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Abstract: This paper introduces a new intelligent tuning for the model predictive control (MPC)
based on an effective intelligent algorithm named the bat-inspired algorithm (BIA) for the aircraft
longitudinal flight. The tuning of MPC horizon parameters represents the main challenge to adjust
the system performance. So, the BIA algorithm is intended to overcome the tuning issue of MPC
parameters due to conventional methods, such as trial and error or designer experience. The BIA is
adopted to explore the best parameters of MPC based on the minimization of various time domain
objective functions. The suggested aircraft model takes into account the aircraft dynamics and
constraints. The nonlinear dynamics of aircraft, gust disturbance, parameters uncertainty and
environment variations are considered the main issues against the control of aircraft to provide a
good flight performance. The nonlinear autoregressive moving average (NARMA-L2) controller
and proportional integral (PI) controller are suggested for aircraft control in order to evaluate the
effectiveness of the proposed MPC based on BIA. The proposed MPC based on BIA and suggested
controllers are evaluated against various criteria and functions to prove the effectiveness of MPC
based on BIA. The results confirm that the accomplishment of the suggested BIA-based MPC is
outstanding to the NARMA-L2 and traditional PI controllers according to the cross-correlation
criteria, integral time absolute error (ITAE), system overshoot, response settling time, and system
robustness.

Keywords: robotics and intelligent systems; flight mechanics; model predictive control; bat inspired
algorithm; NARMA-L2 controller; pilot stick

MSC: 65K99; 90C99

1. Introduction

The adjustment of the direction and altitude of an aircraft with less error during the
aircraft flight represents the main target of flight control. The objective of control design in
the process of flight dynamics is to adjust the direction of the vehicle about its center of
gravity (CoG) [1]. The definition of flight dynamics is summarized as the science of the
direction of air vehicles and the task of control around defined three dimensions called
pitch control, roll control, and yaw control. Additionally, flight systems control is divided
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into two categoriesnamed the primary phase and secondary phase control [2]. The primary
phase control is utilized for elevators, rudders, and ailerons and it is established to create a
safe aircraft flight control. However, the primary control can lead to rotation of the aircraft
around the rotational axis. So, secondary phase flight control is utilized to enhance the
aircraft’s performance characteristics and handle the overloading. The secondary type
contains the devices of high lift. Moreover, the control system in an aircraft comprises
surfaces of control. In the condition of a deviation in the surface of control, the control
designed system will produce a moment about the CoG. Consequently, the aircraft will
present a motion in pitch, roll, and yaw. Thus, in the condition of a force applied at a space
aft or forward to the CoG, a moment of pitching will be generated which creates pitching
of aircraft up or down [3].

In the literature, a lot of control techniques have been applied to solve the above-
mentioned control issue of aircraft [4–7].A comparative study between classical and mod-
ern control strategies for pitch control of an aircraft system is presented in [8]. Furthermore,
the longitudinal motion of a rigid plane is represented by nonlinear differential equations
that are developed from Newton’s second law of motion. In addition, completed work for
characteristics of flight, and mathematical models based on flight mode and type of un-
manned aerial vehicle (UAV) for an aircraft are given in [9]. However, these equations have
been linearized using a small disturbance theory. In [10], a Proportional-Integral-Derivative
(PID) controller is introduced for General Navion Aircraft by considering its longitudinal
motion. In addition, the control design is performed via a MATLAB/programming model,
and the angular deflection of the elevator is chosen as a command input and the output
is selected to be the pitch angle. However, the introduced PID is simpler and cannot
handle system constraints. In [11], a sliding mode control (SMC) is introduced based on
the linearization of the aircraft, with the elevator deflection and the pitch angle as the trim
variables. While the SMC suffers from a chattering problem that requires special switching
in the practical implementation. In [12,13], fuzzy logic control (FLC)is applied for aircraft
longitudinal motion based on the Takagi–Sugeno modeling method. The model of Takagi–
Sugenofor the aircraft motion along the proposed trajectory is utilized for the designing of a
state-space parallel decomposition controller (PDC). The designed control system enhances
closed-loop stability. However, the authors utilize the trial and error method to adjust the
membership function of the FLC which does not enhance the system performance. An
FLC algorithm is described to adapt the gains of the PID controller for the longitudinal
motion of aircraft in [14,15]. The hybrid Fuzzy PID controller is introduced to enhance the
control performance for longitudinal motion of aircraft dynamics. The implementation of
the hybrid Fuzzy PID controller requires a high computation process and high cost. In [16],
an artificial neural network (ANN) is applied to construct a mathematical model for an
aircraft framework with allowed data for the flight framework. The design of flight control
for a UAV by applying a nonlinear autoregressive moving average (NARMA-L2) neural
network-based feedback linearization and output redefinition method is discussed in [17].
In addition, the issue of using a neural network algorithm forthe flight control of an aircraft
in a longitudinal status of a remotely piloted vehicle is discussed in [18]. The identification
approach has been established to structure a mathematical representation for rotorcraft
and aircraftvia various engineering strategies that areused, for example, in flight tests as
presented in the paper [19]. However, the implementation of ANN faces a lot of challenges
due to the unavailability of enough datasets for the training and testing to provide high
accuracy.

