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Abstract: In this work, a new family of distributions based on the Laplace distribution is introduced.
We define this new family by its stochastic representation as the sum of two independent random
variables, one with a Laplace distribution and the other with an exponential distribution. Using a
Monte Carlo simulation study, the statistical performance of the estimators obtained by the moments
and maximum likelihood methods were empirically evaluated. We studied the coverage probabilities
and mean length of the confidence intervals of the corresponding parameters based on the asymptotic
normality of these estimators. This simulation study reported a good statistical performance of these
estimators. Fits were made to three real data sets with the new distribution, two related to chemical
concentrations and one to the environment, comparing it with three similar distributions given in
the literature. We have used information criteria for the selection of models. These results showed
that the exponentially modified Laplace model can be an alternative distribution to model skewed
data with high kurtosis. The new approach is a contribution to the tools of statisticians and various
professionals interested in modeling data with high kurtosis.

Keywords: exponentially modified Laplace distribution; moments; skewness and kurtosis coefficients

MSC: 62P12

1. Introduction

There are several investigations that use the Laplace distribution to model data from
certain fields based on an empirical fit using goodness-of-fit techniques. For example, in
environmental problems, the Laplace distribution is used to analyze (or model) random
variables that determine maximum pollution values and describe times of high pollution. In
mining, the Laplace distribution is used to analyze the mineral content in soil samples [1,2].

However, not all data related to these types of problems have a symmetric behav-
ior. For this reason, other distributions have been proposed that are capable of better
modeling this type of data. In this sense, Agu and Onwukwe [3] presented the modified
Laplace distribution (ML), Grushka [4] presented the exponentially modified Gaussian
distribution (EMG) and Reyes et al. [5] presented the exponentially modified logistic distri-
bution (EMLOG). One of the advantages of these new probability distributions obtained
through mixtures is that the obtained distributions generally have longer tails than the base
distribution, thus giving rise to better fits for empirical frequency distributions, [4,5].

Our research is based on the theory of probability distributions and based on the pro-
cess of mixtures of probability distributions, it proposes a new parametric probability distri-
bution using the Laplace distribution. The new distribution depends on three parameters
and is obtained by adding two independent random variables: one with a Laplace distribu-
tion and the other with an exponential distribution. This distribution can be used as an
alternative to some existing distributions. The density function of the new distribution
is obtained using the stochastic representation Y = σ(X + V) + µ where X and V are
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independent random variables, such that X is standard Laplace distribution and V is
exponentially distributed with parameter λ, where µ is the location parameter, σ is the
scale parameter, and λ is the skewness parameter. This document is organized as follows:
Section 2, in order to make this work self-contained, presents the probability distribu-
tions of the Laplace, exponential, modified Laplace, exponentially modified Gaussian, and
exponentially modified logistic distributions with some characteristics of these that will
be useful later. In Section 3, the exponentially modified Laplace probability distribution
is constructed, obtaining the density and the main characteristics of the distribution. In
Section 4, the methods of moments and maximum likelihood are presented to estimate
the parameters of the distribution. A simulation study for the theoretical validation of
the model is also presented. Section 5 shows a comparative analysis and a discussion
of the results obtained by fitting the different data sets with the modified Laplace (ML),
exponentially modified Gaussian (EMG), and exponentially modified logistic distributions
(EMLOG) and the proposed exponentially modified Laplace distribution (EML). Finally,
in Section 6, conclusions are drawn from the work.

2. Preliminaries

The classical Laplace distribution (also known as Laplace’s first law) is a probability
distribution, given by the density function

f (x; θ, s) =
1
2s

e−
|x−θ|

s , x ∈ R

where −∞ < θ < ∞ and s > 0 are the location and scale parameters, respectively
(Johnson et al. [6]), and we will denote it as X ∼ L(θ, s). When the location param-
eter is equal to zero and the scale parameter is equal to one, then the standard Laplace
distribution function is obtained, denoted by L(0, 1). The nth moment for a random variable
X ∼ L(0, 1), is given by:

E(Xn) =
1
2

n!{1 + (−1)n} n = 1, 2, . . . (1)

The continuous random variable, say X, is said to have an exponential distribution if
it has the following probability density function:

f (x; λ) =

{
λ e−λx si x > 0

0 si x ≤ 0

where λ is called the rate of the distribution and will be represented as X ∼ exp(λ). The
nth moment for a random variable X ∼ exp(λ) is given by the following expression:

E(Xn) =
n!
λn , n = 1, 2, . . . (2)

Agu and Onwukwe [3] presented the modified Laplace distribution whose density function
is given by

fX(x) =


λ
2σ

(
1
2 e

x−µ
σ

)λ−1
e

x−µ
σ , x ≤ µ

λ
2σ

(
1− 1

2 e−
x−µ

σ

)λ−1
e−

x−µ
σ , x > µ

x ∈ R, which is denoted by X ∼ ML(µ, σ, λ).
The pd f of a random variable with an exponentially modified Gaussian distribution

EMG (Grushka [4]) is given by:

fY(y; µ, σ, λ) =
λ

2
e−

λ
2 (2y−2µ−λσ2)er f c

(
2µ + λσ2 − y√

2σ2

)
, x ∈ R
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and is denoted as Y ∼ EMG(µ, σ, λ), where er f c(z) = 2√
π

∫ ∞
z e−t2

dt.
A random variable X has a logistic distribution with location parameter α ∈ R and

scale parameter β > 0 if its density function is:

fX(x; α, β) =
e−(x−α)/β

β
(
1 + e−(x−α)/β

)2 , x ∈ R

which is denoted as X ∼ LOG(α, β). When the location parameter is 0 and the scale
parameter is 1, then the standard logistic distribution function is obtained.

