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Abstract: Traffic flow prediction is essential to the intelligent transportation system (ITS). However,
due to the complex spatial-temporal dependence of traffic flow data, it is insufficient in the extraction
of local and global spatial-temporal correlations for the previous process on road network and traffic
flow modeling. This paper proposes an attention and wavelet-based spatial-temporal graph neural
network for traffic flow and speed prediction (STAGWNN). It integrated attention and graph wavelet
neural networks to capture local and global spatial information. Meanwhile, we stacked a gated
temporal convolutional network (gated TCN) with a temporal attention mechanism to extract the
time series information. The experiment was carried out on real public transportation datasets:
PEMS-BAY and PEMSD7(M). The comparison results showed that our proposed model outperformed
baseline networks on these datasets, which indicated that STAGWNN could better capture the
spatial-temporal correlation information.

Keywords: wavelet transform; graph convolutional network; attention mechanism; intelligent
transportation

MSC: 68T07

1. Introduction

In recent years, the wide application of ITS in real traffic has promoted the techno-
logical progress of road traffic. Meanwhile, with the development of artificial intelligence,
more and more algorithms are developed and applied to it. Yuan et al. [1] proposed a
multi-objective particle swarm optimization algorithm with a competitive mechanism to
solve the signalized traffic problem. Huang et al. [2] proposed an airport anomaly detection
based on the ITS Generative Adversarial Network (GAN). Yang et al. [3] proposed a 3D
object detection algorithm for ITS based on multi-feature fusion. As an important part of
ITS, traffic flow prediction has become the mainstream of modern traffic research [4]. With
the development of deep learning, convolutional neural networks (CNNs) [5] have been
widely used in natural language processing [6], image processing [7] and other fields due
to their powerful modeling ability for Euclidean structural attribute data. However, it is
still difficult for traditional CNNs to model traffic flow data because of its non-structural
attribute. In recent years, graph convolution networks (GCNs) for unstructured attribute
data have become a new research direction for traffic flow prediction [8]. Zhao et al. [9]
proposed to combine GCN and a gated recurrent unit (GRU) to capture spatial-temporal
dependencies. Yu et al. [10] extracted the spatial-temporal features by combining GCN
with CNN.

Although GCNs have been successfully used for many traffic flow prediction tasks,
a lot of challenges still remain [11]. In the process of extracting spatial characteristics,
most existing methods used a fixed graphical structure obtained from previous knowledge.
However, there is no guarantee that the obtained structure is accurate for the current
learning tasks. In real traffic road networks, roads interact with each other, and the graph
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structure of traffic flow data changes over time. Wu et al. [12] adaptively extracted a sparse
graphical adjacency matrix based on input data to update the matrix during training. Yu
et al. [13] presented iterative learning for graphic learning using graph regularization. Wu
et al. [14] proposed an adaptive adjacency matrix to obtain hidden spatial correlations.
These methods captured long-term or global spatial dependencies in traffic data by con-
structing adaptive graph matrices. These methods are undoubtedly still roughly capturing
long-term or global spatial dependencies. In fact, sudden events such as traffic accidents
will directly lead to changes in traffic flow, and the data mutation of the corresponding
local nodes becomes a key factor. Therefore, enhancing the data change capture ability of
local nodes is an important aspect of improving traffic flow prediction, which is also the
direct motivation of this work. The contribution of this paper is summarized as follows:

• A spatial-temporal graph neural network (STAGWNN) for traffic flow prediction was
proposed. In it, a wavelet-based graph neural network (GWNN) combined with a
graph convolutional neural network with a learnable location attention mechanism
were fused to dynamically capture the local and global spatial topology of traffic
flow data.

• We proposed to fuse a gated TCN and temporal attention mechanism to extract the
local and global temporal features of traffic flow data.

• The proposed model was tested on two real traffic datasets, and the results showed
that it outperformed all baseline networks.

