
Citation: Berghout, T.; Bentrcia, T.;

Ferrag, M.A.; Benbouzid, M. A

Heterogeneous Federated Transfer

Learning Approach with Extreme

Aggregation and Speed. Mathematics

2022, 10, 3528. https://doi.org/

10.3390/math10193528

Academic Editor: Antanas Cenys

Received: 4 September 2022

Accepted: 24 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Heterogeneous Federated Transfer Learning Approach with
Extreme Aggregation and Speed
Tarek Berghout 1 , Toufik Bentrcia 1, Mohamed Amine Ferrag 2,* and Mohamed Benbouzid 3,4

1 Laboratory of Automation and Manufacturing Engineering, University of Batna 2, Batna 05000, Algeria
2 Department of Computer Science, University of Guelma, Guelma 24000, Algeria
3 Institut de Recherche Dupuy de Lôme (UMR CNRS 6027), University of Brest, 29238 Brest, France
4 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
* Correspondence: ferrag.mohamedamine@univ-guelma.dz

Abstract: Federated learning (FL) is a data-privacy-preserving, decentralized process that allows local
edge devices of smart infrastructures to train a collaborative model independently while keeping data
localized. FL algorithms, encompassing a well-structured average of the training parameters (e.g., the
weights and biases resulting from training-based stochastic gradient descent variants), are subject to
many challenges, namely expensive communication, systems heterogeneity, statistical heterogeneity,
and privacy concerns. In this context, our paper targets the four aforementioned challenges while
focusing on reducing communication and computational costs by involving recursive least squares
(RLS) training rules. Accordingly, to the best of our knowledge, this is the first time that the RLS
algorithm is modified to completely accommodate non-independent and identically distributed
data (non-IID) for federated transfer learning (FTL). Furthermore, this paper also introduces a
newly generated dataset capable of emulating such real conditions and of making data investigation
available on ordinary commercial computers with quad-core microprocessors and less need for
higher computing hardware. Applications of FTL-RLS on the generated data under different levels of
complexity closely related to different levels of cardinality lead to a variety of conclusions supporting
its performance for future uses.

Keywords: federated learning; federated transfer learning; heterogeneous systems; non identical
independent data; recursive least squares

MSC: 93E24

1. Introduction

Federated learning (FL) is the process of aggregating a set of machine learning (ML)
models related to a specific set of remote sensors or isolated data centers while keeping
data as private as possible [1]. FL faces many challenges related to expensive communica-
tions, systems heterogeneity, statistical heterogeneity, and privacy concerns, respectively.
Dealing with such a situation requires a fundamental departure from traditional cen-
tralized/decentralized ML toward distributed optimization and privacy preservation [2].
When considering data partitioning as the main criterion of FL models classification, FL can
then be classified into three main categories, specifically, horizontal, vertical, and federated
transfer learning (FTL) [3]. As a result, the evolution of FL procedures while aggregating lo-
cal models mainly focuses on these challenges. This gives rise to many types of algorithms
derived from variants of stochastic gradient descent such as federated averaging (FedAvg)
and federated stochastic variance reduced gradient (FSVRG) [4]. These models were also
designed to solve model synchronization problems when transferring local models for
global updates.

In this context, many algorithms have been published recently. For example in the
context of targeting expensive communication problems, the authors in [5] succeeded

Mathematics 2022, 10, 3528. https://doi.org/10.3390/math10193528 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193528
https://doi.org/10.3390/math10193528
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4877-4200
https://orcid.org/0000-0002-0632-3172
https://orcid.org/0000-0002-4844-508X
https://doi.org/10.3390/math10193528
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193528?type=check_update&version=1

Mathematics 2022, 10, 3528 2 of 16

in developing a deep learning (DL) communication compression scheme for large-scale
data applicable to decentralized training without data sharing. Their study shows that
the proposed method applies to both IID and non-IID data. They developed a consensus
algorithm to adapt the training of the global model to a heavy communication load and
to avoid communication-blocking problems caused by some algorithms such as FedAvg
or FSVRG. For evaluation purposes, the MNIST [6] handwritten digital image dataset
was adopted in this case where the algorithm shows superior performance. In [7], the
authors managed to overcome FL communication and privacy issues resulting from limited
network bandwidth and advanced privacy attacks by developing an effective privacy
preservation and communication scheme. Their main contributions to expansive com-
munication problems have been the introduction of bi-directional compression, where
computationless compression operators are used to quantify gradients on both global
and local model sides. Two real-world datasets, namely the MNIST [6] and a dataset
created from the comprehensive work of Shakespeare [8], are involved in assessing the
accuracy of the learning process. To overcome the higher level of communication resource
consumption caused by FL decentralized learning paradigms as well as privacy issues,
a new compression algorithm based on sparse coding for efficient communication, with
additive holomorphic encryption with a differential privacy to prevent data leakage, is
proposed in [9]. The compression philosophy has led to both effective communication
and the preservation of privacy. Experimental evaluation on the MNIST [6] dataset has
demonstrated that the proposed algorithm outperforms basic FL approaches including
algorithms such as FedAvg and Paillier-encryption-based privacy-preserving deep learning
(PPDL) on many criteria while exhibiting good convergence features.

Under circumstances of system heterogeneity, sets of successful recent FL works
are chosen as examples with the aim of circumventing its problems. In [10], an asyn-
chronous FL scheme has been constructed to solve the problems of local learning models in
terms of device heterogeneity and unstable communication. Thus, an iterative selection
algorithm is adopted to efficiently manage the learning tasks by taking into account the
non-synchronization of the delivered messages. Many experiments on IID and non-IID dis-
tributions obtained from several datasets, namely the MNIST dataset [6], fashion-MNIST
dataset [11] and EMNIST dataset [12], have revealed the effectiveness of the proposed
scheme. In [13], the authors investigated the use of hierarchical FL in heterogeneous sys-
tems by introducing an optimized solution for user assignment and resource allocation. In
their work, they paid more attention to variants based on gradient descent while taking
into account the imbalanced data between different users. Their training methodology
is tested on two real-world datasets, namely the Heartbeat dataset [14] and the Seizure
dataset [15], and shows that it outperforms existing FL methods. In [16], a semi-supervised
FL framework was proposed for heterogeneous transfer learning to take advantage of
unlabeled non-overlapping samples and to help reduce overfitting due to insufficient
overlapping training samples. Through extensive experiments based on the IMDB [17],
Handwritten [18] and ALLAML [19] datasets, the designed scheme showcased significant
advantages over state-of-the-art approaches.

Concerning statistical heterogeneity, recent FL works are focusing on learning global
models under non-IID. This is can be justified by the non-identically used devices for
different tasks, e.g., mobile phone users around the globe use different languages making,
for instance, text/speech recognition a difficult task. In [20], a FL learning approach that
deals with this issue is introduced. Similarity between clients in the context of retrieved
data distribution is used to model their relationships. This methodology, however, attempts
to determine this relationship without accessing the data, which violate privacy concerns
in FL. In this context, a similarity-based algorithm (FedSim) was introduced to decompose
model aggregation into local and global steps. Within this framework, clients with similar
gradients are considered for the aggregation process, while later they can be globally aggre-
gated to provide better coverage jointly with the reduction of gradient variance. Using real
world datasets including MNIST [6], Fed-MEx [21], and Fed-Goodreads [22], and compared

Mathematics 2022, 10, 3528 3 of 16

to well-known FL algorithms, such as FedAvg and FedProx, FedSim emphasizes the signifi-
cance of these contributions. In [23], the authors proposed training in heterogeneous model
aggregation (MHAT) to be able to solve local model problems containing various network
architectures. Accordingly, model aggregation was achieved by exploiting knowledge dis-
tillation (KD) techniques for information extraction and update while training an auxiliary
model. Various experiments on the MNIST dataset [1] have confirmed the effectiveness of
the proposed scheme. In [24], the authors proposed a mobile application startup prediction
model based on FL under heterogeneous network integration, which solves the cold-start
problem of new users or new applications while ensuring user privacy. Experiments were
done on a LiveLab dataset while their application showed promising performance.