Reyes et al. [5], using the methodology given by [4], introduces the exponentially
modified logistic distribution by the following stochastic representation:

Y = Z + T,

where Z ∼ LOG(α, β) and T ∼ exp(1/β) are random independent variables and are
denoted by Y ∼ EMLOG(α, β), transforming this into a more flexible distribution in terms
of working with data that have high kurtosis. Its function is given by:

fY(y|α, β ) =
1
β2 e

y−α
β

∫ ∞

0
e−

2w
β

[
1 + e

y−w−α
β

]−2
dw, −∞ < y < ∞

and we denote as Y ∼ EMLOG(α, β).

3. Exponentially Modified Laplace Distribution

In this section, the exponentially modified Laplace distribution (EML) is presented
using the Grushka methodology [4], considering the location and scale parameters. This
distribution is obtained by substituting the normal distribution for the standard Laplace
distribution in the stochastic representation. The flexibility of this new distribution allows
better capture of outliers. We will start by deriving its density function.

3.1. Density Function

The exponentially modified Laplace distribution admits the following stochastic rep-
resentation as

Y = σ(X + V) + µ, (3)

where X and V are independent random variables such that X ∼ L(0, 1) and V ∼ exp(λ),
where µ is the location parameter, σ is the scale parameter, and λ is the skewness parameter,
so we say that Y follows an exponentially modified Laplace distribution and is denoted by
Y ∼ EML(µ, σ, λ).

Proposition 1. Let Y be a random variable such that Y ∼ EML(µ, σ, λ). Then, its probability
density function (pdf) is given by

fY(y; µ, σ, λ) =



λ
2σ(λ−1)

[
e−

y−µ
σ −

(
2

λ+1

)
e−λ( y−µ

σ )
]

, y > µ, λ 6= 1

[
2( y−µ

σ )+1
4σ

]
e−

y−µ
σ , y > µ, λ = 1

λ
2σ(λ+1) e

y−µ
σ , y < µ

(4)
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Proof. Using the stochastic representation in (3), we have

X ∼ L(0, 1) ⇒ fX(x) =
1
2

e−|x| , −∞ < x < ∞,

V ∼ exp(λ) ⇒ fV(v) = λe−λv , v > 0

and the Jacobian transformation approach, it follows that:

Y = σ(X + V) + µ
W = V

}
⇒ X = Y−µ

σ −W
V = W

⇒ J =

∣∣∣∣∣
∂x
∂y

∂x
∂w

∂v
∂y

∂v
∂w

∣∣∣∣∣ =
∣∣∣∣ 1

σ −1
0 1

∣∣∣∣ = 1
σ

.

Then,

fY,W(y, w) = |J| fX,V

(
y− µ

σ
− w, w

)
fY,W(y, w) =

1
σ

fX

(
y− µ

σ
− w

)
fV(w)

fY(y) =
∫ ∞

0

1
σ

fX

(
y− µ

σ
− w

)
fV(w) dw

fY(y) =
λ

2σ

∫ ∞

0
e−λwe−|

y−µ
σ −w| dw,−∞ < y < ∞,

solving the integral, for λ 6= 1 and λ = 1, the result (4) is obtained.

Proposition 2. If Y ∼ EML(µ, σ, λ) and λ→ ∞, then Y ∼ L(µ, σ).

Proof. If λ→ ∞ in the density function given in (4), the result is obtained.

Figure 1 graphically illustrates the behavior of the density function of the exponentially
modified Laplace distribution and the standard Laplace for different values of λ (upper), it
is observed that as the parameter λ decreases, the tails become heavier. On the other hand,
on the lower portion of the figure, the densities of the standard Laplace, modified Laplace,
and exponentially modified Laplace distributions are plotted, in which greater flexibility is
observed in the EML model.

Proposition 3. Let Y be a random variable such that Y ∼ EML(µ, σ, λ), then its cdf is given by

FY(t; µ, σ, λ) =



λ
2(λ+1) +

λ
2(λ−1)

[
1− e−

t−µ
σ − 2

λ(λ+1)

(
1− e−λ

(
t−µ

σ

))]
, t > µ, λ 6= 1

1
4

[
4− 3e−

t−µ
σ − 2(t−µ)

σ e−
t−µ

σ

]
, t > µ, λ = 1

λ
2(λ+1) e

t−µ
σ , t < µ.

(5)
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Figure 1. Graphical comparison of EML distributions with L for different values of λ (upper) and
with ML and L (lower).

Proof. Using the definition of cdf, we have

FY(t; µ, σ, λ) =
∫ t

−∞

λ

2σ

∫ ∞

0
e−λwe−|

y−µ
σ −w| dwdy, −∞ < t < ∞,

solving the integral for, λ 6= 1 and λ = 1, the result (5) is obtained.

