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Abstract: Aiming at the problem that the toe cap and upper part of the sole of a shoe easily appear
missing when using binocular vision to reconstruct the shoe sole in the industrial production process,
an improved matching cost calculation method is proposed to reconstruct shoe soles in three dimen-
sions. Firstly, a binocular vision platform is built, and Zhang’s calibration method is used to obtain
the calibration parameters. Secondly, the method of fusing Census and BT costs is used to calculate
the matching cost of the image, so that the matching cost calculation result is more accurate. On this
basis, 4-path aggregation is performed on the obtained cost, and the optimal matching cost is selected
in combination with the WTA algorithm. Finally, left–right consistency detection and median filtering
are used to optimize the disparity map and combine the camera calibration parameters to reconstruct
the shoe sole in three dimensions. The experimental results show that the average mismatch rate
of the four images on the Middlebury website in this method is about 6.57%, the reconstructed sole
point cloud contour information is complete, and there is no material missing at the toe and heel.

Keywords: binocular vision; image processing; stereo matching; 3D reconstruction
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1. Introduction

In recent years, with rising labor costs and the development of automation technology,
footwear manufacturers have begun to seek automated production of key processes in the
shoemaking process [1,2]. Sole gluing is a key process in shoemaking and one that greatly
affects the quality and aesthetics of shoes. In the past, sole gluing was mostly done by hand,
and the volatile gas from shoe glue threatened the health of workers. Moreover, because
the quality of glue applied by workers with different proficiency levels is accordingly
different, more and more shoe enterprises are using robots for sole gluing instead of relying
on manual operation [3]. A three-dimensional model of the sole can be obtained by 3D
reconstruction, which lays a foundation for the extraction of the sole glue track. Therefore,
it is of great significance to study how to use machine vision technology to realize 3D
reconstruction of soles for shoe enterprises to realize automatic production.

Nowadays, machine vision technology is being gradually introduced into automatic
gluing equipment. At present, most sole gluing equipment uses line-laser or binocular-
structured light to reconstruct the sole in three dimensions, but the cost of line-laser and
structured light is relatively high [4]. Monocular vision is affected by factors such as
angle of view, and the reconstruction accuracy is low. Binocular vision can better balance
hardware cost and reconstruction accuracy. At present, how to use a binocular stereo
matching algorithm for 3D reconstruction of soles and improve the accuracy and speed of
the algorithm has become a hot issue in the field of machine vision. Relevant scholars have
conducted much research and achieved fruitful results [5–7]. On the basis of binocular
vision, Li Zhenzhen et al. [8] added LED light bars, increased the contrast of sole edges, and
used the edge stereo matching method for feature matching. Experiments show that the
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sole edges obtained by this method are relatively complete. Ding Dukun et al. [9] adopted
the threshold segmentation method based on a genetic algorithm. The experimental results
show that compared with traditional methods, this method has stronger anti-interference
and more accurate sole information extraction. Stefano Pagano et al. [10] used a Kinect
V2 vision system to obtain point cloud data of soles and designed trajectory extraction
algorithms for planar 2D objects and 3D objects, which improved the flexibility of the
bonding process. Zhu et al. [11] transformed the spatial trajectory of the sole into a
two-dimensional image depth map, extracted the edge contour of the sole by a two-
block algorithm, and fitted and biased the contour line by B spline to obtain the spraying
trajectory. Ma Xinwu et al. [12] used a canny algorithm to extract the edge of the sole and
used a region-matching algorithm for stereo matching. The cubic spline interpolation was
performed on the obtained three-dimensional contour line of the sole, and the glue spraying
trajectory was obtained through offset. Experiments have shown that this method has good
real-time performance. Luo Jiufei et al. [13] used the accelerated robust feature algorithm
and the adaptive double threshold algorithm to extract initial matching pairs in left and
right images, and then used distance and angle features to eliminate false matching points.
Experiments have shown that the running time of this method is reduced by 40% compared
with traditional methods, and the matching accuracy is higher. Yan Jia et al. [14] used a Sobel
operator to extract edge information as the basis of the Census window, used the selected
window to calculate the similarity cost and gradient information cost, and fused to obtain
the cost matching function. Experimental results show that this method has better matching
results for areas with inconspicuous texture and large depth change. Xiao Hong et al. [15]
fused the gradient cost with the Census cost with the neighborhood pixel weight, and used
guided filtering for cost aggregation. Experimental results show that this method can make
full use of the coarse information and fine information of images, but the matching details
need to be improved. Yu Chunhe et al. [16] aimed at the problem that points with high
similarity tend to cause mismatching in the matching process, and used an SAD algorithm
with different sizes of windows to deal with this problem. Experimental results show
that the feature point matching of this method is more accurate. Zhu Jianhong et al. [17]
added a third state to the traditional Census algorithm and used guided filtering for cost
aggregation. Experimental results show that the time of this method is shortened by
36.60% compared with the traditional Census algorithm. Lim et al. [18] proposed a fast
stereo matching algorithm based on Census transformation. The experimental results show
that this method can resist radiation changes well, and the mismatching rate and running
efficiency are improved compared with the traditional Census algorithm. Jia Kebin et al. [19]
used a neighborhood information constraint algorithm to carry out weighted average
processing of neighborhood center points, and used an adaptive color window for cost
aggregation. Experiments have shown that this method has a low mismatching rate and
strong anti-interference to Gaussian noise.