Regarding privacy concerns, an FL approach is proposed in [25] to solve the cold-start
problem of elements in recommender systems. The work contemplates proposing a trust-
based mechanism for potential recommenders. Extensive reinforcement learning planning
was used to select the best candidates. Experiments on MovieLens [26] and Epinions [27]
datasets have highlighted the trainability of the model both in terms of accuracy and
computation time. In [28], a privacy-preserving FL and non-interactive gradient descent
(VANE) were proposed, while the aggregation process can be performed without disclosing
private information or any interaction between clients. Performance evaluation results on
multiple real-world datasets demonstrated that the performances of VANE is at a higher
level of speed: approximately 103 times faster than existing schemes. The authors in [29]
introduced a privacy-preserving FL with DL processes based on the trusted execution
environment (TEE). Using datasets such as the MNIST dataset [6], model performance
evaluation results highlighted that the schema is practical and ensures training integrity.
For recapitulation, Table 1 is introduced to summarize the above-cited works in a clear and
effective way by presenting the used datasets besides the main contributions to solve each
of the four FL challenges.

Results of the literature review provided in Table 1 lead to important conclusions:

1. In terms of FL challenges and more specifically “expansive commutation” related
to the number of transmitted messages and the size of the transmitted information
of the training models, these models follow different lossy compression schemes to
reduce the size of the model architecture in terms of the number of bits. However,
these models, being DL networks, have a serious disadvantage of being large models
with multiple parameters;

2. As these models are trained with gradient descent algorithms which are iterative
algorithms and are subject to a higher level of computational costs during training, the
training process will be very expansive and time consuming when it acts to rebuild
the feature map, and will also take time when it comes to aggregation;

3. In terms of “system heterogeneity”, another disadvantage of the FL algorithm is that
when it comes to model aggregation based on averaging methods, the averaging rules
do not take into account that the resulting weights associated with different data can
have different scales. In this context, the result will end up in favor of the edge model
that has the largest scale;

4. Generally speaking, in terms of “statistical heterogeneity”, the discussed models
follow aggregations of DL networks that share the same architectures. This requires,
in case of classification, for example, that the number of output neurons must be
the same. This means that we should have the same number of classes in this case.
However, in real applications, peripheral devices can be used to monitor a different
number of classes with different types depending on the purpose of the monitoring
process. At this point, we cannot deny the fact that similar deep network architectures
will not handle the actual application of non-IID data in terms of class count.

5. In the context of “privacy concerns”, these models have adopted several encryption
techniques to protect the privacy of the models and efficiently remedy cyber threats.

6. There is a big issue concerning data selection when validating these learning models.
The MNIST dataset, which is generally designed for the purpose of image recognition

Mathematics 2022, 10, 3528 4 of 16

and not specifically intended for FL, is widely used in these studies. This is truly a
problem that makes results obtained in this work not fully supported by the obtained
conclusions in terms of real application. Therefore, to meter the splitting process
followed in this case the model will not address issues of FL related to both statistical
and system heterogeneity.

Table 1. Recent FL works introduced in the literature.

FL Challenges Ref Dataset Algorithm Main Contributions in FL Besides Model Aggregation

Expensive
communication

[5] MNIST [6]

FedAvg
variants

Using consensus algorithm to make the training of the global
model able to adapt to: (i) a heavy communication load and (ii)
to avoid communication blocking problems that can be caused
by standard FL algorithms such as FedAvg or FSVRG

[7]
MNIST [6] and
comprehensive work of
William Shakespeare [8]

Using a bi-directional compression where computationless
compression operators are employed to quantify gradients on
both global and local model frameworks

[9] MNIST [6]
Using a sparse coding algorithm for efficient communication
with additive holomorphic encryption including a differential
privacy to prevent data leakage

Systems
heterogeneity

[10]
MNIST dataset [6],
fashion-MNIST dataset
[11], and EMNIST
dataset [12]

Using an iterative node selection algorithm for efficient
management of the FL learning tasks by taking into account the
non-synchronization of the delivered messages

[13] Heartbeat dataset [14] and
the Seizure dataset [15]

Using hierarchical FL in heterogeneous systems by introducing
an optimized solution for user assignment and resource
allocation by paying attention to variants based on gradient
descent while taking unbalanced data into account

[16]
IMDB [17], Handwritten
[18] and ALLAML [19]
datasets

Using a semi-supervised FL for heterogeneous transfer learning
to take advantage of unlabeled non-overlapping samples and to
help reduce overfitting

Statistical
heterogeneity

[20] MNIST [6], Fed-MEx [21],
and Fed-Goodreads [22]

Using similarity between clients to model their relationships by
involving clients similar gradients to provide better coverage

[23] MNIST dataset [6]
Using MHAT for local model problems containing various
network architectures while KD techniques are investigated for
information extraction and global model update

[24] LiveLab dataset Using a mobile application startup prediction model based on FL

Privacy
concerns

[25] MovieLens [26] and
Epinions [27] datasets

Using a trust-based mechanism and extensive reinforcement
learning for potential recommender planning and candidate
selection.

[28] / Using VANE to perform aggregation without disclosing private
information without any interaction between clients

[29] MNIST dataset [6] Using a privacy-preserving FL with DL processes based on the
trusted execution environment (TEE)

In this context, our goal in this work is to focus on the first three elements related to
FL challenges and to pursue improvements of the FL learning mechanism. Accordingly,
our contributions are listed as follows:

1. Federated networks include a massive number of devices (i.e., millions). This situa-
tion definitely slows down communication due to limited resources like bandwidth,
energy, and power. As a result, communication methods must iteratively send small
messages or model updates as part of the training process, reducing both the number
of communications and the size of the messages transmitted each round (see [1],
page 52, section “expansive communication”). To overcome the problem of large
packets of messages transmission (i.e., expansive communication), the recursive least
squares (RLS) method is involved in this work. RLS offers a fast and accurate small
scale-based linear programming allowing both the approximation and generalization
depending only on a single matrix of weights and not the multiple weighting and
nonlinear abstraction processes as with deep networks.

Mathematics 2022, 10, 3528 5 of 16

2. RLS depends on the Sherman-Morison-Woodbury (SMW) demonstration to perform
anon-iterative model updates requiring very small computational resources compared
to gradient decent algorithms.

3. To solve the problem related to weight scales (i.e., statistical heterogeneity), a specific
weight scaling and rescaling process has been involved before and after collabora-
tive training.

4. To overcome the problem related to model architecture (i.e., system heterogeneity), a
specific mapping process in a sort of feature encoding is designed to unify weights
matrix sizes before the collaborative training process.