Recently, the concern about applying MPC has increased significantly. The increas-
ing attention to using MPC is produced by its stability and fast response in the case of
nonlinearities, constraints, and uncertainties in parameters rather than traditional linear
quadratic regulators (LQR) [20–23]. In [20], an MPC is applied for high precision control of
the force in an experimental hydraulic system. In addition, the hardware of EHSS position
control based on hybrid PID MPC is discussed in [21]. However, the MPC requires fine
tuning for its parameters to provide good performance [24–26]. In [27], the tuning of MPC
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parameters is depicted for a mathematical model of a house with system identification and
precise control of thermal temperature. The tuning strategy of the MPC has been carried
out by the cuckoo search algorithm (CSA) for temperature control.In addition, the MPC
design based on CSA for the force control of the hydraulic servo system is demonstrated
in [28]. However, the CSA requires a fine selection for a lot of factors to optimize the
parameters of the MPC. Moreover, the MPC based on the trial and error tuning method
for aircraft control is discussed in [29]. Besides, the design of MPC in [29] did nottake into
consideration most aircraft problems, such as gust disturbance, nonlinear dynamics, and
parameter perturbations. The trial anderror method is notan accurate method and it is
considered a waste of time method.

The bat-inspired algorithm (BIA) is proposed in this article as a recent powerful and
intelligent method to handle the tuning issue of the MPC parameters to improve their
performance. The BIA is considered one of the efficient algorithms that are applied to tune
the parameters of different types of controllers for many practical applications [30–38].
Besides, the BIAhas become the most commonly used algorithm among researchers in
different fields. In addition, BIAs haveimportant features, such as dealing with several
parameters that are used for initializations wherever parameters with a lower number
are utilized as compared with other kinds of algorithms. Moreover, another important
advantage of BIA is that the rate of convergences is independent of its used parameters.
The bat algorithm requires a few tuning factors to reduce the longitudinal deviation of
aircraft motion against the nonlinear dynamics of aircraft, gust disturbance, parameter
uncertainty, and environmental variations.

Due to the sensitivity of the aircraft field, it requires that the control design be very
accurate with high performance including less settling time, rise time, error, and motion
overshoot.In fact, the accurate, simple, and fast tuning of the parameters of aircraft con-
trollers represent the main issue and challenge against the problems that face the aircraft
control field. As a result, the choosing of an MPC controller that can solve most of the
aircraft problems, such as uncertainty, gust, parameter perturbation, and improving the
tuning issue via BIA, will contribute to the sensitive aircraft control field.

The proposed MPC as an efficient controller that can handle the uncertainty, nonlin-
earities, and perturbation is used foraircraft control challenges. The MPC based on BIA
is utilized for controlling the longitudinal motion of aircraft to diminish oscillations with
low frequency. The BIA is dedicated to finding the best parameters of MPC based on the
decreasing of various time-domain objective functions. Besides, the NARMA-L2-based
longitudinal motion of aircraft is introduced to evaluate the performance of the suggested
MPC based on BIA. Different test scenarios are performed to confirm the effectiveness
of the suggested MPC based on BIA. Besides, the proposed controller is compared with
the traditional PI controller and theNARMA-L2 controller using different test signals for
the pilot stick. The paper is structured as in Figure 1.The contributions of the paper are
concluded as follows,

• Introducing the MPC as an effective controller for adjusting the longitudinal motion
of aircraft to overcome the nonlinear aircraft dynamics, gust disturbance, parameters
uncertainty, and environmental variations.

