; yet very little is known about its usefulness in 3D point cloud understanding. 

This paper aims to promote research on pre-training methods for object detection in 3D 

point clouds. Pre-training usually requires large-scale labeled datasets for supervised 

learning. However, the lack of large-scale 3D datasets containing category annotations in 

autonomous driving scenarios cannot satisfy pre-training methods for supervised learn-

ing. Studies have found that in natural language processing and computer vision, simple 

self-supervised learning methods such as [23,28] pre-train with a smaller amount of unla-

beled datasets and even outperform supervised learning. Among them, the mask auto-

encoder method is simple and scales well. On the other hand, 3D point clouds are signals 

of different nature relative to language and images, and usually only contain certain shape 

information. Simply removing objects or randomly removing patches is likely to be detri-

mental to the shape representation of the point cloud. Therefore, it is necessary to propose 

a masked strategy suitable for autonomous driving scenarios to simulate point cloud data 

with missing shapes in real scenes. Moreover, this masking strategy is combined with an 

auto-encoder as a self-supervised pre-training method for 3D object detection in the field 

of autonomous driving. 

This paper explores providing pre-training for 3D point cloud object detection algo-

rithms through self-supervised learning. First, is the analysis of LiDAR point cloud da-

taset in autonomous driving scenarios. It is found that there are three reasons for the miss-

ing object shape: namely self-occlusion, external-occlusion and signal miss caused by dis-

tance. Therefore PC-Mask, a masking strategy for LiDAR point cloud data in autonomous 

driving scenes, is proposed for self-supervised pre-training of point clouds. Then com-

bined with the idea of auto-encoder, PCMAE, a symmetrical encoder–decoder network 

structure, is designed. Take the 3D backbone that requires to be pre-trained as the encoder 

to extract the features of the point cloud after PC-Mask. The decoder is responsible for 

reconstructing the original point cloud. The linear SVM experiment verifies that the pre-

trained 3D backbone can effectively extract the features of self-occlusion objects and long-

distance objects. Finally, the proposed PCMAE pre-training method is applied to two rep-

resentative 3D backbone point cloud object detectors SECOND and Part-A2-Net. The ef-

fectiveness and wide applicability of the proposed pre-training method are verified from 

two aspects of quantitative evaluation and qualitative results. 

PCMAE is simple and extensible. This paper improves the feature representation 

ability of the 3D backbone for long-distance and occluded targets through self-supervised 

pre-training, and uses transfer learning to improve the detection performance of target 

detectors for complex scenes. PCMAE can reconstruct the point cloud data after PC-Mask. 

It is shown that it helps the 3D backbone to learn the characteristics of point cloud data in 

autonomous driving scenes. Therefore, PCMAE can be extended to other point cloud intelli-

gent perception tasks, such as point cloud segmentation, which will serve as future work. 
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