5. To circumvent the problem of providing more-appropriate data, a specific dataset
is generated in this context, addressing all above FL issues in an attempt to provide
coherent conclusions.

6. Due to the algorithmic simplicity of the FTR-RLS method and characteristics of the
generated dataset, simulations conduction is feasible on ordinary available commercial
computers with quad-core microprocessors without any need for higher computing
environments.

7. To overcome the problem related to the privacy of the FL model itself (i.e., privacy
concerns) FTR-RLS involves a weights encoding process through transpose matrix
design as a sort of encryption. This leads to the addition of some difficulty/delay in
extracting information from real learning weights through attack experiments.

This paper is organized as follows. Section 2 introduces the generated dataset and
the FTR-RLS methods main learning rules. Section 3 provides the results and the discus-
sion of the obtained findings. Section 4 concludes this paper and suggests some future
work guidelines.

2. Materials and Methods

This section is dedicated to introducing the dataset and the proposed algorithm used.

2.1. Dataset Generation

Data availability, complexity and drift are the main characteristics on which the
reconstruction process of the machine learning model is based [30], especially when it comes
to FL, where data from different clients could be completely independent of each other
with respect to the above three characteristics of model selection as well as volume, velocity
and variety, known as the 3V of data [31]. In this context, we are aware of the existence of a
large number of data generated from real scenarios or simulation models [30,32]. However,
it should be mentioned that these FL datasets are usually massive with multiple numbers
of clients requiring large computation resources, GPUs, and CPUs with multiple cores
limiting hence its exploration. From this perspective, our goal is to provide a standard
dataset that can be used to test FL algorithms for both small-scale machine learning and DL
in addition to addressing FL challenges in a real application. Therefore, one of our primary
concerns when generating data is to ensure that data analysis and model reconstruction can
be performed on available commercial computers. The dataset is therefore designed to be
applied to four clients, which means that it will scale well with quad-core microprocessors.

In this work, the non-IID is collected as a 2D numerical feature space generated
for classification purposes through the data engine provided in [33]. Thus, samples are
delivered as pseudo-parallel lines mainly generated according to some specific parameters
of normal distribution, which have been introduced in Table 2. Since our primary goal is to
provide a non-IID that can address decentralized federated learning challenges as in real
applications (i.e., expensive communication, systems heterogeneity, statistical heterogeneity,
and privacy concerns), the following tasks are considered.

1. To emulate real conditions of data complexity related to statistical heterogeneity,
dx and dy are used as the main parameters to generate a different version of data
complexity levels in terms of cardinality. This process was also adopted to make

Mathematics 2022, 10, 3528 6 of 16

sure that data will be applicable for both conventional small-scale machine learning
algorithms and DL.

2. To respond to a real problem of systems heterogeneity, the generated dataset contains
four levels of complexity: S01, S02, S03 and S04. At each level, four subsets are gener-
ated independently for four particular clients, C01, C02, C03 and C04. The subsets
generated for each client are independent of each other in terms of distributions,
observation scales, class numbers and class proportions.

Table 2. Main parameter description of dataset generator.

Parameter Description
µθ Mean of the radians of clusters which are originally drawn from a normal distribution
δθ Standard deviation of cluster angle
lc Number of clusters
dx Average distance between classes centers within X axis
dy Average distance between classes centers within Y axis
µl Mean of length of which originally are drawn from normal distribution
δl Standard deviation of clusters lengths
δ f Clusters fatness which is the standard deviation of the distance between each point and the projection line
N Number of observations in the generated data

It is worth mentioning that while generating data, only two FL challenges are consid-
ered, i.e., statistical heterogeneity and systems heterogeneity, while the other two challenges,
i.e., expensive communication and privacy concerns, should be resolved during the model
construction process. Additionally, the random seed engine has been given default settings
to ensure that the data versions in terms of complexity share some information about the
feature space, as shown in Table 3. Table 3 is dedicated to the presentation of the main
characteristics of the dataset.

Table 3. Tuned parameters for dataset generation.

Client→ C01 C02

Subset↓ µθ δθ lc dx dy µl δl δ f N µθ δθ lc dx dy µl δl δ f N
S01 π/2 π/2 2 30 30 2 2 10 1000 π/2 π/2 3 30 30 2 2 10 1000
S02 π/2 π/2 2 20 20 2 2 10 1000 π/2 π/2 3 20 20 2 2 10 1000
S03 π/2 π/2 2 10 10 2 2 10 1000 π/2 π/2 3 10 10 2 2 10 1000
S04 π/2 π/2 2 0 0 2 2 10 1000 π/2 π/2 3 0 0 2 2 10 1000

Client→ C03 C04

Subset↓ µθ δθ lc dx dy µl δl δ f N µθ δθ lc dx dy µl δl δ f N
S01 π/2 π/2 4 30 30 2 2 10 1000 π/2 π/2 5 30 30 2 2 10 1000
S02 π/2 π/2 4 20 20 2 2 10 1000 π/2 π/2 5 20 20 2 2 10 1000
S03 π/2 π/2 4 10 10 2 2 10 1000 π/2 π/2 5 10 10 2 2 10 1000
S04 π/2 π/2 4 0 0 2 2 10 1000 π/2 π/2 5 0 0 2 2 10 1000

For better illustration of data characteristics, including complexity levels (i.e., S01–S04),
subsets of clients (i.e., C01–C04), number of classes (i.e., 2–5) and their distributions, data
visualization through scatter plots is given in Figure 1. It can be seen that centers of data
classes have different coordinates and different sparsity levels for each client where all
samples are in the range [0, 1]. Moreover, at each complexity level, we perceive close
distances resulting in the higher cardinality at each level.

Mathematics 2022, 10, 3528 7 of 16

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 16

data visualization through scatter plots is given in Figure 1. It can be seen that centers of
data classes have different coordinates and different sparsity levels for each client where
all samples are in the range [0, 1]. Moreover, at each complexity level, we perceive close
distances resulting in the higher cardinality at each level.

Figure 1. Illustration of dataset scatters: (a–d) Data scatters of S01 for C01,C02, C03, C04; (e–h) Data
scatters of S02 for C01,C02, C03, C04; (i–l) Data scatters of S03 for C01,C02, C03, C04; (m–p) Data
scatters of S04 for C01,C02, C03, C04.

2.2. Federated Transfer Learning Recursive Least Squares
FTL-RLS rules are inspired by basic RLS methods [34]. Accordingly, this subsection

is devoted to the introduction of the FTL-RLS passing through ordinary LS. RLS typically
processes data that arrive in sequences over time as model updates are needed. An RLS
model could be trained in two main phases, namely the initial phase and the recursive
learning phase [34]. In the initial phase, the model requires a feature map of an initial
mini-batch of input data 𝑥௠ and corresponding targets 𝑦௠ , where 𝑚 represents the

0 1 2
Input 1

(a)

0

0.5

1
Class 1
Class 2

0 1 2
Input 1

(b)

0

0.5

1
Class 1
Class 2
Class 3

0 1 2
Input 1

(c)

0

0.5

1
Class 1
Class 2
Class 3
Class 4

0 1 2
Input 1

(d)

0

0.5

1
Class 1
Class 2
Class 3
Class 4
Class 5

0 0.5 1
Input 1

(e)

0

0.5

1

0 0.5 1
Input 1

(f)

0

0.5

1

0 0.5 1
Input 1

(g)

0

0.5

1

0 0.5 1
Input 1

(h)

0

0.5

1

0 0.5 1
Input 1

(i)

0

0.5

1

0 0.5 1
Input 1

(j)

0

0.5

1

0 0.5 1
Input 1

(k)

0

0.5

1

0 0.5 1
Input 1

(l)

0

0.5

1

0 0.5 1
Input 1

(m)

0

0.5

1

0 0.5 1
Input 1

(n)

0

0.5

1

0 0.5 1
Input 1

(o)

0

0.5

1

0 0.5 1
Input 1

(p)

0

0.5

1

Figure 1. Illustration of dataset scatters: (a–d) Data scatters of S01 for C01,C02, C03, C04; (e–h) Data
scatters of S02 for C01,C02, C03, C04; (i–l) Data scatters of S03 for C01,C02, C03, C04; (m–p) Data
scatters of S04 for C01,C02, C03, C04.