• The coefficients of the MPC are tuned via the BIA as an intelligent method rather
thantrial and error or designer experience.

• Various time-domain objective functions are utilized for the BIA in order to find the
best parameters of MPC.

• The longitudinal motion of aircraft control is carried out based on the NARMA-L2
controller to evaluate the accomplishment of the suggested MPC based on BIA.

• The proposed MPC based on BIA is compared with the traditional PI controller and
the NARMA-L2 controller using different test signals for the pilot stick.

• The results affirm that the superiority of aircraft performance based on the proposed
BIA-based MPC controller emulated with the NARMA-L2 and traditional PI con-
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trollers according to the cross-correlation criteria, integral time absolute error (ITAE),
overshoot, settling time, and system robustness.
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2. Problem Formulation

The accurate aircraft mathematical model is considered as the important first step to
analyzingand controlling the aircraft system that may be utilized to handle the control
and stability issues. The obtained model modifies the characteristics of flying which are
used to control the surfaces and design the flight systems. Newton’s second law has been
utilized to attain the mathematical equations that manage the behavior of flight vehicle
motion.Consequently, the applied forces on aircraft can be demonstrated in mathematic
symbols as below in Equation (1) as described in [12–15].

∑ F =
d
dt
(mv) (1)

where F refers to force components (Fx, Fy, and Fz) on three-dimensions (x, y, and z), m
denotes the mass of the system, v is a representation for velocity sharing both rotational
rates (p, q, and r) and linear rates (u, v, and w) in three dimensions (x, y, and z). Furthermore,
the parts of force are produced by adding propulsive, aerodynamic, and gravitational
forcesaffecting the airplane. The formulation of the moment is depicted in the equation:

∑ M =
d
dt
(H) (2)

where, M denotes to instance moment components L, M, and N on the around three
dimensions (x, y, and z). In addition, H stands for momentum parts moment as Hx, Hy,
and Hz, alongside three dimensions (x, y, and z). The aerodynamic moments and forces are
depicted as a function of all variables of motion. Therefore, the equations of motion are
introduced as in Equations (3)–(5) [1–3,15].[

d
dt
− Xu

]
u + g0cosθ0 − Xww = Xδe δe + XδT δT (3)

− Zuu +

[
(1− Z .

w)
d
dt
− Zw

]
w−

[
u0 + Zq

]
q + g0sinθ0 = Zδe δe + ZδT δT (4)
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−Muu−
[
(M .

w)
d
dt
−Mw

]
w +

[
d
dt
−Mq

]
q = Mδe + MδT δT (5)

where, Xw, Zw, Mw and Mw are defined as derivatives of system stability that is determined
at the reference flight condition. Additionally, the control factors containing δT and δe
represent the variants from the trim in the thrust or elevator and throttle settings. Xδe , Zδe ,
Mδe represent the settings of the X-force, and Z-force parts of the elevator, and the moment
due to pitching. The factors XδT , ZδT , MδT stand for the adjustment of the X-force, and
Z-force parts of the throttle, and moment due to pitching. Xu and Zu are a dimensional
change of the X-force and Z-force with speed, respectively, while Mu is a dimensional
change of pitching moment with speed. Mq and Zq are a dimensional change of pitching
moment with pitch rate and dimensional variation of Z-force with pitch rate, respectively.
g0, θ0 and u0 are acceleration due to gravity, main rotor collective pitch, and reference value,
respectively. The dot symbol over variables of the aircraft system in Equations (3)–(5) are
described as the derivative of the variables [14,15].