2. Related Work
2.1. Traffic Flow Prediction

Many methods of traffic flow prediction have been proposed based on traditional
machine learning and theoretical statistical analysis. Such models include auto-regressive
integrated moving average (ARIMA) [15], Kalman Filter [16], Support Vector Regression
(SVR) [17], and k-Nearest Neighbors (k-NN) [18]. However, these methods are based on
the assumption of the stationarity of changes in the input data. Therefore, it is difficult to
model complex and changeable traffic data in the real world. Yu et al. [19] applied the long
short-term memory network (LSTM) to the traffic flow prediction task, which obtained
better results than traditional methods. However, this method only considered the effect
of the time dimension of the traffic data. Subsequently, Zhang et al. [20,21] proposed to
convert traffic road network data into regular grid data and capture its spatially dependent
features through CNN. However, converting irregular traffic data into regular grid data
can cause a certain degree of spatial information loss. With the development of GCN, many
methods and models based on graph convolution have been used in traffic prediction [11].
Li et al. [22] proposed a Diffusion Convolutional Neural Network (DCRNN), which used
diffusion convolution with GRU to capture spatial and temporal dependencies. Yu et al. [6]
proposed a spatial-temporal convolutional neural network (STGCN) to extract spatio-
temporal features by fusing GCN and CNN. However, the fixed adjacency matrix cannot
capture the spatially dependent features that change with time. Huang et al. [23] proposed a
long short-term graph convolution network (LSGCN), which integrated the graph attention
network and GCN into a spatial gating block for spatial feature extraction. Zhang et al. [24]
proposed a spatial-temporal graph structure learning method (SLCNN), which captured
global and local structures separately through two SLC modules and integrated them for
the task of traffic flow prediction. However, these methods still utilized predefined graph
structures and ignored the hidden graph structure information. In addition, the above
graph-based methods mainly used the graph convolution operation, which could only
perform feature aggregation on neighboring nodes within a specified range. Therefore, the
feature extraction process in them was inflexible, and the local feature extraction capability
had certain limitations [25]. Cui et al. combined wavelet transformation and RNN to extract
the spatial-temporal correlation of traffic flow, resulting in the better extraction of local
spatial information [26]. However, relying solely on a fixed adjacency matrix to capture
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spatial topology information lacks a comprehensive consideration of the local and global
spatial-temporal features of traffic flow data.

2.2. Graph Convolution Network

In recent years, GCNs have been successfully applied to learning tasks such as link
prediction [27], node classification [28], and clustering [29] due to the powerful modeling
capabilities of graph-structured data. However, the adjacency matrix of the graph is usually
fixed during the execution of the graph convolution operation, which cannot learn the
dynamic graph structure. Xie et al. [30] proposed to update the weight parameters of
node neighbors in the graph by using an attention mechanism. Liu et al. [31] designed
an adaptive graph node information transmission path network to provide node depen-
dency information for updating node connectivity relationships. Li et al. [32] designed an
adjacency matrix for adaptive learning graphs based on the distance metric.

We proposed an attention and wavelet-based spatial-temporal graph neural network
for traffic flow and speed prediction. It considers the temporal and spatial correlations in
both time and space dimensions from local and global perspectives. Moreover, it realizes
the fusion of spatial graphs of multiple time steps and has the ability to better extract the
time dependence of spatial-temporal sequences.

3. Methodology
3.1. Preliminaries
3.1.1. Spatial-Temporal Graph Prediction of Traffic Flow

In general, traffic status refers to traffic speed, flow, and density. This research chooses
traffic speed to represent traffic status. We define the traffic network on a graph, the traffic
flow monitoring point can be abstracted as a node in the graph, and the state of the node
is the collected traffic flow information. Meanwhile, the spatial relationship between two
traffic flow monitoring points can be represented by the edges of the graph. Therefore,
the traffic network can be denoted as G = (V, E). Give the traffic flow time series atlas{

Gt
∣∣t ∈ T

}
, where T represents the length for a graph structure with n nodes, assuming

that the length of the historical observation window is H and t represents the current
moment. The sequence atlas is represented as