The above scholars have conducted much research on the extraction and 3D recon-
struction of the sole gluing track [20,21] and have achieved fruitful results. However, most
algorithms have high requirements on the color and texture of objects, and the matching
effect is poor for objects with a single color and less texture, such as soles. Since the fea-
ture matching–based method often has missing trajectories at the toe and heel, this paper
proposes an improved stereo matching method on the basis of the above research. In this
paper, the algorithm that fuses Census and BT cost is used to calculate the matching cost to
reduce the error caused by single-matching cost. The four-path aggregation strategy is used
to aggregate the cost to improve the real-time performance of the algorithm. Left–right
consistency detection and median filtering are used to optimize the disparity. Finally, the
sole is reconstructed according to the calibration parameters.

2. Improved Binocular Visual Matching Cost Method

In order to realize the 3D reconstruction of the sole, this paper proposes a method to
improve the accuracy of sole contour extraction on the premise of reducing hardware cost.
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In this paper, a binocular vision sole 3D reconstruction algorithm with improved matching
cost is studied, and its flow is shown in Figure 1.

Figure 1. Algorithm flow chart of this paper.

It can be seen from Figure 1 that the 3D reconstruction algorithm of a binocular vision
sole with improved matching cost has two main steps. The first step is to build a binocular
vision system, use the Zhang calibration method to obtain camera parameters, and collect
sole images for polar line correction. The second step is to perform stereo matching on the
image. The specific steps are as follows: First, the algorithm combining BT and Census
costs is used to calculate the matching cost, and the 4-path aggregation strategy is used to
aggregate the cost. The obtained disparity is then post-processed using the WTA algorithm
to select the final matching cost. Finally, according to the calibrated camera parameters, 3D
reconstruction of the sole is performed.

2.1. Binocular Vision Image Acquisition
2.1.1. Matching Cost Calculation

Firstly, the experimental platform of the binocular camera is built, and the Zhang
calibration method is used for joint calibration. In order to ensure the accuracy of the
calibration parameters, an alumina calibration plate with a side length of 5 mm is used for
each small square. A total of 24 pairs of calibration images are collected, and image pairs
with large errors are removed. For example, samples with large calibration offsets need to
be removed. Sixteen samples are used to calibrate the image, and the calibration picture is
shown in Figure 2.

Use the calibration toolbox that comes with Matlab2018b to calibrate the camera. The
external parameters of the camera are shown in Table 1. The internal parameters of the
camera are shown in Table 2.
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Figure 2. Partially calibrated pictures of the camera.