Corollary 1. Let Y be a random variable such that Y ∼ EML(µ, σ, λ). Then, the reliability
function defined as R(y) = P(Y > y) = 1− FY(y), y > 0 is given by

R(y) =



1− λ
2(λ+1) −

λ
2(λ−1)

[
1− e−

t−µ
σ − 2

λ(λ+1)

(
1− e−λ

(
t−µ

σ

))]
, t > µ, λ 6= 1

1− 1
4

[
4− 3e−

t−µ
σ − 2(t−µ)

σ e−
t−µ

σ

]
, t > µ, λ = 1

1− λ
2(λ+1) e

t−µ
σ , t < µ.

(6)

Proof. Using the reliability function definition R(y) and (5), the result is directly obtained.

Through Figure 2, we graphically illustrate the behavior of the cumulative distribu-
tion function (cdf) for the exponentially modified Laplace distribution. Compared to the
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standard Laplace distribution, it reflects a slower growth, implying a greater capture of
outlier data.

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

A
cc

u
m

u
la

te
d

EML(0,1,2)
L(0,1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

A
cc

um
ul

at
ed

EML(0,1,1)
L(0,1)

Figure 2. Comparison of the cdf of the EML distribution (solid line) for λ = 2 (upper) and λ = 1
(lower) with the cdf of the distribution L (dashed line).

3.2. Reliability Function Comparison of ML, EMLOG, EMG, and EML Distributions

The reliability function of a random variable Y indicates the probability that a variable
exceeds the value of y. In this section, using Table 1, for a fixed value of λ = 0.7, we make
a brief comparison where it is observed that the tails of the EML distribution are heavier
than those of the ML, EMLOG, and EMG distributions.

Table 1. Reliability function comparison for distributions ML, EMLOG, EMG, and EML.

Distribution P(Y > 2) P(Y > 2.5) P(Y > 3) P(Y > 3.5) P(Y > 4) P(Y > 4.5) P(Y > 5)

ML 0.2444 0.1543 0.0958 0.0530 0.0361 0.0220 0.0134
EMLOG 0.2878 0.2116 0.1517 0.1065 0.0735 0.0501 0.0377

EMG 0.3073 0.2202 0.1561 0.1102 0.0775 0.0547 0.0385
EML 0.3256 0.2449 0.1820 0.1339 0.0978 0.0711 0.0515
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Likewise, observing the graphical illustration represented in Figure 3, it can be seen
that the tails of the EML distribution are heavier than those of the ML, EMLOG, and
EMG distributions.
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Figure 3. Comparison of the reliability function of the EML distribution (solid line) for λ = 0.7
with the reliability function of the ML, EMLOG, and EMG distributions (dashed line, dotted line,
dash-dotted line).

3.3. Moments

The following proposition presents us with a formula that, with the use of numerical
techniques, allows us to calculate the rth moment of an exponentially modified Laplace
distribution.

Proposition 4. If Y ∼ EML(µ, σ, λ), the rth moment of Y is given by:

µr = E[Yr] =
r

∑
j=0

(
r
j

)
σjµr−j

[
j

∑
k=0

(
j
k

)
k!{1 + (−1)k)}(j− k)!

2λj−k

]

Proof. Using the stochastic representation given in (3), applying the binomial theorem and
the moments of the standard Laplace and exponential distributions given in (1) and (2),
respectively, the result is obtained.

Corollary 2. Let Y ∼ EML(µ, σ, λ), then

µ1 =
σ

λ
+ µ

µ2 = 2σ2
(

1 +
1

λ2

)
+

2σµ

λ
+ µ2

µ3 =
6σ3

λ

(
1 +

1
λ2

)
+ 6σ2µ

(
1 +

1
λ2

)
+

3σµ2

λ
+ µ3

µ4 = 24σ4
(

1 +
1

λ2 +
1

λ4

)
+

24σ3µ

λ

(
1 +

1
λ2

)
+

12σ2µ2

λ

(
1 +

1
λ2

)
+

4σµ3

λ
+ µ4

Proof. Using Proposition 4 with r = 1, 2, 3, 4 we obtain the results.
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Corollary 3. Let Y ∼ EML(µ, σ, λ). Then, the mean and variance are given, respectively, by

E(Y) = µ +
σ

λ

Var(Y) = σ2
(

2 +
1

λ2

)
Proof. Using µ1 and µ2 obtained in Corollary 2, and substituting in V(Y) = µ2 − (µ1)

2,
we obtain the results.

Corollary 4. Let Y ∼ EML(µ, σ, λ), then the asymmetry and kurtosis coefficient of Y is given by

√
β1 =

2

(2λ2 + 1)
3
2

β2 =
24λ4 + 12λ2 + 9

(2λ2 + 1)2

Proof. Using the standardized skewness and kurtosis coefficients of Y, the result is reached.

Figure 4 shows that the kurtosis coefficient for the distribution (EML) takes values in
the interval [5, 9], decreasing for values of λ between [0, 1] and increasing for values greater
than one.

0 2 4 6 8 10

3
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6

7
8

9
1

0

lambda

K
u

rt
o

si
s

EML
EMG
EMLOG

Figure 4. Graphical comparison of the kurtosis coefficient between the exponentially modified
Laplace distribution (solid line), the exponentially modified Gaussian distribution (dashed line), and
the exponentially modified logistic distribution (dotted line).

4. Estimation
4.1. Moment Estimators

The following proposition shows analytic expressions for the moment estimators of µ,
σ, and λ for the exponentially modified Laplace distribution (EML).