3. Model Predictive Control Strategy

Advanced control strategies represent the main core in industrial applications that
can enhance system performance and improve the rate of industrial production. Among
the advanced control strategies, the MPC is a class of effective control methodologies
that provides a good performance in different applications [20–27]. In fact, it is a suitable
control technique for most industrial application processes because it has the capability
of controlling the system within the defined constraints [26]. In addition, it relies on the
dynamic models of the industrial process, most linear experimental models are built by
using the system identification procedure. In contrast, most field engineers are not well-
known the advanced control method in theoretical studies and the relationship between
the control decision and the tuning of control system parameters. Consequently, it still has
restricted use and implementation in the industrial field [21,28].

Mainly, the computations of the MPC are executed at each sampling time, which can
be adjusted by the control designer. These computations depend on the measurements and
forecasting of upcoming output values [25]. There are two styles of computations in MPC,
the first is set point computations while the second is control computations. The control
computations contain the constraints of the process and other parameters that are capable
to be manually adjusted.

The control computations depend on the reduction of the forecasted deviations from
the command trajectory. The main idea for the operation of MPC strategy and the structure
of MPC are given in Figures 2 and 3.

The action of the MPC controller depends on a mathematical representation named
cost function (J(k)). The mathematic representation of system constraints and cost function
are introduced below [20–27]:

J(k) =
P

∑
i=1

Q.[ŷ(k + i|k )− r(k + i|k )]2 +
M−1

∑
i=0

R.[∆u(k + i|k )]2 (6)

Subject to
ymin ≤ ŷ(k + i|k ) ≤ymax (7)

umin ≤ u(k + i|k ) ≤ umax (8)

∆umin ≤ ∆u(k + i|k )≤ ∆umax (9)
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In the above Equations, the prediction horizon is symbolized as P and the control
horizon as M. Discrete time as k, i is the indicator through the P interval, Q and R stand for

output error weights and manipulated variable changing, respectively. In addition, ŷ(k+i
∣∣∣k)

and r(k+i
∣∣∣k) represent output based prediction and command at time k+i, respectively.

Besides, u(k+i
∣∣∣k) and ∆u(k+i

∣∣∣k) are the best manipulated variable-based prediction and
the manipulated variable forecasting rate at time k+i, respectively.

Model Flight Predictive Control

The proposed MPC controller will receive the signal of the pilot stick and set the point
value of the pilot stick in inches as the system input, to represent the system control signal.
Command values of the pilot stick are chosen to be step, multistep, and square signals.
The MPC strategy is used to predict the control signal depending on the signal of the pilot
stick and the set point value of the pilot stick in inches as a system input. The suggested
control design is developedvia the MPC toolbox in Matlab. The creationof MPC is begun
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by obtaining the linear time-invariant (LTI) system form of the aircraft application. The LTI
form is represented by the state-space model as given in Equation (10).

A =


−20 0 0 0 0
−137.69 −0.6571 −0.00592 0 0
−1280 689.4 −0.6385 0 0

0 0 0.0014505 −2.5259 0
0 1 0 0 −4.144

, B =


1
0
0
0
0


C = [0 0.8156 0 1.71 −0.9567],

(10)

Taking into consideration a period of sampling time (Ts) and several applied control
signals (N), the MPC methodology will operate at a certain rate equal to 1/N*Ts. It is very
important to know that the choice of suitable Ts is very important since it calculates the
length of the forecasting step. Furthermore, the behavior and accomplishment of the MPC
are influenced inevitably by the choiceof P and M. In addition, there are two numerical
weighting parameters, Q and R, that must be selected carefully for the system input and
output, respectively. As a result, the BIA is used to get the best values of Ts, P, M, Q, and R.

This research concentrates on the tuning of MPC parameters for aircraft longitudinal
flight control by applying the BIA. The main target of the optimization is to detect the
optimal parameters of the MPC that enhance the damping characteristics ofthe aircraft
system via decreasing the integral time absolute error (ITAE). The ITAE is given in the
following equation,

ITAE =
∫ ∞

0
t|e(t)|dt (11)

where t refers to time in seconds.