Table 1. Camera external parameter table.

Translation Matrix
[
−40.2910 0.0169 0.0771

]
Rotation Matrix

 0.9999 −0.1662× 10−3 −0.0121
0.4479× 10−3 0.9997 0.0234

150.3069 238.3458 0.9997



Table 2. Camera internal parameter table.

Parameter Left Camera Right Camera

Internal parameter Matrix
342.3530 0 0

0 684.0529 0
149.8581 203.7685 1

 342.5567 0 0
0 685.6191 0

150.3069 238.3458 1


Distortion Coefficient

[
0.0521 −0.1763

] [
0.0521 −0.2760

]
2.1.2. Binocular Vision Image Acquisition and Preprocessing

Binocular vision is widely used in the industry. It uses the left and right cameras to
obtain images with differences, then calculates the parallax of the object, and finally obtains
the 3D information of the object to be measured according to the camera parameters. In an
ideal situation, the parameters of the two cameras are exactly the same and the imaging
planes coincide. The schematic diagram is shown in Figure 3:

Figure 3. Principle diagram of ideal binocular vision imaging.
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Where P represents the target point to be measured, and its coordinate is (X, Y, Z).
Ol and Or are the optical centers of the left and right cameras, respectively. Pl is the
corresponding projection point of the target point on the left image plane, and its coordinate
is (Xl , Yl , Zl). Pr is the corresponding projection point of the target point on the right image
plane, and its coordinate is (Xr, Yr, Zr). d is the deviation between the two positions, called
parallax. f is the distance between the optical center plane and the image plane, called the
focal length. b is the baseline distance. Z is the distance from point P to the plane of the
optical center, called the object distance. It can be seen from Figure 3 that:

d = Xl − Xr (1)

The projection distance of the target on the left and right image planes is:

Ml Mr = b− Xr + Xl (2)

where Ml and Mr represent the projection distance of the target on the left and right image
planes, respectively.

According to the similarity principle of triangles, the relationship between object
distance Z and parallax d satisfies:

Z
Z + f

=
b

b + d
(3)

After simplification, we get:

Z =
f •b
d

(4)

From the object distance Z, we can derive the other two coordinates X, Y of the point
P in the world coordinate system.

X =
(Z•Xr)

f
(5)

Y =
(Z•Yr)

f
(6)

In the stereo matching algorithm, the points to be matched in the left image need to be
matched with their corresponding points in the right image. Performing a two-dimensional
search for all the pixels in the image on the right would take a long time. Therefore, the
epipolar line constraint is adopted to make the corresponding two epipolar lines of the left
and right images lie on the same horizontal line. In this way, you only need to search on
the polar line corresponding to the right picture. Operations on a two-dimensional plane
become operations on a one-dimensional line. This method greatly speeds up the operation.
The image after epipolar correction is shown in the Figure 4.

For the convenience of observing the changes before and after the epipolar correction,
equidistant horizontal straight lines are added to the figure. It can be seen from Figure 4 that
the points on the edge of the sole are already at the same level after the epipolar correction.

Figure 4. Cont.
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Figure 4. Images before and after epipolar correction.

2.2. 3D reconstruction of Improved Matching Cost Algorithm

After camera calibration and epipolar correction, the camera is used to capture left
and right images of the shoe sole. In order to obtain the depth information of the sole, we
need to find one-to-one corresponding pixels in the two images, and obtain the disparity
map by calculating the difference between these corresponding coordinates. This process is
called stereo matching.

2.2.1. Match Cost Calculation

Using only a single matching cost in the matching cost calculation usually has draw-
backs. For example, the cost of BT (Birchfield & Tomasi) and Sum of Absolute Differences
(SAD) relies too much on grayscale information. The Census cost relies too much on the
center pixel. The sole has a single color with less texture. Therefore, it is difficult to obtain
good results with a single matching cost. In order to solve this problem, the BT cost is
added to the Census cost for fusion to solve the problem of depth discontinuity. In this way,
the calculated matching cost is more accurate.