Proposition 5. Let y1, y2, . . . , yn be a random sample from the distribution of random variable
Y ∼ EML(µ, σ, λ), so that the moment estimators for θ = (µ, σ, λ) are obtained by solving the
following numerical equation for µ:

µ3 − 8yµ2 + 15y2µ− 6y3 − 3ys2 + y3 = 0,
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later, the moment estimator for σ is obtained by substituting the moment estimator for µ (µ̂M), in
the following equation:

σ̂M =

√
y2 − 2y(y− µ̂M)− µ̂2

M
2

and finally, the estimator of moments for λ is obtained:

λ̂M =
σ̂M

y− µ̂M

where y, y2, y3, and s2 are the sample moments, and sample variance, respectively.

Proof. Equating the first three population moments to the sample moments, we obtain:

y =
σ

λ
+ µ

y2 = 2s2 − 2σ2 +
(σ

λ
+ y
)

µ

y3 = 6s2
(σ

λ
+ µ

)
+
(σ

λ
+ y
)

µ2,

solving the system, we arrive at the result.

4.2. Likelihood Function

Consider a random sample of size n, y1, . . . , yn, from the distribution EML(µ, σ, λ).
So, the log-likelihood function for θ = (µ, σ, λ)T can be expressed as

`(θ) = n log λ− n log 2− n log σ +
n

∑
i=1

log G(yi, θ), (7)

where G(yi, θ) =
∫ ∞

0 e−λwe−
∣∣∣ yi−µ

σ −w
∣∣∣dw.

Maximum likelihood estimators (MLEs) were acquired maximizing the likelihood
function given in (7). Since there is no analytical solution, we used the iterative numerical
method “BFGS”, created by Byrd et al. [7]. The “BFGS” method is a limited-memory
quasi-Newton method for approximating the Hessian matrix of the target distribution.
This method allows us to numerically obtain the maximum likelihood estimates of the
parameters of a distribution and their respective standard errors derived from the Hessian
matrix.

4.3. Simulation Study

We used the Monte Carlo method to generate random numbers from the distribution
EML(µ, σ, λ). The results obtained are a sequence of n random numbers that are stored
inside an array that we call n−vector. For this, we used 1000 samples of size 50, 100, 200
and 500, obtaining the estimates of the parameters by means of the moment and maximum
likelihood methods. In addition, we analyze the standard deviation, average length of the
confidence intervals, and the empirical coverage, for the parameters of the distribution,
based on a 95% confidence level.

To develop the algorithm (Algorithm 1) we will use the following notation:

1. n: The length of the n−vector.
2. Y: A random variable with the distribution EML.
3. fY(y): The PDF of EML.
4. L1: Number of samples of size n.
5. µ, σ, λ: Parameters.
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Algorithm 1: Monte Carlo algorithm to generate random numbers from the
EML(µ, σ, λ) distribution

1. Start
Input: fY(y), L1, n, µ, σ, λ.
Output: n−vector.

2. Generate a random variable X ∼ L(0, 1).
3. Generate a random variable V ∼ exp(λ).
4. Compute Y = X + V.
5. Since Y ∼ EML(µ, σ, λ), append y to n-vector.
6. Repeat steps 2–5 for each sample of size n obtained.
7. For each estimate, the 95% confidence interval is obtained and the length

calculated. Additionally, the number of intervals containing the value of each
parameter is counted. By obtaining the average of these 1000 values, the value
ali and the empirical coverage c are obtained.

8. end.

Table 2 contains the values of the estimates of the parameters, standard deviation,
average interval length, and empirical coverage, based on a 95% confidence interval from
simulations obtained by the method of moments for 1000 generated samples of size n = 50,
100, 200, and 500 from the population with distribution EML(µ, σ, λ). These estimates were
obtained by solving the system of equations given in Proposition 5. Similarly, Table 3 shows
the results of the simulation studies, illustrating the behavior of the MLEs. For each sample
generated, MLEs are calculated numerically using the Newton–Raphson [8] procedure. In
both tables, it can be seen that the simulations carried out by these methods show that
the average estimates of the parameters are close to the proposed values. Additionally,
the standard deviation and the average length of the interval decrease as the sample size
increases. This is an expected result, since the ME and MLE are asymptotically consistent.
On the other hand, the empirical coverage is adequate since it is close to 95%.

Table 2. ME simulation of 1000 iterations of the model EML(µ, σ, λ).

n µ σ λ µ̃ sd(µ̃) ali(µ̃) c(µ̃) σ̃ sd(σ̃) ali(σ̃) c(σ̃) λ̃ sd(λ̃) ali(λ̃) c(λ̃)

50 0 1 0.3 0.0341 0.1189 0.4661 93.9 1.0341 0.1189 0.4661 93.9 0.3341 0.1189 0.4661 93.9
100 0 1 0.3 0.0123 0.0650 0.2548 95.2 1.0123 0.0650 0.2548 95.2 0.3123 0.0650 0.2548 95.2
200 0 1 0.3 0.0066 0.0411 0.1612 94.7 1.0066 0.0411 0.1612 94.7 0.3066 0.0411 0.1612 94.7
500 0 1 0.3 0.0036 0.0245 0.0959 94.6 1.0036 0.0245 0.0959 94.6 0.3036 0.0245 0.0959 94.6