{
Gt−H+1, · · · , Gt}, where the feature matrix

corresponding to the node is V ∈ Rn×i×d(i = t− H + 1, · · · t), i represents the sequence
length, and d represents the node feature dimension. The spatial-temporal graph prediction
of traffic flow refers to the use of historical window data to obtain a forecast atlas for a
period of time in the future. Predicting the most likely traffic measurements in the next P
time steps given the previous H traffic observations as

Gt+1, Gt+2, · · · , Gt+P ← arg max logF(Gt+1, · · · , Gt+P
∣∣∣Gt−H+1, · · · , Gt) (1)

When converting traffic flow data into spatio-temporal graph sequence data for predic-
tion, not only should the time series prediction of node-level feature data be considered, but
also the need for the influence of the connections (edges) between nodes on the prediction
should be considered spatially. Therefore, as shown in Figure 1, the spatio-temporal graph
prediction of traffic flow requires the evolution of the evaluation graph at two levels of time
and space, and it is obtained by the fusion of the two forecast results.
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Figure 1. Schematic diagram of the evolution of the spatio-temporal graph prediction of traffic flow.

3.1.2. Graph Convolution

The graph is generally represented as G = (V, E), where V represents the node set
of the graph G and E is the set of edges. The most commonly used representation of the
graph is the adjacency matrix: A =

{
aij
∣∣vi, vj

}
. In order to obtain the spatial dependencies

in the graph, we define the convolution operation in the frequency domain. For the traffic
flow data x, the graph convolution operation ∗G is convolved by a kernel filter F with a
convolution kernel gθ , U is the eigenvector of the Laplace matrix, and the convolution
operation can be expressed as:

F ∗G x = U[
(

UT F(L)�
(

UTx
)]

= UgθUTx (2)

where L = In − D−1/2 AD1/2, D represents the degree matrix of graph G, and
Dij = ∑j Aij, In ∈ Rn×n is the identity matrix.

In order to simplify the calculation, the Chebyshev polynomial is usually used for
approximate calculation, and the formula can be rewritten as:

F ∗G x ≈∑ K−1
k=0 θkTk(L)x (3)

where L = 2L
λmax
− In, Tk(L) is the Chebyshev approximation polynomial of order K. When

the number of hops K = 1, the first-order Chebyshev approximation can be obtained:

F ∗G x ≈ θ0x− θ1

(
D−1/2 AD1/2

)
x (4)

θ0, θ1 are the hyperparameters of the one-hop and two-hop nodes. Let θ = θ0 = θ1,
then the first-order linear expression of the graph convolution layer is expressed as:

Hl = σ(D−1/2 AD1/2Hl−1W l) (5)

where Hl represents the output of the lth layer, σ(·) is the activation function, and W
represents the learnable parameter.

3.2. Methodology
3.2.1. Framework of STAWGNN

In traffic flow prediction tasks, the ability to sufficiently capture the spatial and
temporal dependencies hidden in the traffic flow data is the key to modeling. This section
will introduce the design of temporal feature fusion convolutional learning, spatial feature
fusion convolutional learning, and spatial-temporal feature fusion convolutional blocks. In
the STAWGNN model, a fusion of the graph wavelet convolution and a graph convolution
applying a learnable location attention mechanism is designed for spatially dependent
feature extraction of traffic flow data. Meanwhile, a fusion of temporal time attention
mechanism and gated TCN is used to capture temporally dependent features. As shown in
Figure 2, the overall framework designed by STAWGNN includes three parts: the input
layer, spatio-temporal feature fusion extraction layer, and prediction output layer. The
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spatial-temporal feature extraction part consists of two spatial-temporal feature fusion
convolution blocks. Each spatial-temporal convolutional block contains two temporal
feature fusion convolutional layers and one spatial feature fusion convolutional layer.

Figure 2. Overall Architecture of the STAGWNN model.