4. NARMA-L2 Control Strategy

The neuro-controller is represented by two various names: NARMA-L2 controller and
feedback linearization controller [33]. The neuro-controller is called a feedback linearization
controller when the model of the system has an attendant form. It is represented as
a NARMA-L2 controller when the system model is formulated through the identical
representation form. The main target of this control strategy is to convert the nonlinear
plant into a linear dynamic model via canceling the nonlinearities [33,34].

As explained in the case of MPC, the first process in utilizing the NARMA-L2 controller
is to choose the required model to be controlled. The neural network (NN) will be trained to
characterize the system’s forward dynamics. The first task is to choose a suitable structure
forthe used model structure. The model of autoregressive-moving average (ARMA) is
considered a common standard model to characterize the nonlinear system with discrete-
time forms [35] as follows,

y(k + d) = N[y(k), y(k− 1), . . . , y(k− n + 1), u(k), u(k− 1), . . . , u(k− n + 1)] (12)

where u(k) stands for the control signal, and y(k) represents the output of the system
response. In the stage of system identification, the neural network is trained to estimate the
nonlinear function ‘N’. Besides, the nonlinear strategy of control in the following form is
used to help the output of the system to follow a trajectory of command reference ‘y(k + d)
= yr(k + d)’ [33–35].

u(k) = G[y(k), y(k− 1), . . . , y(k− n + 1), yr(k + d), u(k− 1), . . . , u(k−m + 1)] (13)

The main problem with applying the nonlinear controller in the above equation is that
it is difficult to train the NN to obtain the function ‘G’ to decrease the mean square error
(MSE) because using a dynamic backpropagation will be quite slow. An approximate model
is used to represent the system dynamics to solve the problem of using dynamic backpropa-
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gation. The used controller is dependenton the NARMA-L2 simplified formulation [33–35]
as follows,

y(k + d) = f [y(k), y(k− 1), . . . , y(k− n + 1), u(k− 1), . . . , u(k−m + 1)]
+g[y(k), y(k− 1), . . . , y(k− n + 1), u(k− 1), . . . , u(k−m + 1)] u(k)

(14)

The shown formulation in the above equation is in companion form, where the next
control strategy input u(k) is free from nonlinearity. The target of this representation is that
the solving of the control signal makes the system response follow a certain reference, y(k +
d) = yr(k + d). The designed controller is formulated in Equation (15) [33–35].

u(k) =
yr(k + d)− f [y(k), y(k− 1), . . . , y(k− n + 1), u(k− 1), . . . , u(k− n + 1)]

g[y(k), y(k− 1), . . . , y(k− n + 1), u(k− 1), . . . , u(k− n + 1)]
(15)

Using this (15) directly can lead to realization issues because the control signal u(k)
should be adjusted based on the system response (k) simultaneously. So, the defined
formulation in the following equation can be used to overcome the realization problems.

y(k + d) = f [y(k), y(k− 1), . . . , y(k− n + 1), u(k), u(k− 1), . . . , u(k− n + 1)]
+g[y(k), . . . , y(k− n + 1), u(k), . . . , u(k− n + 1)]u(k + 1)

(16)

where d ≥ 2. Figure 4 shows the structure of a neural networkscheme.
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In the case of applying the model of NARMA-L2, the controller will introduce as in
Equation (17) [33–35],

u(k + 1) =
yr(k + d)− f [y(k), . . . , y(k− n + 1), u(k), . . . , u(k− n + 1)]

g[y(k), . . . , y(k− n + 1), u(k), . . . , u(k− n + 1)]
(17)

where the controller is convertible for d≥2. Figure 5 describes the schematic diagram of
the NARMA-L2 controller.
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5. Bat Inspired Algorithm Overview

This paper suggested the BIA as a recent optimization algorithm that does notneed
more adjustable factors. In addition, cooperation between multi-agents is utilized in the
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BIA to enhance the exploration behavior that improves the global search and against the
trapping problem in a certain local optimum position [36]. The bat-inspired algorithm has
been expanded depending on the bats’ manner for echolocation in findingtheir victims.
The ideas of tuning based on BIA were firstly presented by Yang [36]. The bats generate
continuous ultrasound pulses and then wait for listening to the echoes that rebound reverse
from the adjacent targets. The gap inultrasound pulses changes based on the types and
raises utilizing harmonics. The ultrasound waves reverberate with time delays and various
levels of sound that allow each bat to take prey [37]. Naturally, virtual bats are used in the
simulation process. Moreover, the displacementxi and velocity vi for every virtual bat are
renewed through the process of optimization. The following equations represent the new
displacements xt

i and velocities vt
i at time stage [36–38].

