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1. Introduction

Over the past four decades, the dynamical behaviors of nonlinear differential equa-
tions have been intensively studied by many researchers. This interest is justified by the
promising applications generated by these equations; see, for example, refs. [1-10] and
the references therein. Among the non-linear equations, the VdPD oscillator is a very
prominent and interesting model that has been extensively studied in the context of sev-
eral specific problems, such as chaos, control, synchronization, vibration description and
asymptotic perturbation in physics, engineering, electronics, biology, neurology and many
other disciplines; see, for instance, the research works [11-18].

The mathematical model for the VAPD oscillator is governed by a two-dimensional
nonlinear differential equation of the form:

d2u

du
gz e —w)gy

2
1 u)dt

+au — pu® = fsin(wt), 1)
where w is the external frequency of the periodic signal and f stands for the amplitude
of the external excitation. The parameters €, « and f are the dimensionless damping
coefficient, linear and cubic nonlinearity parameters, respectively.

The authors in [19] proposed a three-dimensional problem for an autonomous VdPD
oscillator obtained by a transformation of the autonomous two-dimensional VdPD oscillator
into a jerk device with f = 0 and & = 1 in the previous Equation (1), which they presented
as follows:

Bu d?u
s dr
where € and 8 are positive parameters.

Recently, due to the frequent appearance of fractional derivatives in various applica-
tions in fluid mechanics, viscoelasticity, biology, physics and engineering, various kinds of
VdPD jerk equations of fractional order have attracted more and more attention; see, for
instance, refs. [19-23]. In this work, we try to propose an appropriate fractional formulation
for a three-dimensional problem of the VAPD jerk type.
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Therefore, let us consider the following problem:
DY(D* P + AD¥)x(t) + ki f1(t, x(t), D*x(t)) + kafa(t, x(t), JPx(t)) = h(t).
x(1) =0, DI-(=B)pa—byx(1) = A* e R,  x(T)=0, (3)
0<B<a<l 0<Za+p<]l O0<p te]

where D%, D2~B, are the Caputo-Hadamard fractional derivatives, J? is the Hadamard
fractional integral I = [1, T, ky, k; are real constants, and the functions fj, f, and h are con-
tinuous.

The motivation of our problem lies in using the Caputo-Hadamard approach in
a sequential way, and the fact that this approach has many advantages over the usual
Hadamard derivatives. Therefore, on the basis of these advantages, we have proposed
the fractional problem associated with the (VdPL) jerk equation by injecting the Caputo-
Hadamard derivatives on both sides of the equation with boundary conditions. This
consideration makes the considered problem more interesting, knowing that when a =1
and B = 0, we recover the type model (VdPL)-jerk.

The remaining part of this manuscript is distinguished as follows: in Section 2, we
describe some basic notations of fractional derivatives and integrals and important results
that will be used in subsequent parts of the paper. In Section 3, we prove three main
theorems by applying the Banach contraction principle and Krasnoselskii fixed-point
theorem. One of them concerns the Ulam-Hyers stability of Problem (3). Finally, Section 4
provides an example to illustrate the applicability of the main results.

2. Elementary Results

At first, we recall some concepts on fractional calculus and present some additional
properties that will be used later. For more details, we refer to [24-26]. We present some
basic definitions and results from fractional calculus theory.

Definition 1 (Hadamard fractional integral). The left-sided Hadamard fractional integral of
order « > 0, for a continuous function f : [a,b] — R, is defined as

1 £ ds
o a—1
= — - — <
Jalf (8)] F(“)/ﬂ(logt logs) f(s)s,oc>0,a<t_b,
L) = f(t),
where T'(a) := fooo e Uyt 1dy,
Definition 2 (Caputo-Hadamard fractional derivative). Let

ACH (b)) = { slat] — B:0" /() € ACla,bl,0 =15}

For a function f € ACJ'([a,b]), m € N* and m — 1 < a < m, we define the Caputo—Hadamard
fractional derivative by

Ty Jy (log t —logs)" * e f(s)%, m—1<a<m

D) =
SME(t), x=m

= JTET ()]
Lemma 1. Let x € ACJ'([a,b]), m € N*. The general solution of the equation

D*x(t) = 0,
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is given by
x(t) = co + ¢y logt 4 co(log t)? + ... + ¢, 1 (log t)" 1,

and the following formula holds:

J*[D%x(t)] = x(t) + co + c1 log t + c(log t)? + ... + ¢, 1 (log t)" 1,

forsomec; €R,i=0,1,---,n—1,1n=[a] + 1.
Lemma 2. Let p,q > 0, f € L'([a,b]). Then,

JPILf0)] = TPHf(1)],  t € [a,b].
Lemma3. Letq > p >0, f € L'([a, b]). Then,

DPJIf(O] = JTPIf(D)],  t € [a,b].