3.2.2. Spatial Feature Fusion Convolutional Layer

As shown in Equation (6), the Fourier transform defines a graph convolution opera-
tion based on the spectral domain. However, this defined convolution operation can only
perform feature aggregation on adjacent nodes within a certain range, which is not flexible
enough. Therefore, the wavelet transform, instead of the Fourier transform, is proposed
to realize the convolution theorem [28]. Compared with the Fourier transform, the graph
wavelet transform aggregates local node information to characterize node features, which
improves the interpretability of the method. Given the wavelet basis set ψs, set the convo-
lution kernel as Θ. For the input signal x ∈ Rn, the graph wavelet convolution operation is
defined as follows:

x ∗G Θ = ψs

((
ψs
−1x

)
�
(

ψs
−1Θ

))
(6)

where ∗G represents the convolution operation, � represents the Hadamard product, and
ψs
−1 = (ψs1

∗, ψs2
∗, · · · , ψsn

∗) is the inverse transform of ψs.
However, in the actual traffic network, the spatial dependencies between nodes are

not fixed. Therefore, a learnable location attention mechanism is designed to replace the
original adjacency matrix with the new relationship matrix generated by learning. The
graph convolution operation is used to capture the variable spatial dependencies between
nodes. The computation of each element R [i, j] in the relationship matrix learned based on
the position is as Equation (7).

R[i, j] =
exp
(
∅
(
Score

(
pi, pj

)))
∑N

k=1 exp(∅(Score(pi, pk)))
(7)

Score
(

pi, pj
)
= pT

i pj (8)
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where pi represents the potential position representation of each node, and in order to
reduce the computational complexity, the relationship matrix R is sparsed with a mask:

mask(R) =
{

Rij, i f Ãij > 0
0, otherwise

(9)

Perform the graph convolution operation on the newly learned relation matrix mask
(R), then Formula (5) can be transformed into:

Hl = σ(DR
−1/2R̃DR

1/2Hl−1W l) (10)

where R̃ = mask(R) + In, DR is the degree matrix of R̃.
For the input Hl−1

s after a spatial feature fusion extraction layer, the iterative formula
of the output Hl

s is:

Hl
s = ReLU(ψsgθψs

−1Hl−1W l
1)� σ(DR

−1/2R̃DR
1/2Hl−1

s W l
2) (11)

3.2.3. Temporal Feature Fusion Convolutional Layer

The extraction of temporal features is an unavoidable problem in traffic flow prediction
tasks. The gated TCN includes two causal convolutions with Ht width filter kernels. One
causal convolution is followed by a sigmoid activation function to produce an output P.
The other causal convolution is followed by a residual connection, which directly adds to
the input to produce an output Q. The gate of sigmoid activation controls which sequences
Q of the current time step are relevant for exploring dynamic correlations in the time series.
Meanwhile, the sigmoid gate also contributes to the exploring of the complete input field
via the multiple 1-D convolutional layers. Given the input sequence X ∈ Rm×ci , where m is
the length of the sequence on time axis and ci is the number of channel. The filter kernel Γ
with Ht width is used to produce an output with dimensions (m− Ht + 1)× c0. Thus, the
gated TCN can be expressed as:

Γ ∗t X = P�Q ∈ R( m−Ht+1)×c0 (12)

where � is the Hadamard product, and ∗t is the operator of gated TCN.
However, real-world traffic networks are complex. Global temporal information

extraction is performed on traffic data by the temporal attention mechanism [33]. The
attention function is to map a query and a set of key-value pairs to an output, where
both the query and the key-value pairs are vectors. The output is a weighted sum of
values, where the weight assigned to each value is determined by both the query and the
corresponding key. The attention function is calculated as shown in Equation (13):

Attention(Q, K, V) = so f tmax(
QKT
√

dk
V) (13)

For input HT ∈ RT×d, Q = HTWQ; K = HTWK, V = HTWV where WQ ∈ Rd×dk ,
WV ∈ Rd×dk is the projection matrix to be learned, which is shared by all nodes. Therefore,
the calculation formula of the attention function can be rewritten as Formula (14):

Attention(HT) = so f tmax(
(

HiWQ)(HiWK)T

√
dk

HTWV) (14)