fi = fmin+( fmax − fmin)β (18)

vt
i = vt−1

i +
(
xt

i − x∗
)

fi (19)

xt
i = xt−1

i + vt
i (20)

where β stands for random factor obtained based on a function with uniform distribution
and β ∈ [0, 1]. x∗ is the current global best location derived after the arrangement process
for all solutions/displacements among all n bats. Given that, the velocity is presented
by vi = δi fi. The velocity will be changed if there is an increase in either fi or δi. To start
the operation of the optimization process, each bat will randomly allocatea frequency
fi ∈ [ fmin, fmax]. Intended for the local process search, a new solution/displacement for
every bat is generated locally based on a random walk in case of selecting one solution
between the current best locations/solutions [38].

xnew = xold + εKt, ε ∈ [−1, 1] (21)

where ε is defined as a random number. In addition, Kt represents the average loudness of
all bats at this time stage. In case a bat finds its prey, its loudness will be decreased, but the
rate of its pulse generation grows and then loudness is chosen as any suitable value. The
case of zero loudness demonstrates that the bat has presently found prey and temporarily
stops transmitting every sound. This is adjusted through the below formulation [36–38]:

Kt+1
i = αKt

i 0 < α < 1, rt+1
i − r0

i
(
1− e−γt), γ > 0 (22)

where ri is the pulse emission rate of bats. As the final iteration is reached, zero loudness is
achieved, and γt

i = γ0
i .

The tuning cycle of MPC parameters is shown in Figure 7. The BIA takes the error as
in Equation (11) as the objective function to be minimized, then tunes the parameters.



Mathematics 2022, 10, 3510 11 of 24
Mathematics 2022, 10, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 7. The BIA flowchart with aircraft model predictive controller tuning process. 

6. Results and Discussions 
In this research, simulation processes were carried out based on the traditional PI 

controller, NARMA-L2 controller, and the proposed BIA-based MPC controller for a 
longitudinal motion of aircraft flight system when using step, square and multistep sig-
nals for the aircraft pilot stick. Table 1 records the best values of the controller parameters 
and corresponding values of the performance index (ITAE) and cross-correlation func-
tion (XCF). As in Table 1, the recommended BIA-based MPC strategy has the best 
damping characteristics and the minimum ITAE and XCF values compared with the 
traditional PI controller and NARMA-L2 controller. 

Identification results of the NARMA-L2 aircraft model: The identification of the 
aircraft model is obtained based on 10,000 samples of input/output data that are collected 
from the original system model. A random input signal, uk[−1,1] is used to excite the air-
craft system to collect the dataset that is used in the identification process. The collected 
datasets are split into three parts:the training dataset is utilized to train the model of 
NARMA-L2, the validation dataset is intended to validate the obtained model, and the 
testing dataset is utilized to test the generated aircraft neural model. 

With the aim of training the neural network, which arranged the NARMA-L2 es-
tablished model, the initial biases and weights are unsystematically chosen. The mean 
squared error (MSE) for the target error is selected to be 10−7. The optimal structure of the 
neural network is built dependingon heuristics, which achieves the least MSE after uti-
lizing various numbers of hidden layer neurons for the ANN. The Levenberg Marquardt 
is used as an optimization routine for the learning process in the neural network model. 
The number of epochs for training is 500 iterations. The training, validation, and testing 
data are shown in Figures 8, 9 and 10, respectively. These figures present the excitation 
input, plant output, NN output, and error.It is clear from the figures that the error is 

Figure 7. The BIA flowchart with aircraft model predictive controller tuning process.