The Census cost compares the gray value of the center point and the other points in
the neighborhood window of the point to be matched in the left and right images. This is
as shown in Formula (7):

ζ[IM(p), IM(q)] =
{

0, IM(p) < IM(q)
1, IM(p) ≥ IM(q)

(7)

where IM(p) represents the gray value of the center point p; IM(q) represents the gray
value of other points q in the field; and the center point gray value of IM(p) is used as the
reference value. If a point IM(q) in the neighborhood is greater than IM(p), it is recorded
as 0; otherwise it is recorded as 1. After the pixels in the neighborhood are compared, the
points in the neighborhood are arranged in order. A binary string can then be obtained.
The calculation formula is shown in Formula (8):

Ccen(p) = ⊗ζ[IM(p), IM(q)], q ∈ N (8)

where Ccen(p) represents the string corresponding to the center point, ⊗ means bitwise
concatenation operation, and N represents the neighborhood of center point p.

The bitwise XOR and bitwise sum operations of the strings obtained in the left and
right images are used to obtain the Hamming distance, which is used as the cost between
the two pixels. The formula is as follows:

CC(x, y, d) = Hamming[Ccenl(p), Ccenr(p− d)] (9)

where CC(x, y, d) represents the Census matching cost; Ccenl(p) represents the correspond-
ing string in the left image when the parallax is d; and Ccenr(p− d) represents the corre-
sponding string in the right image when the parallax is d. The dimension of the Census
matching cost is 5× 5.

BT cost is similar to SAD cost. Both are calculated using the absolute value of the
grayscale difference in the pixels, but the BT cost also performs half-pixel interpolation
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on the two pixels. Taking the horizontal direction as an example, its schematic diagram is
shown in Figure 5.

Figure 5. BT cost interpolation principal diagram.

The calculation formula of BT cost CB(xiy, d) is shown in Formula (10):

CB(xi, y, d) = min
{

min
∣∣IL(xi, y)− ÎR(x + d, y)

∣∣
min

∣∣IR(xi + d, y)− ÎL(x, y)
∣∣ (10)

where CB(xiy, d) represents the BT matching cost, IL(x, y) represents the gray value of the
pixel in the left image, and IR(x, y) represents the gray value of the pixel in the right image,
ÎL(x, y) represents the grayscale value at the subpixel in the left image, and ÎR(x + d, y)
represents the grayscale value at the subpixel in the image on the right. Among them,
x ∈ [xi − 0.5, xi + 0.5]. The grayscale value ÎL(x, y) is calculated for the subpixel location
(x, y) between pixels (xi − 0.5, y) and (xi + 0.5, y) in the left image. The grayscale value
ÎR(x + d, y) is calculated for the sub-pixel location (x + d, y) between pixels (xi + d− 0.5, y)
and (xi + d + 0.5, y) in the right figure. The BT cost calculation is divided into two types
because there are two left and right images.

There is a difference between the initial costs due to the adopted matching costs.
Therefore, the difference needs to be normalized first and then fused. The normalized
formula is:

ρ(c, λ) = 1− exp(− c
λ
) (11)

The normalized matching cost is fused and multiplied by the corresponding scale
factor to obtain Formula (12).

C = ρ(CC(x, y, d), λC) + ρ(CB(x, y, d), λB) (12)

Formulas (11) and (12) can be obtained simultaneously:

C = 2− exp(1− CC
λC

)− exp(1− CB
λB

) (13)

where ρ(c, λ) represents the normalization function; c means matching cost; and λ repre-
sents the corresponding scale factor, which is used to assign the weight of the two costs. In
order to balance the three costs, it has been debugged many times. Finally choose λC = 0.8,
λB = 0.2.

The steps of the proposed matching cost calculation method are as follows:

(1) With the point p(x, y) in the left figure as the center, build a neighborhood window of
size n× n.

(2) Do the same operation in the right image, and select all the pixels in the right image
window at the same time.