2.2. Federated Transfer Learning Recursive Least Squares

FTL-RLS rules are inspired by basic RLS methods [34]. Accordingly, this subsection
is devoted to the introduction of the FTL-RLS passing through ordinary LS. RLS typically
processes data that arrive in sequences over time as model updates are needed. An RLS
model could be trained in two main phases, namely the initial phase and the recursive
learning phase [34]. In the initial phase, the model requires a feature map of an initial
mini-batch of input data xm and corresponding targets ym, where m represents the index of
the training mini-batch (m← 1 in the initial phase). As a result, training weights of RLS
will be determined using the covariance matrix of feature maps Pm as in (1), the inverse of
ϕ (xm), and ym as in (2).

Pm = [ϕ(xm)·ϕ(xm)
T]
−1

(1)

Mathematics 2022, 10, 3528 8 of 16

Wm = Pm·ϕ(xm)
−1·ym (2)

In the sequential phase, while m← m + 1 : mmax the model update will be done
using SMW formula which leads to equations (4) to (6). K is a gain matrix and ξ is the
prediction error.

Km+1 = Pm·ϕ(xm+1)/(ϕ(xm+1)
T ·Pm·ϕ(xm+1)

T) (3)

Pm+1 = Pm·ϕ(xm+1)
T Pm (4)

ξm+1 = ym+1 − ϕ(xm+1)
TWm (5)

Wm+1 = Wm+1 − Pm+1 ϕ(xm+1)
Tξm+1 (6)

RLS can be simply presented as in Algorithm 1.

Algorithm 1. RLS algorithm.

Inputs: xm, xm+1, ym, ym+1, m, mmax
Outputs: Wmmax
% Initialization: m← 1
Pm = [ϕ(xm)·ϕ(xm)

T]
−1

;
Wm = Pm·ϕ(xm)

−1·ym;
% Recursive learning phase
For m← 2 : mmax
Km+1 = Pm·ϕ(xm+1)/(ϕ(xm+1)

T ·Pm·ϕ(xm+1)
T);

Pm+1 = Pm·ϕ(xm+1)
T Pm;

ξm+1 = ym+1 − ϕ(xm+1)
TWm;

Wm+1 = Wm+1 − Pm+1 ϕ(xm+1)
Tξm+1;

End (For)

FTL-RLS, which is presented in the flow diagram of Figure 2, follows a similar weight
initialization mechanism. However, this time the model is designed for each client i = 1 : n
for several FL rounds round k← 1 : kmax when sent to FL updates center.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 16

, (1)k mx (1)()mxϕ (1) (1) ,()m m k my x W= ϕ (1)my

(2)mx (2)()mxϕ (2) (2) ,()m m k my x W= ϕ (2)my

()m nx ()()m nxϕ () () ,()m n m n k my x W= ϕ ()m ny

Input mini-batches
for the kth round

Feature
mapps

Training
process

Tr
ai

ni
ng

 o
f t

he
 lo

ca
l R

LS
 m

od
el

s

• Weights encoding for unifying matrices
dimensions and preserving privacy as a kind of
encryption

• Weights normalization to avoided scaling
problems

• Weights sharing through averaging
• Weights decoding
• Weights denormalization

Building a global RLS model through weights
sharing process

Collect RLS learning
weights for aggregation

FTL-RLS

Figure 2. Flow diagram of the proposed FTL-RLS.

The weight sharing process described by the last block of Figure 2 dictates the neces-
sary steps for improving the generalization of the model without data sharing (keeping
data private). This means that only local model training parameters will be collected in a
distributed parallel computing pool and merged to achieve better performance through
transfer learning between different models.

In this context, the initialization phase of FTR-RLS is computed as illustrated by (7)
and (8) for 𝑘 = 1. 𝑃௞,௠(௜) = [𝜑௜(𝑥௠). 𝜑௜(𝑥௠)்]ିଵ (7)𝑊௞,௠(௜) = 𝑃௞,௠(௜). 𝜑௜(𝑥௠)ିଵ. 𝑦௠(௜) (8)

After that, the recursive learning phase for the same round, clients, and coming mini-
batches can be done using Equations (9) to (12). 𝐾௞,௠ାଵ(௜) = 𝑃௞,௠(௜). 𝜑௜(𝑥௠ାଵ) (𝜑௜(𝑥௠ାଵ)்⁄ . 𝑃௞,௠(௜). 𝜑௜(𝑥௠ାଵ)்) (9)𝑃௞,௠ାଵ(௜) = 𝑃௞,௠(௜). 𝜑௜(𝑥௠ାଵ)்𝑃௞,௠(௜) (10)𝜉௞,௠ାଵ(௜) = 𝑦௞,௠ାଵ(௜) − 𝜑௜(𝑥௠ାଵ)்𝑊௞,௠(௜) (11)𝑊௞,௠ାଵ(௜) = 𝑊௞,௠ାଵ(௜) − 𝑃௞,௠ାଵ(௜)𝜑௜(𝑥௠ାଵ)்𝜉௞,௠ାଵ(௜) (12)

After several model updates, the model will be required to send to a further central
training process without data sharing for different rounds 𝑘 ← 𝑘 + 1: 𝑘௠௔௫ . Thus, our
proposition to model updates will be as follows. Normally, due to the different number
of features in data delivered for each client, the learning weights of the FTL-RLS will be
different in terms of matrix size. In this case, we need to follow certain procedures in order
to make sure that they are transformed into the global updates center with a unique size.
Accordingly, we should make sure that the feature maps hold the same mapping param-
eters which at least will lead to unify one side of the weight matrices. Second, an encoding
based transpose such as the weights matrices in (13) will make all of them share the same
sizes. 𝐶 is a superscript referring to encoded weights. 𝑊௞,௠ାଵ(௜)஼ = 𝑊௞,௠ାଵ(௜)·𝑊௞,௠ାଵ(௜) ் (13)

Figure 2. Flow diagram of the proposed FTL-RLS.

The weight sharing process described by the last block of Figure 2 dictates the neces-
sary steps for improving the generalization of the model without data sharing (keeping
data private). This means that only local model training parameters will be collected in a
distributed parallel computing pool and merged to achieve better performance through
transfer learning between different models.

Mathematics 2022, 10, 3528 9 of 16

In this context, the initialization phase of FTR-RLS is computed as illustrated by (7)
and (8) for k = 1.

Pk,m(i) = [ϕi(xm)·ϕi(xm)
T]
−1

(7)

Wk,m(i) = Pk,m(i)·ϕi(xm)
−1·ym(i) (8)

After that, the recursive learning phase for the same round, clients, and coming
mini-batches can be done using Equations (9) to (12).