6. Results and Discussions

In this research, simulation processes were carried out based on the traditional PI
controller, NARMA-L2 controller, and the proposed BIA-based MPC controller for a lon-
gitudinal motion of aircraft flight system when using step, square and multistep signals
for the aircraft pilot stick. Table 1 records the best values of the controller parameters
and corresponding values of the performance index (ITAE) and cross-correlation function
(XCF). As in Table 1, the recommended BIA-based MPC strategy has the best damping
characteristics and the minimum ITAE and XCF values compared with the traditional PI
controller and NARMA-L2 controller.

Identification results of the NARMA-L2 aircraft model: The identification of the aircraft
model is obtained based on 10,000 samples of input/output data that are collected from
the original system model. A random input signal, uk[−1,1] is used to excite the aircraft
system to collect the dataset that is used in the identification process. The collected datasets
are split into three parts:the training dataset is utilized to train the model of NARMA-L2,
the validation dataset is intended to validate the obtained model, and the testing dataset is
utilized to test the generated aircraft neural model.

With the aim of training the neural network, which arranged the NARMA-L2 es-
tablished model, the initial biases and weights are unsystematically chosen. The mean
squared error (MSE) for the target error is selected to be 10−7. The optimal structure of
the neural network is built dependingon heuristics, which achieves the least MSE after
utilizing various numbers of hidden layer neurons for the ANN. The Levenberg Marquardt
is used as an optimization routine for the learning process in the neural network model.
The number of epochs for training is 500 iterations. The training, validation, and testing
data are shown in Figures 8–10, respectively. These figures present the excitation input,
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plant output, NN output, and error.It is clear from the figures that the error is negligible
and close to zero for all the tests which demonstrates a strong significance that the NN
model is agreeable.

Table 1. The optimum value of controller parameters and performance criteria.

Conventional PI NARMA-L2 BIA Based MPC

Controller parameters Kp = −1.746,
Ki = −3.864 It is defined in Figure 9 Ts = 0.01, P = 11, M = 1,

Q = 1.4024, R = 0.22449

Step
performance

Tr = 0.24 s,
Ts = 2.26 s,

%O.S = 0.8385%,
Peak: 1.008

Tr = 0.19 s,
Ts = 10 s,

%O.S = 0.8854%,
Peak: 1.009

Tr = 0.25 s,
Ts = 0.46 s,

%O.S = 0.44%,
Peak: 1.002

ITAE 0.161 0.7 0.105

Multistep
ITAE 75.05 444.1 39.1

XCF (%) 94.43 88.63 95.44

Square
ITAE 49.74 18.87 25.23

XCF (%) 94.93 98.1 95.94
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After designing the proposed BIA-based MPC, the traditional PI controller, and
NARMA-L2 controller, the following test scenarios are produced to check the effective-
ness of the proposed controller at the nominal case, system parameters perturbation, and
disturbance.

6.1. Nominal Case

To evaluate the effectiveness and the performance of the suggested control strategies,
the controller is used to adjust the longitudinal movement of aircraft as flight control. Three
different signals of trajectory control are applied to the model namely step, multistep and
square signals. These signals are applied to the system based on PI, NARMA-L2, and
BIA-based MPC controllers. The performance criteria including settling time, overshoot,
rise time, ITAE, XCF, and peak response for the suggested control strategies are presented
in the chart plots in Figures 11 and 12. In addition, the simulation responses are shown in
Figures 13–18. Considering the results in Table 1, the proposed BIA-based MPC demon-
strates an acceptable result witha settling time of about 0.46 sec, an overshoot of about
0.44%, and an ITAE of about 0.106 in comparison with traditional PI and NARMA-L2
controllers. Figures 13 and 14 clarify the effectiveness of the proposed controller which
confirms the numerical results in Table 1. In Figure 12, the NARMA L2 gives an oscillation
in the system response and it is very clear inthe zoomed part in Figures 13 and 14.
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6.2. System Parameters Perturbationand Disturbance case