50 0 1 0.7 −0.1249 0.2589 1.0150 97.4 0.8751 0.2589 1.0150 97.4 0.5751 0.2589 1.0150 97.4
100 0 1 0.7 −0.1162 0.2293 0.8989 96.1 0.8838 0.2293 0.8989 96.1 0.5838 0.2293 0.8989 96.1
200 0 1 0.7 −0.0785 0.1901 0.7451 91.0 0.9215 0.1901 0.7451 91.0 0.6215 0.1901 0.7451 91.0
500 0 1 0.7 −0.0434 0.1540 0.6038 93.8 0.9566 0.1540 0.6038 93.8 0.6566 0.1540 0.6038 93.8

50 0 1 1 −0.1006 0.3208 1.2576 92.7 0.8994 0.3208 1.2576 92.7 0.8994 0.3208 1.2576 92.7
100 0 1 1 −0.0399 0.2174 0.8522 96.7 0.9601 0.2174 0.8522 96.7 0.9601 0.2174 0.8522 96.7
200 0 1 1 −0.0149 0.1373 0.5381 97.3 0.9851 0.1373 0.5381 97.3 0.9851 0.1373 0.5381 97.3
500 0 1 1 −0.0038 0.0760 0.2978 93.7 0.9962 0.0760 0.2978 93.7 0.9962 0.0760 0.2978 93.7

50 0 1 1.2 −0.0525 0.2984 1.1698 96.6 0.9475 0.2984 1.1698 96.6 1.1475 0.2984 1.1698 96.6
100 0 1 1.2 −0.0114 0.1827 0.7161 98.1 0.9886 0.1827 0.7161 98.1 1.1886 0.1827 0.7161 98.1
200 0 1 1.2 0.0004 0.1118 0.4383 96.0 1.0004 0.1118 0.4383 96.0 1.2004 0.1118 0.4383 96.0
500 0 1 1.2 −0.0024 0.0637 0.2499 94.3 0.9976 0.0637 0.2499 94.3 1.1976 0.0637 0.2499 94.3

50 −1 2 0.3 −0.9902 0.0641 0.2512 94.7 2.0098 0.0641 0.2512 94.7 0.3098 0.0641 0.2512 94.7
100 −1 2 0.3 −0.9923 0.0462 0.1810 94.9 2.0077 0.0462 0.1810 94.9 0.3077 0.0462 0.1810 94.9
200 −1 2 0.3 −0.9958 0.0301 0.1181 94.7 2.0042 0.0301 0.1181 94.7 0.3042 0.0301 0.1181 94.7
500 −1 2 0.3 −0.9987 0.0185 0.0723 94.8 2.0013 0.0185 0.0723 94.8 0.3013 0.0185 0.0723 94.8

sd corresponds to the standard deviation, ali (average length of interval) is the average length of the confidence
interval, and c the empirical coverage of the respective ME of the parameters, based on a 95% confidence interval.
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Table 3. MLE simulation of 1000 iterations of the model EML(µ, σ, λ).

n µ σ λ µ̂ sd(µ̂) ali(µ̂) c(µ̂) σ̂ sd(σ̂) ali(σ̂) c(σ̂) λ̂ sd(λ̂) ali(λ̂) c(λ̂)

50 0 1 0.3 0.0470 0.5226 2.0486 93.6 0.9327 0.3885 1.5229 94.2 0.3175 0.2096 0.8216 96.2
100 0 1 0.3 0.0326 0.3439 1.3480 94.2 0.9822 0.2534 0.9933 94.8 0.3081 0.1139 0.4463 94.9
200 0 1 0.3 0.0093 0.2300 0.9015 94.5 0.9937 0.1746 0.6843 95.4 0.3035 0.0706 0.2769 95.1
500 0 1 0.3 −0.0061 0.1408 0.5521 95.0 0.9956 0.1087 0.4260 95.3 0.2999 0.0444 0.1740 94.6

50 0 1 0.7 −0.0023 0.3834 1.5031 94.5 0.9491 0.2611 1.0237 95.6 0.7974 0.5617 2.2017 94.8
100 0 1 0.7 0.0255 0.2872 1.1257 94.1 0.9692 0.1913 0.7498 94.6 0.7607 0.3987 1.5630 95.7
200 0 1 0.7 0.0261 0.2011 0.7882 94.9 1.0004 0.1396 0.5471 95.9 0.7527 0.2750 1.0779 96.1
500 0 1 0.7 0.0084 0.1211 0.4747 95.2 0.9968 0.0829 0.3249 94.9 0.7130 0.1229 0.4816 94.8

50 0 1 1.0 −0.0149 0.3755 1.4718 95.4 0.9182 0.2369 0.9286 93.7 1.2052 1.0383 4.0701 93.8
100 0 1 1.0 0.0176 0.2805 1.0997 94.7 0.9654 0.1697 0.6653 95.0 1.1874 0.8215 3.2204 93.7
200 0 1 1.0 0.0248 0.2150 0.8428 94.6 0.9898 0.1266 0.4962 94.3 1.1528 0.6274 2.4595 94.8
500 0 1 1.0 0.0106 0.1361 0.5337 94.7 0.9924 0.0842 0.3300 94.7 1.0473 0.3208 1.2574 96.5