Kk,m+1(i) = Pk,m(i)·ϕi(xm+1)/(ϕi(xm+1)
T ·Pk,m(i)·ϕi(xm+1)

T) (9)

Pk,m+1(i) = Pk,m(i)·ϕi(xm+1)
T Pk,m(i) (10)

ξk,m+1(i) = yk,m+1(i) − ϕi(xm+1)
TWk,m(i) (11)

Wk,m+1(i) = Wk,m+1(i) − Pk,m+1(i)ϕi(xm+1)
Tξk,m+1(i) (12)

After several model updates, the model will be required to send to a further central
training process without data sharing for different rounds k← k + 1 : kmax . Thus, our
proposition to model updates will be as follows. Normally, due to the different number
of features in data delivered for each client, the learning weights of the FTL-RLS will be
different in terms of matrix size. In this case, we need to follow certain procedures in
order to make sure that they are transformed into the global updates center with a unique
size. Accordingly, we should make sure that the feature maps hold the same mapping
parameters which at least will lead to unify one side of the weight matrices. Second, an
encoding based transpose such as the weights matrices in (13) will make all of them share
the same sizes. C is a superscript referring to encoded weights.

WC
k,m+1(i) = Wk,m+1(i)·WT

k,m+1(i) (13)

After that, another problem of non-IID related to weights scales could occur in this
case, yielding the training process to end up in favor of the weights with large scales. For
this reason, our contribution in this context is to normalize the learning weights using the
standard deviation δk,m+1(i) and the mean values µk,m+1(i) of each matrix of weights as in
(14). N is a superscript referring to normalized encoded weights.

WN
k,m+1(i) =

WC
k,m+1(i) − µk,m+1(i)

δk,m+1(i)
(14)

when weights aggregation is done at the central server as addressed in (15), a denormal-
ization and decoding processes is required as provided in (16) and (17), respectively. It
should be mentioned that in our work we consider that the inverse of a matrix indicated by
superscript (−1) is defined as the pseudo inverse method as default.

WG,k =
n

∑
i=1

WN
k,m+1(i) (15)

WDn
k,m+1(i) =

WG·δk(i)

µk(i)
(16)

Wk,m+1(i) = WDc
k,m+1(i)·

(
WT

k,m(i)

)−1
(17)

To make sure that FTR-RLS rules are clearly presented, Algorithm 2 is introduced to
elucidate its main steps as well the main difference between FTL-RLS and ordinary RLS.

Mathematics 2022, 10, 3528 10 of 16

Algorithm 2. FTL-RLS algorithm.

Inputs: xm, xm+1, ym, ym+1, m, n, kmax , mmax
Outputs: Wk,mmax(i)
For k = 1 : kmax
% Initialization: m← 1
% Activate parallel computing pool for i = [1 : n] clients for local training

If k← 1
Pk,m(i) = [ϕi(xm)·ϕi(xm)

T]
−1

;

Wk,m(i) = Pk,m(i)·ϕi(xm)
−1·ym;

End (If)
% Recursive learning phase

For m← 2 : mmax
Kk,m+1(i) = Pk,m(i)·ϕi(xm+1)/(ϕi(xm+1)

T ·Pk,m(i)·ϕi(xm+1)
T);

Pk,m+1(i) = Pk,m(i)·ϕi(xm+1)
T Pk,m(i);

ξk,m+1(i) = yk,m+1(i) − ϕi(xm+1)
TWk,m(i);

Wk,m+1(i) = Wk,m+1(i) − Pk,m+1(i)ϕi(xm+1)
Tξk,m+1(i);

% Encoding with the transpose
WC

k,m+1(i) = Wk,m+1(i)·W T
k,m+1(i);

End (For)
% Start federated training process
% Normalization of weights matrices

WN
k,m+1(i) =

WC
k,m+1(i)−µk,m+1(i)

δk,m+1(i)
;

% Deactivate parallel computing pool and work on normal CPU mode
% Initiate collaborative training(aggregation)
WG,k = ∑n

i=1 WN
k,m+1(i);

% Activate parallel computing pool for i = [1 : n] clients weights processing
% Demoralization of weights matrices

WDn
k,m+1(i) =

WG ·δk(i)
µk(i)

;

% Decode with inverse of the transpose and model update weights
Wk,m+1(i) = WDc

k,m+1(i)·(W
T

k,m(i))
−1;

% Deactivate parallel computing pool and work on CPU mode
End (For)

3. Results and Discussion

During our experiments, the evaluation of FTL-RLS is carried out under well-defined
circumstances. Computational resources involve a personal computer (PC) with an i7
microprocessor, 16 GB of RAM, and a 12 MB cache of RAM, while MATLAB r2018b was
involved in parallel computing simulations. The data have been divided into training
and testing sets with 80% and 20% ratios, respectively. For the training set, data have
been divided into equal sized mini-batches of 10 instances, except for the initialization
process of RLS, which generally requires a considerable amount of training samples (100
samples are used). After 10 training updates (10 mini-batches), local models are sent to
the server for the collaborative training of weights without training data. This is reflected
by m =

((
80×1000

100 − 100
)

/10
)
+ 1) = 71 mini-batches, and k = 71

10 ≈ 7 rounds. For
categorical variables related to targets, one-hot-key known as dummy encoding is involved
in this case. This means that the size of training weights will be different for each client
depending on the number of classes. For feature maps ϕi(xm) of FTL-RLS, a linear mapping
with a (2× 100) full rank matrix Ω followed by a logistic function transformation is adopted
in this work, as explained in (18).

ϕi(xm) =
1

1 + eΩxm
(18)

Accordingly, in this section we will showcase performances of FTL-RLS at differ-
ent levels of complexity for different clients. Therefore, first we will start by explain-
ing the effects of the proposed weights encoding/decoding process besides normaliza-
tion/renormalization while we will show some visual explanation of the accuracy of the
method. Second, we will depict the behavior of the training model towards each stage

Mathematics 2022, 10, 3528 11 of 16

of complexity in terms of classification accuracy. It should be mentioned that the main
objective of this study is to analyze and investigate the behavior of the RLS method in FTL.
Consequently, the experimental analysis is also directed towards this point. This means
that this work will not engage in comparisons with state of the art literature papers as the
model did not consider any improvements in context of regularization, adaptive learning,
feature maps optimization, hyperparameters selection, feature selections, and training data
splitting, etc. However, the main conclusion will surround assessing the accuracy and
speed of the learning model under this experiment compared to well-known architectures
of DL such as long-short term memory (LSTM), convolutional neural networks (CNN), and
a shallow artificial neural network (ANN) that adopts the FedAvg training philosophy. The
reason for this comparison is to shed light on the accuracy of FTL-RLS and the training
speed features. It should be mentioned that these algorithms also adopt the same weight
transportation methodology due to the non-IID nature of the data, especially when the
one-hot-keys of each neural network are different.