Theorem 1 (Krasnoselskii fixed-point theorem). Let A be a closed convex and nonempty subset
of a Banach space X, and let ¢1 and ¢, be two operators such that

(1) p1x + oy € A whenever x,y € A;
() ¢1 is a completely continuous operator;
(Us) ¢ is a contractive operatot.

Then, there exists x* € A, such that x* = ¢1x* + ¢px*.
We prove also the following lemma:

Lemmad4. Let H € C([1,T]), t € 1,0 < B < a < 1. Then, the solution of the problem

D¥(D? P 4+ AD%)x(t) = H(t).
_ 1 (a—p) Ha—p . _ 4)
x(1) =0, D D* Px(1) = A* € R, x(T) =0,
is given by the following expression:
f A f _ 1—(a+B)
() = / (logt —logs) H(s)§ B )\/ (logt —logs) x(s)ﬁ
/ r2—-pg+u) s Ir2—(a+p)) s
T
(log T — logs)! P e ds
_ 2-B oc+ﬁ g gs) as
(Aa(logt)>F + As(log ) / prg HOT©

1

logs —(a+p) () ds
w3

T
+ (Aallog P + Az(logh)> () A/ logT
1

- (Az(log £)27F 4 Asz(logt)? (a—s—ﬁ)) % log T+ A*logt,
1

where

2— (o
A= <log<T> P, Alog(TP +ﬁ>> Ap= —1 Ag= o d

r(3-p) T(3—(a+p)) AT (3-p) MT(B—(a+p))

Proof. We apply Lemma 1, so the general solution of the Caputo-Hadamard fractional
differential equation in (3) can be written as

x(t) = ]2*/3+"‘H(t) — )\]2*(’”5)35(1‘) — )tcojzf(‘”ﬁ)(l) — cOIZ*ﬁ(l) —c1 —clogt,
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that is,

X _ p2—pta _A-(@tp)y (logt)>F  A(logt)?~(@+p)
" ! = "= ( [3—p)  TG3—(a+p)

— 1 —cylogt, (6)

where ¢c; € R, i = 0,1,2, are arbitrary real constants.
Using these conditions, we immediately obtain

G = 0.
Cr = —A*,
On the other hand, we have
o = Ai ( PFRH(T) — AP~ @HB)x(T) + A* log T).
1

Finally, inserting the values of ¢¢, c; and c; in (6), we obtain (5). The proof is com-
pleted. O

3. Main Results

This section is concerned with the main results of the paper.
First of all, we fix our terminology. Let X be the Banach space, defined as follows:

X:={x € C(LR),D*x € C(I,R)},
endowed with the norm
[ x [[x=Ix llo + [| D*x [|eo,

where
[ xllo=sup|x(t)|, [ D" [l=sup|D%x(t)].
tel tel

In view of Lemma 4, we introduce the operator ¢ : X — X as follows:

_ t(logt—logs)l_ﬁ”‘ h(s) — ki fi(s,x(s), D*x(s)) 1ds
0 = [P ety ]

B /\/t (logt—logs)lf(“ﬂg)x s ds
/ r2—(a+p)) s

Ay (logt)?~ ﬁ ‘ (log T — logs)"~ pr [ h(li) ] i
- —k1 f1(s,x(s), D*x(s)) | —
(4 ) 1/ FR=B+a) | kfols x(s), x(s)) | °

As(log £)2F T (log T — logs)!— (@) Jds
- wn )2/ re—(a+p) s

1

- <A2 (logt)>~F + As(log t)zf(’”ﬁ)) i— log T+ A*logt.
1

For computational convenience, we set the following quantities:
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N, =

N =

(14 12| (og T)>P + | As| (log T)>~(+F))