50 0 1 1.2 −0.0644 0.3430 1.3444 94.8 0.8979 0.2139 0.8385 92.1 1.2577 0.9488 3.7195 95.5
100 0 1 1.2 −0.0013 0.2758 1.0812 94.6 0.9568 0.1629 0.6384 93.5 1.3821 0.9002 3.5287 93.1
200 0 1 1.2 0.0090 0.2123 0.8322 94.9 0.9849 0.1200 0.4704 95.1 1.3675 0.7209 2.8259 94.2
500 0 1 1.2 0.0123 0.1373 0.5383 94.5 0.9969 0.0792 0.3104 94.6 1.2831 0.4290 1.6819 95.5

50 −1 2 0.3 −0.8821 0.9899 3.8805 95.0 1.8777 0.7352 2.8819 93.8 0.3135 0.2027 0.7946 97.3
100 −1 2 0.3 −0.9601 0.6781 2.6582 96.1 1.9483 0.5054 1.9813 94.6 0.3071 0.1150 0.4507 95.5
200 −1 2 0.3 −0.9681 0.4653 1.8239 95.0 1.9917 0.3324 1.3030 94.9 0.3061 0.0702 0.2754 94.5
500 −1 2 0.3 −0.9883 0.2807 1.1004 94.6 1.9960 0.2197 0.8612 94.7 0.3021 0.0448 0.1755 94.9

sd corresponds to the standard deviation, ali (average length of interval) is the average length of the confidence
interval, and c the empirical coverage of the respective EMV of the parameters, based on a 95% confidence interval.

5. Three Illustrative Examples with a Real Data Set

In this section, three applications are presented in which the parameter estimators
are obtained based on the maximum likelihood method (MLE) for (µ, σ and λ) through
of the fitted models ML, EMLOG, EMG, and EML to a set of real data. The numerical
illustrations below are intended to show that the EML model is an alternative to unimodal
data modeling in different areas.

5.1. Illustrative Example 1

In our first illustration, the data set corresponds to the nickel content in soil samples
analyzed at the Department of Mining (Department of Mines) of the University of Atacama,
Chile, (see Appendix A, Table A1). Table 4 presents summary statistics for the data set
of nickel content in soil samples, where γ1 and γ2 are the skewness and kurtosis coeffi-
cients of the sample, respectively. The moment estimators for these data are given by:
θ̂M = (µ̂M, σ̂M, λ̂M) = (6.7497 , 5.0626 , 0.3412).

Table 4. Summary Statistics for the Nickel Concentration Data Set.

n y sy γ1 γ2

85 21.3372 16.6391 2.3559 11.1917

Table 5 shows the maximum likelihood estimates and the standard deviations for the
ML, EMLOG, EMG, and EML models. In addition, we report the values of the Akaike [9]
(AIC), Bayesian information criteria [10] (BIC), Akaike information criterion consistent [11]
(CAIC), and Hannan—Quinn information criterion [12] (HQIC). On the other hand, Figure 5
shows the histogram with estimated pdf. This indicates that the EML model fits the data
better than the ML, EMLOG, and EMG models. This result is supported by Figure 6 based
on theoretical versus empirical (QQ) quantile plots.
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Table 5. Maximum likelihood estimators for ML, EMLOG, EMG, and EML models for the soil nickel
concentration data set, with their corresponding standard deviations in parentheses and comparison
criteria AIC, BIC, CAIC, and HQIC.

Parameter Estimates ML EMLOG EMG EML

µ̂ 11.0020 (0.0657) 18.9149 (1.4048) 10.0433 (0.0771) 7.020 (0.0462)
σ̂ 11.6843 (1.21645) 7.6833 (0.7231) 9.0165 (0.0766) 5.1452 (0.0258)
λ̂ 2.2279 (0.2418) 0.7810 (0.0610) 0.3733 (0.0443)

AIC 687.022 699.207 685.0531 682.053
BIC 694.385 704.092 692.381 689.381

CAIC 695.548 705.092 693.381 690.381
HQIC 690.168 701.172 688.001 685.001

Figure 5 presents the histogram of the data with adjustment of the modified Laplace,
exponentially modified Laplace, exponentially modified Gaussian, and exponentially mod-
ified logistic (upper) distributions, fitted with the values of the maximum likelihood estima-
tors of their parameters. Notice that the fitted exponentially modified Laplace distribution
has heavier tails and a magnification of the upper tails of the soil nickel concentration data
(lower).
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Figure 5. Histogram (upper) and tail (lower) for nickel concentration data set. Overlaid on top is
the density EML with parameters estimated via MLE (solid line), exponentially modified Gaussian
density with parameters estimated via MLE (dotted line), exponentially modified logistic (dashed
line), and modified Laplace (dash-dotted line).
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On the other hand, Figure 6 shows the QQ plot of the fitted models. From these results,
it can be seen that the exponentially modified Laplace distribution provided a better fit
than the other distributions in consideration.
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Figure 6. QQ plot for nickel concentration data set. The modified Laplace density (a), exponentially
modified logistic density (b), exponentially modified Gaussian density (c), and exponentially modified
Laplace density (d).

5.2. Illustrative Example 2

The second illustration is related to the neodymium content in soil samples analyzed
at the Department of Mining (Department of Mines) of the University of Atacama, Chile
(see Appendix A, Table A2). Table 6 presents summary statistics for the data set of the
neodymium content in soil samples, where γ1 and γ2 are the skewness and kurtosis
coefficients of the sample, respectively. The moment estimators for these data are given by:
θ̂M = (µ̂M, σ̂M, λ̂M) = (4.2094, 10.3030, 0.5868).