It is very important to attest to the robustness of the recommendedBIA-based MPC
control methodology. For this requirement, deviations in the parameters of the aircraft
model and operating points conditions are taken into the account. Figures 15 and 16 show
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the change in input profile as multi-amplitude and multi-frequency signals to check the
system robustness against strong variations in the input signal. In addition, the system
input signal is changed to be a square wave as given in Figures 17 and 18. Considering
Figures 15–18, it is very obvious that the BIA-based MPC introduces better tracking control
compared to the PI controller and the NARMA-L2 controller which gives an oscillation
output response. In addition, in Table 1, two different performance indices including
cross-correlation function (XCF) and ITAE are used to evaluate the tracking performance
for the suggested controllers. The numerical data in Table 1 arepresented in the chart plot as
given in Figure 12. In this situation, the BIA-based MPC demonstrates acceptable numerical
results for the pilot stick control tracking based on multistep and square command inputs.
Figures 19–21 demonstrate the system performance in case of system variations by 20%,
30%, and 40%. Moreover, Figures 22–24 demonstrate the system response based on the PI,
NARMA-L2, and BIA-based MPC, respectively, with variations in the actuator coefficient
(Ta) by 20%, 30%, and 40%. Table 2 demonstrates the performance criteria for the proposed
controller in the case of system perturbation. From this simulation result and considering
numerical results in Table 2, it is observed that the aircraft modelis stable with the suggested
BIA-based MPC controller compared with other controllers. Furthermore, the investigated
MPCs control methodologies have the capability to extinguish the system oscillations under
parameter deviations and variations in contrast with NARMA-L2 and PI controllers.
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Table 2. Evaluation of Controllers Based on System Parameter Perturbation.

Type of Controller Perturbations RiseTime (s) SettlingTime (s) Overshoot (%) Peak (inch)

BIA-MPC

nominal

0.2504 0.4612 0.4465 1.0045

NARMA-L2 0.19 9.5 0.8854 1.0089

Traditional PI 0.24 2.26 0.838 1.0084

BIA-MPC

20%

0.25 0.43 0.65 1.006

NARMA-L2 0.19 9.4 0.89 1.0089

Traditional PI 0.24 2.26 0.838 1.008

BIA-MPC

30%

0.25 0.42 1.03 1.0104

NARMA-L2 0.2 9.93 0.727 1.0078

Traditional PI 0.24 2.26 0.83 1.008

BIA-MPC

40%

0.254 0.419 1.475 1.0147

NARMA-L2 0.202 9.95 0.975 1.0098

Traditional PI 0.24 2.26 0.838 1.008

To study the system robustness, a disturbance signal has been added to the control
signal of the actuator as shown in Figure 25. The system response based on the disturbance
signal is given in Figure 26. The BIA-based MPC still maintains its robustness and high
performance for tracing the pilot stick input for the flight control system. In addition,
NARMA-L2 cannot damp the system oscillatory and it is more increased compared tothe
nominal case study, making the system more unstable. Finally, the numerical and graphical
results give the leading of BIA-based MPC to regulate the longitudinal movement of
aircraft. In addition, it can be summarized that the NARMA-L2 regulator is supposedly
powerful and it presents a satisfactory system modeling-based neural network. However,
it introduces poor response in the aircraft motion control of longitudinal behavior. This
complies with the cleared chattering in the output aircraft response.
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7. Conclusions

This paper introduces a new intelligent tuning for the model predictive longitudinal
motion flight controller based on a new algorithm named BIA. The BIA algorithm is used to
find the best parameters of the MPC rather than the trial and error or designer experience.
A defined ITAE-based performance index has been used to decrease both settling time
and maximum overshooting simultaneously. Besides, the longitudinal motion of aircraft
control is carried out based on the NARMA-L2 controller to evaluate the accomplishment
of the suggested MPC based on BIA.Despite the spreading fact that the NARMA-L2 control
strategy introduces an inspiring method to precisely control the nonlinear system, this
paper revealed that this controller has a high chattering, as seen from the simulation
result responses of the longitudinal motion of aircraft flight control at different desired
profile trajectories. Evaluating the suggested BIA-based MPC with the traditional PI
and NARMA-L2 controllers proved the superiority of the developed BIA-based MPC
to track the system reference with distinct results forsettling time, maximum overshoot,
and ITAE. Furthermore, the suggested BIA-based MPC can guarantee the stability of the
aircraft system under system perturbation and system disturbance that can be established
forvarious engineering applications in future work.
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