(3) Compare the gray value of the left and right neighborhood center points and the other
points, respectively. Obtain two binary strings according to the size of the gray value.
Find the Hamming distance between the two strings to get the cost C2.
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(4) Calculate the sub-pixel interpolation of the center point of the left and right neighbor-
hoods and the focus of the adjacent pixels, respectively. The cost C3 can be obtained.

(5) Normalize CC and CB. Fuse them according to the corresponding scale factor. The
matching cost C can then be obtained.

(6) Repeat steps 2 to 5 until the parallax search range is exceeded.
(7) Select the neighborhood with the smallest matching cost C within the disparity range

of the right image. The corresponding center point is the pixel that matches the
P points.

2.2.2. Cost Aggregation

After calculating the initial matching cost, if the disparity calculation is performed
directly, the effect is generally poor. In order to improve the accuracy and robustness of
stereo matching, cost aggregation is required. A scanline optimization method is used for
cost aggregation.

Firstly, a global energy optimization strategy is used to find the minimized energy
function. The optimal aggregation cost can then be found. The energy function formula is
as follows:

E(D) = ∑
p
(C(p, Dp)+ ∑

q∈N
P1T[

∣∣Dp − Dq
∣∣ = 1] + ∑

q∈N
P2T[

∣∣Dp − Dq
∣∣ > 1]) (14)

where Dp represents the disparity of pixel p pointsm Dq represents the parallax of q pixels,
and P1 and P2 represent penalty coefficients. The first term on the right side of Equation (14)
represents the sum of the matching costs of all pixels when the disparity is d. The second
and third terms indicate that all pixels in the neighborhood N of pixel p are penalized.
Among them,P2 > P1. When the parallax change is 1, P1 is used for punishment, and when
the parallax change is greater than 1, P2 is used for punishment.

A common scheme in path aggregation is 8-path aggregation. This scheme calculates
the matching cost from 8 directions, and has higher accuracy but longer operation time.
Compared with the 8-path aggregation, the 4-path aggregation eliminates the four-direction
paths of 5, 6, 7, and 8. Its matching speed is greatly accelerated. The strategies for 8-path
aggregation and 4-path aggregation are shown in Figure 6. The calculation formula of the
path cost of a pixel along a certain direction is shown in (15):

Lr(p, d) = C(p, d) + min


Lr(p− r, d)

Lr(p− r, d− 1) + P1
Lr(p− r, d + 1) + P1
min

i
Lr(p− r, i) + P2

−min
i

Lr(p− r, i) (15)

where Lr(p, d) represents the aggregation cost of disparity d and pixel p under the condition
of path r. C(p, d) represents the match cost value for pixel p. The second term on the right
side of the formula indicates that the aggregation cost on path r is the value corresponding
to the minimum cost when no penalty or P1 and P2 penalties are applied. The third term
exists to prevent the path cost from being too large.

The aggregation cost in the four directions is:

S(p, d) = ∑
r

Lr(p, d) (16)

where S(p, d) represents the total aggregation cost, which is the sum of the four directions
of 1, 2, 3, and 4. The dimension of the aggregate cost value is 3× 3.
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Figure 6. Schematic diagram of 8 and 4 path aggregation.

2.2.3. Parallax Optimization

After the cost aggregation for all 4 directions is obtained, the disparity corresponding
to the smallest aggregated cost per pixel is used to calculate the disparity map. The winner-
takes-all (WTA) algorithm is used to select the optimal cost from all possible matching
costs. First, the corresponding cost value of a point in the image under all parallax d is
calculated. Then the smallest cost value is found via WTA. This is the optimal parallax
dwin. Subsequently, the picture taken by the left camera is used. The picture information
corresponding to each point is replaced with its relative dwin for storage. The resulting
picture is the desired parallax image. There are inevitably some occlusion areas due to the
binocular camera. Since there are inevitably some occlusion areas in the binocular camera,
it is inevitable that there will be empty areas. Parallax filling is performed on the occluded
areas using left–right consistency detection. The median filtering method is used to remove
excess noise and improve the accuracy of the parallax.