For weight processing, a well-prepared example will be illustrated in this case. We
have used a 100× 5 matrix of learning weights that resulted from the analytical relationship
between feature maps ϕ4(x10) and targets ỹ10(4) of subset S01-C04 to expose very important
illustrations related to reconstruction performances. Figure 3 is therefore elucidated to
show weighs trip for local model to global mode and afterwards. The heat map in Figure 3a
shows that the original learning weights were red spots indicate most important learning
parameters directing learning process. The learning weights are first decoded using a
transpose as in Figure 3b to make sure that FTL is achievable in terms of weight dimensions.
After that, these weights are scaled using mean value and standard deviation to make sure
that the aggregation process will not be biased. The color bar values in Figure 3c point
out how the values of Figure 3b are scaled thanks to the normalization process. Figure 3d
showcases the effect of the aggregation process on learning weights. At this stage, no
more details can be revealed by visual observation of the heat map. Instead, root means
squared error (RMSE) of the reconstruction will judge the quality of process encoding/and
normalization/denormalization. The weights scale is restored after aggregation based
on previous information of local training, while the decoding process is achieved with
the help of transpose inverse of the old weights matrix. Accordingly, reconstruction
RMSE = 7.1118× 10−7 dictates that training weights have an acceptable quality and not
distorted learned model. To sum-up, the aggregation method of FTL-RLS proved its ability
to keep information regarding learning weights, even under the aggregation process.

When training the FTL-RLS model on sequentially delivered mini-batches, the classifi-
cation accuracy of training has been recorded at each model update, including local and
global ones. Accordingly, Figure 4 is dedicated to introducing the collected results. From
Figure 4, the following conclusions can be drawn:

1. FTR-RLS performs well at S01 for the different clients, especially C01 and C02 when
data classes are only two and three, respectively. When the number of classes gets
bigger the training process becomes difficult;

2. For the other subsets of S02,S03, and S04, the more the complex the data are, the
weaker the training becomes. In this context, we are noticing deterioration in FTR-
RLS in terms of convergence speed and accuracy. This means that the model is
getting slower when reaching its optimal accuracy, which is also reduced due to data
complexity and the increased number of classes;

3. By the increase of data complexity, we observe more fluctuation in curves of classifica-
tion accuracy behavior as a sort of noise. This fluctuation reflects the instability of the
training process as a reaction to higher levels of cardinality.

4. In Figure 4a–c, we observe that there is a distance between the performances curves
of (C01, C02, C03) and (C04). This distance is getting closer during complexity until it
reaches Figure 4c, where the training process performances for all clients are roughly
becoming the same due to complexity.

Mathematics 2022, 10, 3528 12 of 16

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 16

deviation to make sure that the aggregation process will not be biased. The color bar val-
ues in Figure 3c point out how the values of Figure 3b are scaled thanks to the normaliza-
tion process. Figure 3d showcases the effect of the aggregation process on learning
weights. At this stage, no more details can be revealed by visual observation of the heat
map. Instead, root means squared error (RMSE) of the reconstruction will judge the qual-
ity of process encoding/and normalization/denormalization. The weights scale is restored
after aggregation based on previous information of local training, while the decoding pro-
cess is achieved with the help of transpose inverse of the old weights matrix. Accordingly,
reconstruction RMSE = 7.1118 × 10ି଻dictates that training weights have an acceptable
quality and not distorted learned model. To sum-up, the aggregation method of FTL-RLS
proved its ability to keep information regarding learning weights, even under the aggre-
gation process.

Figure 3. Illustrations of the effects of the proposed weights encoding/decoding and the normaliza-
tion/denormalization method on training weights: (a) Analytically determined weights with the
RLS method 𝑊ଵ,ଵ଴(ସ); (b) encoded weights with transpose matrix for unifying dimensions with
other clients models 𝑊ଵ,ଵ଴(ସ)஼ = 𝑊ଵ,ଵ଴(ସ).𝑊ଵ,ଵ଴(ସ) ் ; (c) Normalized version of encoded weights 𝑊ଵ,ଵ଴(ସ)ே ; (d) Weights of global model after aggregation 𝑊ீ,௞; (e) Denormalized version of training
weights after aggregation 𝑊ଵ,ଵ଴(ସ)஽௡ ; (f) Decoded weights after aggregation and denormalization 𝑊ଵ,ଵ଴(ସ).

When training the FTL-RLS model on sequentially delivered mini-batches, the clas-
sification accuracy of training has been recorded at each model update, including local
and global ones. Accordingly, Figure 4 is dedicated to introducing the collected results.
From Figure 4, the following conclusions can be drawn:

1. FTR-RLS performs well at S01 for the different clients, especially C01 and C02 when
data classes are only two and three, respectively. When the number of classes gets
bigger the training process becomes difficult;

2. For the other subsets of S02,S03, and S04, the more the complex the data are, the
weaker the training becomes. In this context, we are noticing deterioration in FTR-

Figure 3. Illustrations of the effects of the proposed weights encoding/decoding and the normaliza-
tion/denormalization method on training weights: (a) Analytically determined weights with the
RLS method W1,10(4); (b) encoded weights with transpose matrix for unifying dimensions with other
clients models WC

1,10(4) = W1,10(4)·WT
1,10(4); (c) Normalized version of encoded weights WN

1,10(4); (d)
Weights of global model after aggregation WG,k; (e) Denormalized version of training weights after
aggregation WDn

1,10(4); (f) Decoded weights after aggregation and denormalization W1,10(4).

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 16

RLS in terms of convergence speed and accuracy. This means that the model is get-
ting slower when reaching its optimal accuracy, which is also reduced due to data
complexity and the increased number of classes;

3. By the increase of data complexity, we observe more fluctuation in curves of classifi-
cation accuracy behavior as a sort of noise. This fluctuation reflects the instability of
the training process as a reaction to higher levels of cardinality.

4. In Figure 4a–c, we observe that there is a distance between the performances curves
of (C01, C02, C03) and (C04). This distance is getting closer during complexity until
it reaches Figure 4c, where the training process performances for all clients are
roughly becoming the same due to complexity.
Generally speaking, FTR-RLS has good performances under data with less complex-

ity. These performances are reflected by higher convergence speed, less fluctuation which
mean stability, and higher accuracy. However, these features are degraded under in-
creased data complexity.

Figure 4. FTL-RLS classification performances: (a–d) Classification accuracy variation for subset S01,
S02, S03, and S04 respectively.

Besides training performances assessed by the classification accuracy of the training
set, classification accuracy of the test set of the global model at the final mini-batch of the
final FL round is also used as a measure to assess the capability of FTL-LRS in classifying
new unseen samples to the model. As introduced in Table 4, we can see that the LSTM
network and CNN also are involved. Furthermore, comparison criteria were focused on
classification accuracy for each local data independently as well as for the entire data in
general represented by the mean value. For the three other adopted algorithms (i.e., ANN,
LSTM, and CNN), the feature maps are adjusted to be as similar as possible to the number
of parameters in the features maps 𝜑௜(𝑥௠) of the FTR-LRS algorithm. In this context, both
ANN and LSTM use a single hidden layer with 100 neurons. Concerning CNN, we em-
ployed a single feature mapping process in which a one-dimensional convolutional layer
and a pooling layer where local receptive fields are tuned to give a close number to pa-
rameters in features maps 𝜑௜(𝑥௠) after the pooling process. In addition, the hyperparam-
eters of the three models including regularization, learning rate, activation functions, etc.,
are given by the system through a grid search mechanism except for FL parameters, which

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Figure 4. FTL-RLS classification performances: (a–d) Classification accuracy variation for subset S01,
S02, S03, and S04 respectively.