(|k1]L1+]k2|Lp) (log T)Z*ﬂﬂé
I'(3—p+a)

(logT)2 (a+B)
Ay
1 Ly (log T2~

s IalrG-puog
+(|kq|L1 + [k2|L2) (19%3_)5) + O

© (Jka Ly +lka|La) (log T)> B |Aa|T(3—B) (log T)2~(@+) T(3—p+a)
T(3-) n TG (atp)) < | lalLaflog 2 pre
)\(logT)z’(z"‘*ﬁ) |A3]T(3 (oc+/5))(logT) (20+B) r(3— ,B-i-tx)
TGt B) + T(3—(2a+p)) Alog T)2~(+)

TR @)
(k1| Ly +]ko| L) (14] A2 | (log T) 2P +| A3 (log T)>~ (*F) ) (log T) 2P+«

FG-pra 2—(a+p)
) (log T)>~F+e
)(log T)%~ (2a+B) Ir3—p+a) |-

20+B))

—

=

N

—(
|A3|T(3—(a+
414 F(Sﬁ

/-\

Then, we take into account the following hypothesis:

(H1): There exist non-negative constants L1, Ly, such that for each t € I and for all
(x1,y1), (x2,92) € R?, we have:

it x1,y1) = filb x2,2))l < La(lxn — x2| + [y1 — v2l)-
lfa(t x1,y1) — fa(t,x2,2))| < La(lx1 — x2| + [y1 — y2l)-
(H2): The functions f1 : I x R> = R, f, : I x R> — R are continuous.

(H3): There exists non-negative constants Ej, E; and E3, such that for each t € I and all
X1, x> € R, we have:

|f1(t,x1,x2))| < E1, |[fa(t,x1,%2)] < Ep, |h(t)] < Es.

3.1. An Existence and Uniqueness Result in Banach Space

In this section, fixed-point theorems are applied to present an existence and uniqueness
result concerning Problem (3). First, the Banach contraction principle is applied to establish
the uniqueness result.

Theorem 2. Assume that (H1) and (H2) are valid. Assume also that
0< N1, (7)

where N := N7 + N».
Then, the problem (3) has a unique solution on 1.

Proof. We shall show that the above application ¢ is contractive. Therefore, we need to
proceed in steps A and B:
Step A: Let x,y € X; we then have:
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|9x(8) — py (1))

(1 B+ Q o
< suptelf%lkll |fils, x(s), D¥x(s)) = fi(s,y(s), D"y(s))| %
| Az (logt) 27ﬁ| (log T—logs)'~ fi(s, x(s)) | ds
+ suptg( —|—’A3(logt)2_("‘+'3)’ 1f r(2— /3+/x |‘ 1 s, y ) (S)) 3
+ suptgf%w [fals, x(s), JPx(5)) = fals,y(s), JPy(s)) | £
| Az(log t)>P| (log T—logs)!~P+* fa(s,x(s), JPx(s)) | as
! S“Pfﬂ( +astiog 20| ) { i el| 2R e ¢
+ suptemf—“gf fogs) = x(s) — y(s)
T oas)1—(€+B)
+ suptel(}/\z logt) )2 ﬁ'] + ‘A3 logt —(a+p) D)&f—lOgT lglirﬁ)) |x(s) —y(s)|%.
1
By assumption (H1), we obtain:
(logT)2 B+a
_ _ o Ji% W t) -
9x(0) =gy < il ¥ =y o + | D% = D' o) 1= s
g Ly 1A2llog TP (Ix=vll (log T)>~F*e
U 43| (log )2~ @) )% 4 || D*% — D |l 'T(3— B +a)
(logT)z_ﬁH‘
— Py — TP o/
Lol =y llo + 175 = 173 o) 13— 5

(log T)2—ﬁ+tx

|A2|(log T)>F )( %=yl
(a+p) I3—p+a)

"‘Z'LZ( TAs| (log T)2- P 7y e
(log T2~ (a+h)
IG— @i p)

- _a log T)2—(&+p)
A(18allog 2P + |Aal(log TR 9)) [y [l (0BT 5.