In order to jointly aggregate information from different representation subspaces, the
results of multiple attention layers are integrated to improve the presentation of the model.
When there are M attention layers, the multi-head attention is expressed as:
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Multihead(HT) = Concat([head1, · · · , headM])WO,

headM = AttentionM(HT) = so f tmax(
(HTWQ

M)(HTWK
M)

T

√
dk

HTWV
M)

(15)

where WQ
M, WK

M, WV
M is the projection matrix of the Mth attention head, and WO is another

linear output projection.
A gated TCN can obtain the temporal order correlation and is a locally relevant feature

extraction method. STGAWNN can better extract temporal feature information of traffic
flow by fusing a gated TCN and temporal features extracted by an attention module As
shown in Figure 3 for the input Hl−1

t after a temporal feature fusion extraction layer, the
iterative formula for outputting Hl

t is:

Hl−1
t = ReLU((Hl

t Γ∗t)�Multihead
(

Hl
t

)
) (16)

Figure 3. Temporal feature fusion layer. σ represents the sigmoid activation function and⊗ represents
the element-wise Hadamard product between two branches. P and Q are the outputs of Casual Conv.

3.2.4. Prediction Output Layer

After two layers of stacked spatial-temporal feature fusion convolution blocks, the
input traffic flow data is mapped to a gated TCN layer for single-step prediction. Finally,
the output Z of the model is linearly transformed by channel c to the final prediction result
V̂ = Zw + b, where w ∈ Rc is the weight vector and b is the bias. We use the L2 loss to
measure the performance of the model. The loss function of the STAGWNN model for the
prediction task is Formula (17):

L
(
V̂, Wθ

)
= ∑

t

∣∣∣∣V̂(Vt−H+1, · · · , Vt, Wθ)−Vt+1
∣∣∣∣2 (17)

where Wθ is the learnable parameter of the model, Vt+1 represents the true value, and V̂(·)
represents STAGWNN prediction result.

4. Experiment
4.1. Dataset Details

This section mainly verifies the model proposed in this paper. In the experiment, two
public transportation network datasets, PEMSD7(M) [34,35] and PEMS-BAY [35,36], are
used. The statistical information of these datasets is shown in Table 1.
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Table 1. Dataset Statistics.

Dataset Node Edge Number Time Steps Time Interval Long Unit

PEMS-BAY 325 2369 52,116 5 min 12 km/h
PEMSD7(M) 228 832 12,672 5 min 12 km/h

For PEMS-BAY and PEMSD7(M), the adjacency matrix in them is calculated based on
the distances between nodes. The weighted adjacency matrix W can be expressed as:

Wij =

 exp
(
− dis(vi ,vj)

2

σ2

)
, dis

(
vi, vj

)
≤ δ

0 , otherwise
(18)

where dis
(
vi, vj

)
represents the distance from node vi to node vj, and σ2 = 10 and δ = 0.5

are thresholds to control the distribution and sparsity of matrix Wij. Wij is the value of the
ith row and jth column in the weighted adjacency matrix.

4.2. Experimental Settings

All experiments were conducted on the NVIDIA A100 with 80G video memory. The
size of the historical observation window is H = 12. Observations from the past hour
(12 × 5 min) are used to predict the traffic conditions in the next 15, 30, and 45 min in
PeMSD7(M) and 15, 30, and 60 min in PEMS-BAY. We also selected 80% of the data for train-
ing, 10% of the data for testing, and the remaining 10% of the data for validation. Table 2
gives the best hyper-parameters for training our proposed model. They are determined by
trial and error.

Table 2. Optimal hyper-parameter settings for training our proposed model.

Dataset Batch Size Epochs Learning Rate Dropout Rate S Optimizer

PEMS-BAY 32 100 0.0001 0.5 0.05 Adam
PEMSD7(M) 32 100 0.0001 0.5 0.05 Adam

4.3. Evaluation Indicators and Comparison Models

We adopted Mean Absolute Errors (MAE), Mean Absolute Percentage Errors (MAPE),
and Root Mean Squared Errors (RMSE) to measure the prediction performance of the
proposed model. The models involved in the comparison include:

• STGCN: Spatial-temporal graph convolutional network [10], which applied ChebNet
graph convolution and 1D convolution to extract spatial and temporal correlation.