2.2.4. 3D Reconstruction

After the disparity map of the left and right images is obtained, the spatial coordinates
corresponding to each point in the space can be calculated by combining the obtained
internal and external parameters of the binocular camera. According to the basic principle
of binocular vision, 3D reconstruction is performed on each point in the disparity map. The
obtained set of 3D space points is the point cloud.

3. Experimental Verification and Result Analysis

(1) Experiment 1

In order to verify the effectiveness of the method proposed in this paper, we built a
binocular camera experimental platform and used the proposed algorithm to reconstruct
the 3D shoe sole actually used in shoe production. First, we used the four pictures of Cones,
Teddy, Venus, and Tsukuba provided by the Middlebury website for testing. Twenty-
six photos are used for calibration parameters, and 18 images are used for testing. The
experimental platform is Matlab2018b, and the CPU is i5-4200h. In the Figure 7, from left to
right are the left image to be matched, the real disparity map, the reference [16] algorithm,
the Census+8 path aggregation algorithm, the reference [18] algorithm, and the disparity
map obtained by the algorithm in this paper.
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Figure 7. Comparison of test image disparity maps obtained by different algorithms [16,18].

It can be seen from the figure that the reference [16] uses local block matching and
does not go through the cost aggregation step. Therefore, although the matching time is
fast, there are many missing and empty areas in the disparity map, and the matching effect
is poor. The other three algorithms all use the cost aggregation strategy, and the processed
disparity map has significantly fewer holes. Compared with the reference [18] method and
the Census+8 path aggregation method, the method in this paper retains more complete
information at the edge of the image and has less noise.

The matching effect of the proposed algorithm is evaluated by using the false matching
rate. The false matching rate of the above four images is calculated in the non-occlusion
(non), all (all), and disparity discontinuous (disc) regions. The average value is calculated,
and the mismatch rate is obtained as shown in Table 3. The smaller the false matching rate,
the smaller the gap between the results obtained by the method and the real disparity map,
and the more accurate the matching results. As can be seen from the table, the four disparity
maps obtained by the algorithm in this paper have a false matching rate of 6.88%, 7.61%,
5.85%, and 5.94%, and an average false matching rate of 6.57%, which are all lower than in
the other three methods. Disparity maps are more accurate. As regards operation time, the
running time of several algorithms is shown in Table 3. The algorithm in [16] does not use
the path aggregation operation; therefore, the matching time is short, but relatively more
disparity map noise leads to a high false matching rate. After the 4-path cost aggregation
operation, the matching time is lengthened. The average running time of the Census+8
path aggregation algorithm is 21.86 s. The average running time of the algorithm in this
paper is 5.68 s. The running time of the algorithm in this paper is longer than that of the
reference [16] algorithm but much shorter than the Census+8 path aggregation algorithm
and the reference [18] algorithm. It can be seen that the 4-path aggregation greatly shortens
the running time of the algorithm. In summary, the matching accuracy of this paper is the
highest among several methods, and the running time is faster. It can meet the real-time
requirements. The effectiveness of the method proposed in this paper is verified.
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Table 3. Comparison table of disparity map evaluation indicators obtained by different algorithms.

Method Reference [16] Census+8
Path Aggregation Reference [18] The

Proposed Method

Cones
Mismatch Rate (%) 32.24 10.39 11.11 6.88
Running Time (s) 1.98 23.37 10.45 6.60

Teddy Mismatch Rate (%) 36.54 14.16 15.90 7.61
Running Time (s) 2.43 23.35 9.31 5.85

Venus
Mismatch Rate (%) 28.52 9.26 9.26 5.85
Running Time (s) 1.60 21.38 9.77 5.62

Tsukuba
Mismatch Rate (%) 24.49 8.40 13.28 5.94
Running Time (s) 1.69 19.34 7.24 4.65

Average Mismatch Rate (%) 30.45 10.55 12.52 6.57
Running Time (s) 1.93 21.86 9.19 5.68

(2) Experiment 2

This experiment involves the stereo matching of sneaker sole images using an im-
proved matching cost-based algorithm. The resulting disparity map looks as shown
in Figure 8.