Alx =y e

Consequently, the inequality holds:
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lox =gyl < Jialla | x =y lx o
_ (a log T)?— A+
+ Vil (12l (10g T)2 P + Aallog T 1)) |1 x —y [ [E s
(logT)z—ﬁ-‘rtx
r3—p+a)

+ lkalLa (|2l (og T + |Asl1og T)-8)) | x — y | &

+ lkalla | x -y lx

(log T)? —(a+p)
- (a+p))

X (log T2~ (a+h)
+ A(|A2l(log T)* P + [ As| (log T~ (A ) || x VIx = w ey

([k1|L1+[k2| L2) (1+|A2| (log T)* P +|As| (log T)*~(*+F)) (log T)> P H*
I(3—p+u)

+ Alx—ylx

IN

Ix—yllx
1+]A2| (log T)2~F +| As| (log T)2~(*+F) ) (log T)2~(*+F)
T(3—(atp))
(Jkr |L1+|ka|Lp ) (log T)?~A+e

2l

(Lemlosi ) o Ix—y]
- +|As|(log T)?~ (@ FF) | log )P X
I(3—(a+p))

Therefore,

[px—¢ylle < Niflx—ylx.

Step B: Let x,y € X, we have:

/t logt logs )=k h(s) — ki fi(s,x(s), D*x(s)) |ds
—kofa(s, x(s), JPx(s)

D*¢x(t)

1
B )L/t logt logs )2 (2tp)-1 ds = A*(logt)'*
J —2a+p) s T TT2-a)

AT o) [ log T~ toge)! W[}i(ifl)ﬁ(s,x(s),mx(s))]ds

TG— (a+p)) J  T2-p+a) —kafa(s, x(s), JPx(s))

B A3F(3* (IX+‘B) logt —(2a+B) /T logT lOgS 1 B+ [ }i(]il)fl(s,x(s)/Dax( )) ]ds

I(3- (2a+p)) r2-pg+a)

—kofa(s, x(s), JPx

1

AT (3 — B)(log )2 (HB) | (log T — logs)' =P s
+ IrB—(a+p)) / 2 (a+B)) x(s)?
AsT(3— (a+ B))(logt)>(2x+p) r logT logs)! ~ P s
oA rd—(2a+p)) 1/ —(a+pB)) x(s)?
A* AT (3 — B)(log t)2~ («+F) A*AsT (3 — (a + B)) (log t) 2~ (2tp)
ATG-@+p) BT ATG-@erp) BT

Then,
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(|k1|L1 + [ko|Lo) (log T)*~F (log T)2~ (22+)

| D*¢x — Dy |l < [x—yllx+A

G- p) TG (arp) Yl
|A2T(3—B) (log T)2~(*+F) _
+ ( |kl|Ll : T'(3—(a+B)) (10gT)2 pra || x—y ||X
+|ka|La + |A3|T(3—(a+p)) (log T)2~(22+F) r3—pg+ua)
T(3—(2a+B))
|A2|T(3—B) (log T)2~(*+F) _
+ [ : I'(3— (v?-%ﬁ)) 2 (i) ]WIIX—yIX
|A3|T(3— (a+p)) (log T)2~ 22+ T'(3—
A ﬁ(zai;gs)) B-(a+p)
< N flx—ylx-
Thus,
| ([ky|Ly + [ka|Lp) (log T)2F A(log T)> (2a+)
19 _ 4 < _
|k1|Ly (log T)2—P*
gy hT
—(a+ og N _
" +|A3\r(3 (wiB)og e | X | TG I==vlx
- I(3—(20+p)) +M

ESCER0)
< Nflx—yix.

Therefore, the final result is given by:

| px—y [x< N[ x—y|x.

Consequently, by (7), ¢ is a contraction, and by applying Banach’s fixed point theorem,
Problem (3) has a unique solution. The proof is completed. [

Now, by applying the Krasnoselskii fixed-point theorem, we prove an existence result
for Problem (3).

Theorem 3. Assume that the hypotheses (H2) and (H3) are satisfied. Then, Problem (3) has at
least a solution on I, provided that 0 < N' < 1.