Table 6. Summary statistics for neodymium concentration data.

n y sy γ1 γ2

86 35.1032 34.3307 3.8847 17.3951

The modified Laplace, exponentially modified logistic, exponentially modified Gaus-
sian, and exponentially modified Laplace distributions were fitted to the data set. Table 7
shows the maximum likelihood estimates of the parameters, with the corresponding stan-
dard deviations (sd) in parentheses, for the three mentioned distributions. The adjustment
criteria (AIC, BIC, CAIC, and HQIC) indicate that the data fit better to the exponentially
modified Laplace model, because they present a smaller or lower value.

Figure 7 shows the histogram plots and a magnification of the upper tails of the soil
neodymium concentration data with the modified Laplace, exponentially modified logistic,
exponentially modified Gaussian, exponentially modified Laplace, and distributions fitted
with the maximum likelihood estimators of its parameters where the fit of outliers is best
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observed. In addition, Figure 8 shows the QQ plot of the fitted models, observing that the
proposed model achieves a better capture of extreme values.

Table 7. Maximum likelihood estimators for models ML, EMLOG, EMG, and EML for the
neodymium concentration data set in the soil, with their corresponding standard deviations in
parentheses and comparison criteria AIC, BIC, CAIC, and HQIC.

Parameter Estimates ML EMLOG EMG EML

µ̂ 13.0001 (0.2804) 29.0578 (2.1736) 15.3836 (2.8609) 10.44577 (0.0388)
σ̂ 18.9313 (1.8033) 12.4762 (1.1937) 17.9653 (1.0407) 6.8136 (0.0091)
λ̂ 2.9883 (0.3412) 0.9147 (0.1363) 0.2831 (0.0339)

AIC 768.088 802.523 792.496 763.294
BIC 775.451 807.432 799.859 770.567

CAIC 776.451 808.432 800.859 771.657
HQIC 771.051 804.499 795.459 766.257
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Figure 7. Histogram (upper) and tail (lower) for the neodymium concentration data set. The first
graph shows the densities of the exponentially modified Laplace (solid line), Gaussian modified
exponentially (dashed line), exponentially modified logistic (dotted line), and modified Laplace
(dash-dotted line) distributions, with their parameters estimated by MLE.
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Figure 8. QQ plot for the neodymium concentration data set. The modified Laplace density (a), expo-
nentially modified logistic density (b), exponentially modified Gaussian density (c), and exponentially
modified Laplace density (d).

5.3. Illustrative Example 3

In this application, we used daily nitrogen concentration data obtained by chromatog-
raphy [13]. Data are given in the Appendix A (Tabla A3). Table 8 presents summary
statistics for the nitrogen concentration data set, where γ1 and γ2 are the sample skewness
and kurtosis coefficients, respectively. Moment estimators for these data are given by:
θ̂M = (µ̂M, σ̂M, λ̂M) = (0.0965, 1.0965, 2.0965). Table 9 shows the maximum likelihood esti-
mates for the parameters with their corresponding standard deviations (sd) in parentheses
for the modified Laplace, exponentially modified logistic, exponentially modified Gaussian
and exponentially modified Laplace distributions. The fit criteria used, AIC, BIC, CAIC
and HQIC, indicate that the exponentially modified Laplace model fits the data better.

Table 8. Summary statistics for nitrogen concentration data.

n y sy γ1 γ2

367 0.6189 0.0078 −1.3205 12.4692

Figure 9 shows the histogram plots and a magnification of the lower tails of the
nitrogen concentration data with the modified Laplace, exponentially modified logistic,
exponentially modified Gaussian, and exponentially modified Laplace distributions fitted
with the maximum likelihood estimators of its parameters where the fit of outliers is best
observed. In addition, Figure 10 shows the QQ plot of the fitted models, observing that the
proposed model achieves a better capture of extreme values.
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Table 9. Comparison of the maximum likelihood estimators for nitrogen concentration data between
the ML, EMLOG, EMG, and EML distributions with their corresponding standard deviations in
parentheses and comparison criteria AIC, BIC, CAIC and HQIC.

Parameter Estimates ML EMLOG EMG EML

µ̂ 0.6165 (0.0007) 0.6192 (0.0003) 0.6132 (0.0005) 0.6147 (0.0005)
σ̂ 0.0065 (0.0003) 0.0041 (0.0001) 0.0064 (0.0002) 0.0045 (0.0002)
λ̂ 1.5045 (0.1761) 1.0049 (0.0969) 0.9616 (0.1368)

AIC −2549.257 −2062.155 −2465.067 −2560.045
BIC −2530.541 −2054.345 −2453.351 −2548.329

CAIC −2536.541 −2053.344 −2452.351 −2547.329
HQIC −2544.602 −2059.052 −2460.412 −2555.390
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Figure 9. Histogram (upper) and tail (lower) for nitrogen concentration data set. The first graph
shows the densities of exponentially modified Laplace (solid line), Gaussian modified exponentially
(dashed line), exponentially modified logistic (dotted line) and modified Laplace (dash-dotted line)
distributions, with their parameters estimated by MLE.
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Figure 10. QQ plot for Nitrogen concentration data set. The density ML (a), EMLOG (b), EMG
density (c), and EML (d).