Figure 8. Disparity map of shoe sole.

It can be seen from Figure 8 that the images obtained by other methods are blurred or
missing. The contours of the disparity maps obtained by our method are clear and complete.
The difference in parallax between the sole and its surroundings is well represented. The
method in this paper shows a good stereo matching effect. The resulting 3D reconstruction
renderings are shown below:

It can be seen from Figure 9 that the soles reconstructed based on the improved
matching cost algorithm retain the details better. The traditional method is prone to the
phenomenon of missing details. The point cloud has an obvious layering phenomenon,
and the contours of the obtained toe and heel remain intact. There is still some noise due
to background distractions. According to the difference between the color of the sole and
the background, the obtained point cloud image is filtered to remove the black noise. The
result obtained is shown in the Figure 10:
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Figure 9. 3D reconstructed point cloud image of a shoe sole.

Figure 10. The filtered point cloud image of a sneaker sole.

Due to the reflection phenomenon in some areas of the sole, the middle of the recon-
structed sole is partially missing. But the edge information of the sole remains intact. This
part of the information is also used for the extraction of the sole gluing trajectory. Therefore,
the proposed method based on improved matching cost can meet the requirements. Experi-
ments were carried out on the leather shoe sole shown i–n Figure 11. The effectiveness of
the proposed method is further verified. The results are shown in Figure 12.
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Figure 11. Leather sole images before and after polar line correction. Figure 11. Leather sole images before and after polar line correction.
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Figure 12. The filtered point cloud image of leather shoe sole.

The reconstructed point cloud images of white sneaker soles and black leather shoe
soles are observed. It is obtained that the 3D reconstruction of the sole can be better
achieved based on the improved matching cost algorithm. The evaluation criteria of
reference [12] were used. The maximum and minimum heights of the heel and toe center
were measured. The height difference was calculated. The length data of the sole was
obtained by calculating the distance between the heel and the center of the toe. The accuracy
of the reconstructed point cloud was evaluated. The results are shown in the table below.

It can be seen from Table 4 that the error between the reconstructed sports shoe and the
leather shoe sole is within 1.30mm. Its accuracy is relatively high, and there is no missing
phenomenon in important positions such as the toe and heel. This method can meet the
requirements of actual production.

Table 4. Comparison table of reconstruction accuracy of different soles.

Indicators Heel Center Height
Difference (mm)

Height Difference in
Toe Center (mm)

Distance between Toe
and Heel Center (mm)

Sneaker Soles
Measurement 30.1 27.5 294

Actual 29.9 26.2 293.5

Leather Shoe Sole
Measurement 31 13 253.71

Actual 30.3 13.5 255

4. Conclusions

Due to rising labor cost, the quality requirements of shoe sole coating have gradually
increased. Therefore, it is difficult for manual gluing to meet the needs of businesses. This
paper adopts the method of fusing Census and BT cost to calculate the matching cost of left
and right images. In this way, a more accurate matching cost can be obtained. At the same
time, the 4-path aggregation strategy improves the efficiency of the algorithm. The parallax
is optimized by using left–right consistency detection and median filtering methods. The
proposed algorithm was evaluated with source images on the Middlebury website. The
false matching rate was 6.57%, and the running speed was faster. In future research, it
should be considered that when the number of feature points extracted is large, feature
matching becomes difficult and there is an unnecessary matching burden. Non-maximum
suppression can be cited to keep the point with the largest response and avoid the feature
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set. On the other hand, deep neural networks can learn more efficient features and metric
functions to replace the cost computation of traditional stereo matching methods, thus
improving the accuracy of stereo matching methods. At the same time, self-calibration
methods [22,23] should be studied, as they have a wide range of usage environments and
are flexible and adaptable.
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