Proof. We verify that the assumptions of a Krasnoselskii fixed-point (Theorem 1) are
satisfied by the operator ¢.
First of all, we introduce the convex closed subspace B, € X defined by:

Be:={xeX:|x|x <r}

Then, we split the operator ¢ into the sum of two operators, ¢; and ¢», on the closed
ball 8B, as:

t
—(a+p)
_ —)\/ logt logs ()ds

x() —@+p)

T
(lo T logs)'~(#+F) ds
2—-B a+[3 8 g
+ (Az(logt) + A3 (logt)? /\1/ — W+ B) x(s) S

and
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t
o) = | (logt — logs)'~#** { (s) k1 fi(s,x(s), Dx(s)) } ds
S T2=pta) | —hfals,x(s) JPx(s)) s
T
B Ay logt )>F (log T — logs)' P }i(li) Dty ds
e o ) [ B | kUG x(s), D)
1 —kafa(s, x(s), JFx(s))
)28 ~(@+p)) A .
(Az logt)?> P 4+ As(logt)? ) ~ logT + A*logt.
1
The proof is divided into three steps.
First, we show that ¢1x + ¢y € B, Vx,y € B.. Then, we prove that the operator ¢»
is a contraction on 9B.. Finally, we show that ¢ is a compact operator.
1: FPorx,y € B, t € I, we can write:
|rx(£) + Pay (#)]
- (log t—logs)' P+ hls)
< SUp;¢; f% —ki fi(s,y(s), D%y(s)) | %
! —kafa(s,y(s), ]y (s))
_ h(s)
2—PB T o
(R e ) [ kA, DY) |4
Fhallogt) = ka5, (), 17y(5))
Az(log t)z_ﬁ T logT logs —(a+p) ds
t « 2-p
. (log t—logs)! ~(a+p) ds AZ(log t) *
/\lf B ¥ ey x(s)% +As(log £)2—@+H) logT+A log t|.
By (H3), we have:
[ (En+lki|Ef, +|ka|Ef)) (log T)2FHe ] s
ot gyl < (450 |l A +1aogT( ok +1)
L T(3—(a+p)) d
[ (Entlki|Ef, +[ka|Ep,) (log T)>PTe ]
Ir'(3—
= (1 + Sl)) % _|_/\r(log T)Z*((”‘*g)—i—a) +Cy,
L r(3—(a+p)) d

where S; = |A;|(log T)> P + | A3|(log T)?~(«+A).
Then, we have:



Mathematics 2022, 10, 3546 10 of 16

(log TP # (log T)HW]

D*x+ Dyl < (Bt il + llg) [ SED sy (BT

2—(2a+p) 2—(a+p)
oA [étog—Tzza Th) T gégj )(a )
+ |A*|[(;O(g2T))+SzlogT}
< 5 i+ ele) [ FEDG s R
- [ i e
yv};e;ztsz B R

(Entlki |Ef, +[ka|Ey, ) (log T)2 P2
+CG

I'(3—B+a
(1+51)) x [ +/\r(10gT)2*((“+g)+ )
I(3—(a+p))

o 2-B o 2—B+a
+(Eh+|k1|Efl+|k2|Ef2)[(lgT) +52(1gT) }

I'(3-p) I(3—p+a)
(log T)?—(2a+p) (log T)2—(a+P)
AT { G-y T Te-wp) | T
Then, we deduce that
lpx + ¢yllx <.

This implies that ¢1x + ¢y € B ,Vx,y € B..

2:  We will show that ¢, is a contraction on B.. Let x,y € B, with t € I. We have

1+ | Ag] (log T » pia
(ks + lalta) (L2085 D) ) o)

H4)2x_4)2y||°° < I‘(3—ﬁ+o<) Hx_]/HX'

On the other hand, we have:

(log T)>~F
I'(3—p)
k| Ly \Az\r(3(ﬂ)((10gT))) (@+h)
+
H Da(sz — Da¢2y HOO = ( +|k2|L2 |A5|T(3 (Z+§))(logT)2—(2a+ﬁ) || X—Yy HX .
+ T(3—(2a+f))

(log T)2 B+a
I'(3—pB+a)

Therefore, it yields that

!
[ $2x = oy [Ix< N | x —y |[x -
3:  We show that ¢ is a compact operator. To do this, we must show that ¢ is continuous
and relatively compact.