Generally speaking, FTR-RLS has good performances under data with less complexity.
These performances are reflected by higher convergence speed, less fluctuation which

Mathematics 2022, 10, 3528 13 of 16

mean stability, and higher accuracy. However, these features are degraded under increased
data complexity.

Besides training performances assessed by the classification accuracy of the training
set, classification accuracy of the test set of the global model at the final mini-batch of the
final FL round is also used as a measure to assess the capability of FTL-LRS in classifying
new unseen samples to the model. As introduced in Table 4, we can see that the LSTM
network and CNN also are involved. Furthermore, comparison criteria were focused on
classification accuracy for each local data independently as well as for the entire data in
general represented by the mean value. For the three other adopted algorithms (i.e., ANN,
LSTM, and CNN), the feature maps are adjusted to be as similar as possible to the num-
ber of parameters in the features maps ϕi(xm) of the FTR-LRS algorithm. In this context,
both ANN and LSTM use a single hidden layer with 100 neurons. Concerning CNN, we
employed a single feature mapping process in which a one-dimensional convolutional
layer and a pooling layer where local receptive fields are tuned to give a close number to
parameters in features maps ϕi(xm) after the pooling process. In addition, the hyperpa-
rameters of the three models including regularization, learning rate, activation functions,
etc., are given by the system through a grid search mechanism except for FL parameters,
which are adjusted the same way as FTL-RLS. All of this architecture and hyperparameters
tuning process are identified to make sure of a fair comparison as close as possible between
these algorithms.

Table 4. Comparison of FL algorithms performance.

Algorithm Subset
Accuracy (x 100%) Shared Parameters Sizes (Bytes) Training Time

(Seconds)C01 C02 C03 C04

FTR-RLS

S01 0.978 0.993 0.985 0.731
Size of encoded weights WC

k,m(i)
≈ 80, 000

≈ 2.43
S02 0.973 0.954 0.978 0.725
S03 0.978 0.960 0.932 0.504
S04 0.764 0.486 0.582 0.320

Mean 0.8027

ANN (FedAvg)

S01 0.977 0.993 0.970 0.734
Weights and biases of inputs, hidden

layers and output layers:
≈ 160, 846

≈45.63
S02 0.977 0.958 0.980 0.728
S03 0.972 0.954 0.936 0.500
S04 0.711 0.452 0.542 0.298

Mean 0.7926

LSTM (FedAvg)

S01 0.999 0.997 0.992 0.730
Weights and biases of inputs, hidden

layers and output layers:
≈ 160, 846

≈108.22
S02 0.995 0.979 0.993 0.721
S03 0.999 0.975 0.999 0.741
S04 0.773 0.428 0.585 0.329

Mean 0.8272

CNN (FedAvg)

S01 1.000 1.000 0.995 0.732 Weights and biases of local fields,
convolutional layers, pooling layers,

and output layers, etc.:
> 160, 846

≈122.36
S02 1.050 1.034 1.048 0.761
S03 0.997 0.973 0.997 0.740
S04 0.842 0.466 0.637 0.358

Mean 0.8519

By referring to Table 4, the following conclusions can be drawn:

1. For each algorithm in general classification accuracies express significant decrease in
performances when moving from client C01 to C02. This explains that the number of
classes affects the predictions of training models.

2. For each algorithm, moving from different levels of data complexity resembled by
distance between classes also has a significant impact in performances reduction of
performances of learning algorithm.

Mathematics 2022, 10, 3528 14 of 16

3. The different subsets of C04’s low classification results explain that it is the most
challenging part in the generated data.

4. It is undeniable that CNN and LSTM could achieve more classification accuracy which
is in this case better than FTL-RLS. However, we cannot deny that blackbox models
used in this case are strengthened by many default features such as regularization,
parameter selection through grid search, adaptive learning optimizers, etc., while
FTL-RLS has only basic rules of learning. In this context, the performance of FTL-RLS
compared to these algorithms is comparable, which explains its strength in keeping
classification performances under FL.

5. CNN achieves better results than LSTM owing to its known capabilities in pattern
separation through mapping-based local receptive fields.

6. ANN and RLS provide almost the same results in this case.
7. One of the important FTL-RLS features is “computational time” and “algorithmic

simplicity”, related to both “algorithmic architecture” itself (number of instructions)
and the “non-iterative” nature of the RLS algorithm. In this context, the training time
of FTL-RLS (i.e., 2.43 s) clarifies that the algorithm performances are way too far better
and the algorithmic architecture can be easily constructed and implemented in low
computational costly hardware unlike ANN, LSTM and CNN.

8. Shared parameter sizes (i.e., weights, biases, etc.) of learning algorithms show that
the FTL-RLS encoding process reduces messages sizes with more than 50% compared
to ANN, LSTM, CNN and fair comparison.

4. Conclusions

This paper has introduced a new federated learning algorithm whose primary target is
commination expansiveness among other FL challenges. The learning algorithm is inspired
from basic learning rules of the RLS algorithm. The algorithm was applied to a specific
generated data that emulates real FL challenges and was specifically designed to fit quad-
core microprocessors available in commercial computers. The reason for designing such a
dataset is to make sure that researchers are able to replicate experiments and discover more
about the findings of this work. The application of this designed FTL-RLS algorithm led to
many conclusions, which can be summed up in both training speed and accuracy of the
model compared to existing complicated architectures trained based on gradient descent
algorithms. It also contributes to communication expensive reduction, thereby leading to
lower computational costs. It should be mentioned that this paper studies FTL-RLS with
no aforementioned additive features of learning rules optimization or hyperparameter
selection. Therefore, it would be better if future works concentrated on this axis and
provided more insights into the algorithm using not only the same dataset but also other
real datasets for more generalization.

Author Contributions: Conceptualization, T.B. (Tarek Berghout); methodology, T.B. (Tarek Berghout);
software, T.B. (Tarek Berghout); validation, T.B. (Tarek Berghout), M.A.F. and M.B.; formal analysis,
T.B. (Tarek Berghout); investigation, T.B. (Tarek Berghout); resources, T.B. (Tarek Berghout); data
curation, T.B. (Tarek Berghout); writing—original draft preparation, T.B. (Tarek Berghout); writing—
review and editing T.B. (Tarek Berghout), T.B. (Toufik Bentrcia), M.A.F. and M.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Mathematics 2022, 10, 3528 15 of 16

References
1. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated Learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207.

[CrossRef]
2. Li, L.; Fan, Y.; Tse, M.; Lin, K.-Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [CrossRef]
3. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [CrossRef]
4. Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of federated learning algorithms. DIDL

2018-Proc. 2nd Work. Distrib. Infrastructures Deep Learn. Part Middlew. 2018, 2018, 3286559. [CrossRef]
5. Liu, B.; Ding, Z. A consensus-based decentralized training algorithm for deep neural networks with communication compression.

Neurocomputing 2021, 440, 287–296. [CrossRef]
6. Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process.

Mag. 2012, 29, 141–142. [CrossRef]
7. Fang, C.; Guo, Y.; Hu, Y.; Ma, B.; Feng, L.; Yin, A. Privacy-preserving and communication-efficient federated learning in Internet

of Things. Comput. Secur. 2021, 103, 102199. [CrossRef]
8. Shakespeare, W. The Complete Works of William Shakespeare. 2020. Available online: http://www.gutenberg.org/ebooks/100

(accessed on 3 September 2022).
9. Asad, M.; Moustafa, A.; Ito, T. FedOpt: Towards communication efficiency and privacy preservation in federated learning. Appl.