6. Conclusions

In this paper, a new and more flexible distribution, called the exponentially modified
Laplace distribution, has been proposed. We estimate the parameters of the model by the
moment and maximum likelihood methods. Likewise, we apply information criteria to
select the models and evaluate the goodness of fit of the new distribution compared to other
similar distributions in the current literature. We performed a Monte Carlo simulation
study to empirically assess the statistical performance of the estimates obtained. In addition,
we study the standard deviations, the mean length of the confidence intervals, and the
empirical coverage based on 95% confidence intervals. This simulation study reported a
good statistical performance of these estimates. Three illustrations were made using data
related to the chemical and environmental concentrations, comparing them with three
similar distributions presented in the literature. The analyses reported a good performance
of the new distribution compared to similar distributions, providing evidence that the
proposed model is a good alternative for modeling skewed and high-kurtosis data. These
results reported that the exponentially modified Laplace model can be an alternative to
analyze this type of data. The new approach is a contribution to the tools of statisticians
and various professionals interested in data modeling. From these applications, we have
obtained useful information that can be used by professionals and users of statistics. A
limitation of the proposed distribution is the loss of goodness of fit for data sets whose
sample kurtosis is less than five. Some topics for future research based on this new
distribution are related to the study of multivariate procedures, quantile regression, spatial
methods, temporal methods, partial least squares, principal components, etc.
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Appendix A

Table A1. Nickel Data.

2 3 3 3 4 4 6 6 7 7 7 8 8 10 10 11 11 11
12 12 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16
16 16 16 16 17 17 17 17 17 19 19 19 19 19 20 20 20 20
20 20 21 21 21 21 22 23 23 25 25 28 29 29 30 31 32 32
33 40 42 42 43 45 46 46 52 54 55 75 109

Table A2. Neodymium Data.

47 26 29 22 33 16 7 13 4 31 27 13 36 8 42 15 5 29
25 29 36 18 16 50 18 28 16 29 10 31 7 15 32 33 35 31
72 89 37 43 29 35 14 25 21 8 26 49 47 19 14 33 35 21
25 30 15 27 27 9 26 33 13 204 33 38 25 22 35 31 39 24
50 103 28 219 134 68 25 37 21 26 36 32 79 19

Table A3. Nitrogen Data.

0.607 0.605 0.606 0.606 0.609 0.631 0.617 0.626
0.610 0.611 0.610 0.606 0.610 0.612 0.614 0.613
0.614 0.614 0.615 0.616 0.616 0.616 0.616 0.615
0.616 0.616 0.616 0.618 0.617 0.617 0.617 0.617
0.617 0.617 0.617 0.619 0.619 0.618 0.618 0.622
0.619 0.620 0.620 0.619 0.617 0.616 0.614 0.617
0.611 0.611 0.612 0.611 0.612 0.612 0.612 0.613
0.610 0.612 0.613 0.614 0.613 0.612 0.610 0.609
0.613 0.612 0.616 0.612 0.611 0.611 0.613 0.609
0.612 0.612 0.612 0.605 0.604 0.615 0.620 0.622
0.617 0.619 0.621 0.622 0.630 0.626 0.616 0.617
0.621 0.623 0.625 0.626 0.624 0.618 0.618 0.618
0.621 0.623 0.625 0.626 0.624 0.618 0.618 0.618
0.622 0.623 0.623 0.608 0.624 0.620 0.619 0.615
0.611 0.615 0.612 0.620 0.623 0.627 0.628 0.625
0.627 0.628 0.626 0.627 0.626 0.625 0.625 0.625
0.624 0.626 0.627 0.626 0.628 0.626 0.619 0.618
0.627 0.626 0.626 0.627 0.626 0.626 0.628 0.629
0.627 0.627 0.627 0.627 0.625 0.625 0.629 0.623
0.619 0.573 0.565 0.585 0.595 0.608 0.614 0.614
0.612 0.615 0.616 0.617 0.615 0.615 0.615 0.614
0.610 0.610 0.611 0.611 0.611 0.612 0.610 0.609
0.611 0.614 0.617 0.617 0.620 0.622 0.619 0.618
0.619 0.622 0.618 0.619 0.620 0.619 0.620 0.621
0.617 0.620 0.621 0.623 0.626 0.627 0.626 0.626
0.627 0.626 0.628 0.626 0.624 0.624 0.621 0.620
0.621 0.619 0.621 0.626 0.627 0.624 0.622 0.622
0.622 0.622 0.622 0.625 0.622 0.621 0.618 0.616
0.621 0.619 0.623 0.626 0.625 0.624 0.619 0.620
0.630 0.629 0.630 0.631 0.632 0.624 0.625 0.628
0.623 0.628 0.626 0.629 0.628 0.630 0.618 0.607
0.631 0.630 0.629 0.630 0.629 0.631 0.632 0.633
0.625 0.619 0.619 0.653 0.624 0.622 0.645 0.619
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Table A3. Cont.

0.619 0.622 0.622 0.618 0.620 0.620 0.619 0.619
0.620 0.619 0.618 0.620 0.620 0.621 0.618 0.614
0.617 0.616 0.616 0.616 0.615 0.616 0.617 0.616
0.615 0.617 0.616 0.614 0.616 0.617 0.616 0.617
0.618 0.618 0.619 0.622 0.622 0.623 0.622
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