*  Since the functions f, ¢ and h are continuous (see (H2)), hence the operator ¢, is
also continuous; this proof is trivial and is omittedthus .
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We will prove that the operator ¢ is bounded.
Let x € B, Vt € I, we then have:

Ar(log T)?~(@+p)
||¢1(x)||°° < 1—~<3_ (DC+‘B))

(1 + |Az|(log T)Z_’3 + |As|(log T)z_("‘ﬂs)).
In the same way, we obtain:
Ar(log T)2~(2¢+p)
D% o <

Ar|Aa|T(3 — B)(log T)*~2(«+p)
(T3 —(2x+p)))? '

(1 + |Asz](log T)z_(“ﬂs))

We deduce that
[p1x]lx < +o0.

The operator ¢, is then bounded on B..
We will show that ¢; is equicontinuous.
Let ty,t, € I with t; < tp. Then, it yields

|p1x(t1) — P1x(f2)]

(log t—1 (a+p)

- ‘Af%Eﬁ%)xﬂf

T (@+p)
+ (Az(logtl)z ﬁ+/\3(10gt1 —(a+p) )AJ%X(S)%

1

fa 1-(at)
(log tp—logs) d

* M gy 0T

(a+p)
- (Az(logtz)Z*/3 + As(log tp) 2~ (#+P) ) f %x(s)% '

Hence,

| p1x(t1) — P1x(t2) oo

< W {(log tl)Z*(DanB) — (IOg t2)27(a+lg):|
L Mogmpn | [Aal ((og )2~ (+#) — (log 122 (+#))
T(2—a+p) +|As] ((log tl)Zf(Hﬁ) — (log tz)Z*(Wrﬁ))
Similarly,

H D“lex(tl) D“¢2x(t2) ||°°
Ar(14|As|(log T 2—(a+p) _ _
< 7’( ‘ré‘ (f g)) ) [(log t1)2 (2a+B) (log t2)2 (204—',-‘5)}

Ar|A2|T(3—B) (log T)2~ (@ +F) B )
+ 2(1"(37(2:x+?5)))2 [(logtl)Z (“+ﬁ)—(logt2)2 (,H,g)]'

The right-hand sides of the previous two inequalities are independent of x €
B, and tend to zero as t; — tp. Therefore, ¢; is an equi-continuous operator.
Therefore, according to the Arzela—Ascoli theorem, ¢; is compact.
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As a consequence of the previous steps and thanks to the Krasnoselskii fixed-point
theorem, we conclude that the operator ¢ admits at least one fixed point which is a
solution to the problem (3). Hence, Theorem 3 is proved.

O

3.2. Stability Results

Among the notions of stability, that of Ulam-Hyers has received great attention in
recent years (see [10,27-29] and references therein).

Now, we describe some stability results for (3).

Let € > 0 and consider the equation

D*(D* P+ AD%)x(t) + ky fu(t, x(t), D*x(t)) + kafa(t, x(t), JPx(t)) = h(t),

with
x(1) =0, le(wfﬁ)Da*ﬁx(l) =A*eR, x(T)=0,

and the following inequality
D¥(D*P 4+ AD")y () + k1 fi(t,y(8), D*y(D)) + kafalt,y(8), JPy()) —h(t)]| <e, tel ®)

Definition 3. The problem (3) is Ulam—Hyers stable if there exists a real number S > 0 such that
for each solution y € X to the previous inequality (8), there exists a solution x € X of the problem
(3) with

ly = xllx < Se.

Definition 4. The problem (3) is generalized Ulam—Hyers stable if there exists z € C(RT,R™T),
such that z(0) = 0 for any € > 0, and for each solution y € X to the inequality (9), there exists a
solution x € X of the problem (3) with

ly — xl[x < z(e)-
Now, we give the main results, which are Ulam-Hyers-stable results.
Theorem 4. The hypotheses of Theorem 2 holds. Then, the problem (3) has Ulam—Hyers stability.

Proof. Let e > 0, and suppose that y € X is a function that satisfies the previous inequality
related to the definition of stability:

y(t) = PP Hp ()] (1) + AP P [y (u)] (1)

+ (Az(logt)zflg + A3(10gt)2f(a+ﬁ))]27ﬁ+tx[H2(u)} (T) <ex ﬂ
—(Az(log )2=P + Az(log t)2~ (@B Y A T2~ (@4B) [y (1)](T) I3—p+a)
+(Az2(log )P + As(log t)2~(«+p) ﬁ—j logT — A*logt.