• ARIMA: Autoregressive integrated moving average model with Kalman filtering [15].
• FC-LSTM: LSTM encoder-decoder predictor model [37] that employed a recurrent

neural network with fully connected LSTM hidden units.
• DCRNN: Diffusion convolutional recurrent neural network [22] that used diffusion

graph convolutional network and RNN to learn the representation of spatial depen-
dencies and temporal relations.

• LSGCN: Long short-term graph convolutional network [23] that proposed a spatial
gated block where a new graph attention network called cosAtt and GCN were
integrated into a gated form to capture the spatial features of traffic flow data.

• SLCNN: A spatial-temporal graph learning neural network [24] that learned the spatial
features of traffic flow data through local and global pairs.

• ASTGCN: Attention-based spatial-temporal graph convolutional network [38] that
used two attention layers to capture the dynamic associations in both spatial and
temporal dimensions.

• FC-GAGA: Fully connected gated graph network [39] that performed traffic prediction
without using prior knowledge of graph structure but learned spatial dependencies
through gated graph modules.
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4.4. Result
4.4.1. Performance Comparison

On the PEMS-BAY and PEMSD7(M) datasets, the statistics of the prediction results of
the STAWGNN model and other benchmark models are shown in Table 3.

Table 3. The prediction performance of different models on the two datasets.

PMDS-BAY
15 min 30 min 60 min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

HA 2.88 6.80% 5.59 2.88 6.80% 5.59 2.88 6.80% 5.59
ARIMA 1.62 3.50% 3.30 2.33 5.40% 4.76 3.38 8.30% 6.50

FC-LSTM 2.05 4.80% 4.19 2.20 5.20% 4.55 2.37 5.70% 4.96
DCRNN 1.38 2.90% 2.95 1.74 3.90% 3.97 2.07 4.90% 4.74
STGCN 1.37 2.95% 2.98 1.85 4.22% 4.34 2.49 5.81% 5.70

ASTGCN 1.52 3.22% 3.13 2.01 4.48% 4.27 2.61 6.00% 5.42
LSGCN 1.42 2.87% 2.71 2.02 4.13% 4.15 3.13 6.11% 6.16
SLCNN 1.44 3.00% 2.90 1.73% 4.10% 3.81 2.03 4.80% 4.53

FC-GAGA 1.34 2.82% 2.82 1.66 3.71% 3.75 1.93 4.48% 4.40

STAWGNN 1.26 2.53% 2.57 1.66 3.43% 3.53 1.98 4.29% 4.18

PMDS7(M)
15 min 30 min 45 min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

HA 4.01 10.61% 7.20 4.01 10.61% 7.20 4.01 10.61% 7.20
ARIMA 5.55 12.92% 9.00 5.86 13.94% 9.13 6.68 16.78% 9.68

FC-LSTM 3.57 8.60% 6.20 3.92 9.55% 7.03 4.16 10.10% 7.51
DCRNN 2.37 5.54% 4.21 3.31 8.06% 5.96 4.01 9.99% 7.13
STGCN 2.25 5.26% 4.04 3.03 7.33% 5.70 3.57 8.69% 6.77

ASTGCN 2.85 7.25% 5.15 3.35 8.67% 6.12 3.96 10.56% 7.20
LSGCN 2.22 5.14% 3.98 2.96 7.18% 5.47 3.43 8.51% 6.39
SLCNN 2.22 5.21% 4.07 2.88 7.17% 5.50 3.27 8.20% 6.28

FC-GAGA 2.18 5.29% 4.15 2.80 7.06% 5.58 3.31 8.47% 6.66

STAWGNN 2.18 5.07% 3.95 2.88 6.95% 5.28 3.31 7.99% 6.03
The best results are in bold.