Sci. 2020, 10, 2864. [CrossRef]
10. Chen, Z.; Liao, W.; Hua, K.; Lu, C.; Yu, W. Towards asynchronous federated learning for heterogeneous edge-powered internet of

things. Digit. Commun. Netw. 2021, 7, 317–326. [CrossRef]
11. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
12. Cohen, G.; Afshar, S.; Tapson, J.; van Schaik, A. EMNIST: An extension of MNIST to handwritten letters. arXiv 2017,

arXiv:1702.05373.
13. Abdellatif, A.A.; Mhaisen, N.; Mohamed, A.; Erbad, A.; Guizani, M.; Dawy, Z.; Nasreddine, W. Communication-efficient

hierarchical federated learning for IoT heterogeneous systems with imbalanced data. Future Gener. Comput. Syst. 2022, 128,
406–419. [CrossRef]

14. ECG. Heartbeat Categorization Dataset: Segmented and Preprocessed ECG Signals for Heartbeat Classification. 2018. Available
online: https://www.kaggle.com/datasets/shayanfazeli/heartbeat (accessed on 28 July 2022).

15. Schomer, D.L.; Da Silva, F.L. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott
Williams & Wilkins: Philadelphia, PA, USA, 2012.

16. Feng, S.; Li, B.; Yu, H.; Liu, Y.; Fellow, Q.Y. Semi-Supervised Federated Heterogeneous Transfer Learning. Knowledge-Based Syst.
2015, 14, 109384. [CrossRef]

17. IMDB Dataset. Available online: https://drive.google.com/file/d/0B8yp1gOBCztyN0JaMDVoeXhHWm8/edit?resourcekey=0-
y9_nzlfIi3jTOoMJ0xzahw (accessed on 28 July 2022).

18. Van Breukelen, M.; Duin, R.P.W.; Tax, D.M.J.; Den Hartog, J.E. Handwritten digit recognition by combined classifiers. Kybernetika
1998, 34, 381–386.

19. ALLAML Dataset. Available online: https://jundongl.github.io/scikit-feature/datasets.html (accessed on 28 July 2022).
20. Palihawadana, C.; Wiratunga, N.; Wijekoon, A.; Kalutarage, H. FedSim: Similarity guided model aggregation for Federated

Learning. Neurocomputing 2022, 483, 432–445. [CrossRef]
21. Wijekoon, A.; Wiratunga, N.; Cooper, K.; Bach, K. Learning to recognise exercises in the self-management of low back pain. In

Proceedings of the Thirty-Third International Flairs Conference, Miami Beach, PA, USA, 7–20 May 2020.
22. Goodreads Datasets. Available online: https://sites.google.com/eng.ucsd.edu/ucsdbookgraph (accessed on 30 July 2022).
23. Hu, L.; Yan, H.; Li, L.; Pan, Z.; Liu, X.; Zhang, Z. MHAT: An efficient model-heterogenous aggregation training scheme for

federated learning. Inf. Sci. 2021, 560, 493–503. [CrossRef]
24. Li, S.; Lv, L.; Li, X.; Ding, Z. Mobile app start-up prediction based on federated learning and attributed heterogeneous network

embedding. Future Internet 2021, 13, 256. [CrossRef]
25. Wahab, O.A.; Rjoub, G.; Bentahar, J.; Cohen, R. Federated against the cold: A trust-based federated learning approach to counter

the cold start problem in recommendation systems. Inf. Sci. 2022, 601, 189–206. [CrossRef]
26. MovieLens. Available online: https://grouplens.org/datasets/movielens/1m (accessed on 30 July 2022).
27. Epinions. Available online: http://www.epinions.com (accessed on 30 July 2022).
28. Wang, F.; Zhu, H.; Lu, R.; Zheng, Y.; Li, H. A privacy-preserving and non-interactive federated learning scheme for regression

training with gradient descent. Inf. Sci. 2021, 552, 183–200. [CrossRef]
29. Chen, Y.; Luo, F.; Li, T.; Xiang, T.; Liu, Z.; Li, J. A training-integrity privacy-preserving federated learning scheme with trusted

execution environment. Inf. Sci. 2020, 522, 69–79. [CrossRef]
30. Berghout, T.; Benbouzid, M.; Muyeen, S.M. Machine Learning for Cybersecurity in Smart Grids: A Comprehensive Review-based

Study on Methods, Solutions, and Prospects. Int. J. Crit. Infrastruct. Prot. 2022, 38, 100547. [CrossRef]
31. Berghout, T.; Benbouzid, M. A Systematic Guide for Predicting Remaining Useful Life with Machine Learning. Electronics 2022,

11, 1125. [CrossRef]

http://doi.org/10.2200/S00960ED2V01Y201910AIM043
http://doi.org/10.1016/j.cie.2020.106854
http://doi.org/10.1145/3298981
http://doi.org/10.1145/3286490.3286559
http://doi.org/10.1016/j.neucom.2021.01.020
http://doi.org/10.1109/MSP.2012.2211477
http://doi.org/10.1016/j.cose.2021.102199
http://www.gutenberg.org/ebooks/100
http://doi.org/10.3390/app10082864
http://doi.org/10.1016/j.dcan.2021.04.001
http://doi.org/10.1016/j.future.2021.10.016
https://www.kaggle.com/datasets/shayanfazeli/heartbeat
http://doi.org/10.1016/j.knosys.2022.109384
https://drive.google.com/file/d/0B8yp1gOBCztyN0JaMDVoeXhHWm8/edit?resourcekey=0-y9_nzlfIi3jTOoMJ0xzahw
https://drive.google.com/file/d/0B8yp1gOBCztyN0JaMDVoeXhHWm8/edit?resourcekey=0-y9_nzlfIi3jTOoMJ0xzahw
https://jundongl.github.io/scikit-feature/datasets.html
http://doi.org/10.1016/j.neucom.2021.08.141
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph
http://doi.org/10.1016/j.ins.2021.01.046
http://doi.org/10.3390/fi13100256
http://doi.org/10.1016/j.ins.2022.04.027
https://grouplens.org/datasets/movielens/1m
http://www.epinions.com
http://doi.org/10.1016/j.ins.2020.12.007
http://doi.org/10.1016/j.ins.2020.02.037
http://doi.org/10.1016/j.ijcip.2022.100547
http://doi.org/10.3390/electronics11071125

Mathematics 2022, 10, 3528 16 of 16

32. Berghout, T.; Benbouzid, M. EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural
networks for cybersecurity in smart grids. Reliab. Eng. Syst. Saf. 2022, 226, 108680. [CrossRef]

33. Fachada, N.; Rosa, A.C. generateData—A 2D data generator. Softw. Impacts 2020, 4, 100017. [CrossRef]
34. Berghout, T.; Mouss, L.; Kadri, O.; Saïdi, L.; Benbouzid, M. Aircraft Engines Remaining Useful Life Prediction with an Improved

Online Sequential Extreme Learning Machine. Appl. Sci. 2020, 10, 1062. [CrossRef]

http://doi.org/10.1016/j.ress.2022.108680
http://doi.org/10.1016/j.simpa.2020.100017
http://doi.org/10.3390/app10031062

	Introduction
	Materials and Methods
	Dataset Generation
	Federated Transfer Learning Recursive Least Squares

	Results and Discussion
	Conclusions
	References