Thanks to Theorem 2, there is a unique solution x of Problem (3) given by:

x(t) = JEPTH ()] (8) = AT [x(u)] (1)
(Az(logt)z B+ As(logt)> Hﬁ) 2-BHa [ (u))(T)

T (Az(logt)2ﬁ+A3 log 1) Hﬁ)uz @+B) [ ()] (T)

— (Az(log £)>F 4+ Az(logt)>~(@+h) ) log T+ A* logt,

where Hy (1) = h(u) —kq fi(t,x(u), D*x(u)) — kofo(t, x(u), JPx(u)),
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and

Hy(u) = h(u) —ky fi(t,y(u), D%y (u)) = ko fa(t,y(u), JPy(u)) -

Hence, it follows that

ly () — x()]

2—pta

< ‘ € X plbt - PR ()] (1) — TP [y ()] (1)

— AP [y ()] (1) + AT @) [ (u)] (1)

ogt)> P
- ( +Alzil(cl>ggt§3(“+ﬁ) )fz_ﬁ T [Ha(w)](T)

ogt)2P
F o (avtopieon )L @ )
2-p
! A( +A/:E1((l)(;%)t2—(a+ﬂ) >f“"‘“” [y())(T)

ogt)> P
B /\( +A[;E1((1>g%f§g—(“+ﬁ) )12_(‘”5) [x(w)](T)

which implies

4

€

VYoo £ Zm——F——+Nilx—ylx.
=yl < gy Ml vls
By the same arguments, we find
€
D*x — D"yl < + Noflx —ylix,
H Yo < gzgy Nl -l

As a consequence, we have

v =vlx < | sy * rrmgy |+ Mx vl

Finally, we obtain

€ = Se.

1 1
”x - 3/|| < I(3—p+a) t r(3-p)
X = 1-N

Consequently, the solution of problem (3) is Ulam-Hyers stable. []

Remark 1. If we take z(€) = Se, we deduce that the solution to the considered problem is also
generalized Ulam—Hyers stable.

4. Example

We present the following example.

DY(D?F + o DV)x(t) + k(S5 + x(t) + D%x(8) ) + ko (2 + ghyx(t) + §7x (1))

= 2c0s(0.2t). ©)
x(1) =0, DI-(-PpFx(1) = -%,  x(T)=0, te[LT],
1 1 1 1
1099 P00 p=g A= M= se BTy T
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and
(tbxy) = sin(7tt) n ix n 1
e T T
9 1 1
folt,x,y) = ;+@x+§y.
h(t) = 2cos(0.2t).

Using the given data, we find that
L1 =0.2051, L, =0.1331, N; =0.0103, N, = 0.0157.
For all (x1,y1), (x2,12) € R%, t € I, we have:

0.2051|x1 — x2| + [y1 — v2|].
0.1331[|x1 — x2| + [y1 — y2|]-

|f1(t,x1,y1) — fi(t, x2,2)|
[fa(t, x1,y1) — fa(t, x2,2)|

It is clear that the Lipschitz constants are L; = 0.2051, L, = 0.1331.
Moreover, 0 < N = 0.0103 + 0.0157 = 0.0261 < 1.

Thus, all the conditions of Theorem 2 are satisfied; thus, Problem (9) has a unique
solution on I.

The graph of the solution x is displayed in Figure 1. Note that the solution has
been obtained here by a discretization method, which is a very effective tool to give semi-
analytical solutions for FDEs (see for details [30,31]).

<
<

x 10°
15 T T

—exact Sal
Numnerical Sol

Bl -

MAMMM L

18 2400 2600 2800 3000 3200

Figure 1. The graphical presentation of the approximate solution x of (9) and the exact solution.

5. Discussion

In this work, we proposed to study a non-linear sequential fractional problem asso-
ciated with the (VdPL)-jerk equation. This problem is inspired by physics when we fall
into the classical case. Then, we practically touched the analytical side, i.e., the analytical
solvency (existence, uniqueness and stability of the solutions) for our problem according to
the Caputo-Hadamard approach, using the Banach contraction principle, Krasnoselskii
fixed-point theorem and Ulam-Hyers stabilities. An example was presented to illustrate
the effectiveness of the results.

An interesting direction for future research of course would be to consider the numeri-
cal side and applications and try to use the theory of approximations to validate the results,
which have already been treated analytically in this work as well as others.
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