As we can see from Table 3, STAWGNN achieves the best results on both datasets of
different prediction tasks. Compared with traditional models, such as HA and ARIMA,
STWGNN significantly reduced the MAE, MAPE, and RMSE values. For example, the MAE
values of STAWGNN for the 60-min prediction task on the PEMS-BAY dataset were 56.21%
and 31.25% lower than those of ARIMA and HA, indicating that the traditional models
have a limited ability to handle complex traffic flow data. DCRNN is the typical RNN-
based traffic forecasting works. Limited by the capability to model long-term temporal
dependencies, the forecasting accuracy is much lower than STAWGNN. LSGCN provides
better results than STGCN models. This is because the adaptive graph matrix learned by
the graph attention-based network can automatically discover the invisible graph structure
from the data. Compared to the LSGCN model, the SLCNN model performs better on
both datasets across different prediction tasks, except for the 15-min. Among deep learning
models, STAWGNN still performs the best. For example, for the 60-min prediction on
the PEMS-BAY dataset, the MAPE and RMSE values are reduced by 4.24% and 5.00%,
respectively. Meanwhile, compared to other graph-based works, STAWGNN achieves
superior performance, especially on the RMSE and MAPE metrics, for all datasets. This
is because the graph wavelets layer significantly improves the capability to capture local
changing spatial heterogeneity.

4.4.2. Performance Analysis of Graph Wavelet Neural Network

In the spectral convolutional neural network (Spectral CNN) [40], feature aggregation
needs to be performed on a certain range of neighboring nodes by specifying the number
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of hops, which makes the domain of the central node strictly limited by a circle of specified
radius. Therefore, Spectral CNN the limited local feature extraction capability. In order to
solve the shortcomings of Spectral CNN, the STAWGNN model uses the graph wavelet
transform to capture the local spatial topology of the road network. The distribution of the
zero values of the graph wavelet matrix in the two datasets is shown in Table 4.

Table 4. Graph wavelet matrix sparsity statistics.

Dataset Total Number of Elements The Number of Non-Zero Value Proportion of Non-Zero Valued

PEMS-BAY 104,329 22,707 21.7%
PEMSD7(M) 50,350 9667 19.2%

It can be seen that the percentage of non-zero elements in each graph wavelet transform
matrix ψs

−1 is 21.7% and 19.2%, respectively. The Fourier transform matrix UT has 99.71%
and 98.32% non-zero elements, respectively. This result indicates that the graph wavelet
matrix is sparser than the Fourier transform matrix in both datasets. In addition, we also
analyze the performance of Spectral CNN with GWNN on two datasets. Figure 4 shows the
comparison between the STAWGNN and Spectral CNN-based model on the next 60-min
prediction task. It can be seen that with the increase in the prediction time, the changes in
MAE and RMSE values show an upward trend, which shows that the performance of model
prediction will decrease with an increase in the prediction step size. For the prediction
tasks from 5 to 60 min, the change curves of MAE and RMSE values of the STAGWNN
model based on graph wavelet transform are located above the Spectral CNN-based model.
This result indicates that the STAWGNN model has better performance than the Spectral
CNN model.

Figure 4. Performance comparison between STWGNN and Spectral CNN for the next 60 min predic-
tion task. (a,b) are the variation curves of MAE and RMSE on the PEMS-BSY dataset, respectively;
(c,d) are the variation curves of MAE and RMSE on the PEMSD7(M) dataset, respectively.

In the graph wavelet convolution layer, the size of the information diffusion neigh-
borhood of each node is controlled by a hyper-parameter. Since the state of the node
neighborhood information affects the changing trend of the central node, the appropriate
neighborhood size is conducive to improving the model’s performance. Therefore, in order
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to explore the effect of the scale factor on the performance of STAGWNN. The scale factors
of the PEMS-BAY and PEMSD7(M) datasets are compared. Figure 5 shows the MAE and
RMSE on the two datasets in the 15-min prediction task. It can be seen that when s = 0.05,
the error is at its minimum.

Figure 5. Curves of MAE and RMSE of PEMS-BAY(a) and PEMSD7(M) (b) datasets as a function of
scale factor S.

4.4.3. Influence of Attention Mechanism

To verify the effectiveness of the attention mechanism in STAGWNN, comparative
experiments were also designed on the two datasets. The model names without the different
components are as follows:

• w/o ST-Att: STAWGNN without spatial and temporal attention mechanisms.
• w/o S-Att: STAWGNN without spatial attention mechanism. Only graph wavelet

networks are used in spatial feature extraction to capture the local spatial features
hidden in the traffic flow data.

• w/o T-Att: STAWGNN without temporal attention mechanism. Gated TCNs are only
used to capture local temporal features in traffic flow data.

The experimental results on the two datasets for different prediction tasks are shown
in Figures 6 and 7.

From Figures 6 and 7, we can see that the prediction performance of the proposed
STAWGNN model has the best prediction performance on the two different dataset predic-
tion tasks. This is mainly because the STAWGNN model not only captures the inherent
spatial relationships of the road network but also learns the time-varying spatial depen-
dencies of each node through the learnable attention mechanism of the location. After
removing the attention mechanism, with the forecast time increases, the performance of our
model gradually deteriorates more significantly. We conjecture that the reason is that the
long-term spatial-temporal dependencies have changed significantly. On the PEMS-BAY
dataset, the heat map of the adjacency matrix obtained for the top 50 nodes under different
methods is shown in Figure 8. In it, the lighter blue color indicates that the node is more
followed, while the darker blue color indicates that the node is less followed. Compared
with the adjacency matrix calculated from the distances between nodes in the real road
network in Figure 8a, the adjacency matrix derived from the location-based learnable
attention mechanism in Figure 8b can extract additional spatial feature information of the
road nodes from a global perspective.
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Figure 6. Component analysis of STAWGNN on the PEMSD-BAY dataset.

Figure 7. Component analysis of STAWGNN on the PEMSD7(M) dataset.

Figure 8. Adjacency matrix for the top 50 nodes of the PEMS-BAY dataset. (a) is the visualization of
the adjacency matrix calculated from the distances between nodes in the real road network; (b) is the
visualization of adjacency matrix derived from the location-based learnable attention mechanism.

4.4.4. Traffic Flow Data Analysis

The actual value and the predicted value obtained by the STAWGNN model of the
traffic flow data in one day are compared and analyzed. Since the time interval of data
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collection is 5 min, the amount of data collected in one day is 288. In order to better evaluate
the performance of our model in a practical application, we visualize the predicted traffic
flow of a certain node on the two datasets shown in Figure 9. It can be seen, compared
with SLGCN and FC-GAGA, that STAGWNN can better fit the real value. Meanwhile,
the mutation of a time period can also be well fitted, e.g., t ∈ [100, 150] on the PEMS-BAY
dataset, which indicates that the STAWGNN model can better capture the sudden changes
in the signal and detect the peaks in the signal. In addition, STAWGNN can capture
continuous changes within long steps, e.g., t ∈ [150, 200] on the PEMSD7(M) dataset. This
fact implies that dynamical spatial dependencies and long-range temporal dependencies
captured by STAWGNN benefit traffic flow forecasting, especially long-term prediction.

Figure 9. Comparison of predicted and true values of the speed of the two datasets.

5. Conclusions

This paper proposed an attention and wavelet-based spatial-temporal graph neural
network for traffic flow and speed prediction. The model used a graph wavelet neural
network and location-learnable attention mechanism to extract local and global spatial
correlations in traffic flow data. For time series information extraction, we stacked a gated
TCN with temporal attention mechanisms to extract local and global dependencies of time
series information. Experiments showed that this method could better aggregate traffic
flow information from adjacent roads and improve the prediction accuracy. However, the
lack of seasonality and periodicity analysis in modeling traffic flow data is a shortcoming of
this study. Finally, how to further improve the robustness of the model and use the model
to solve real traffic congestion problems will be our future work.
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