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Abstract: The aim of the current numerical simulation was to understand the effects of the temperature-
dependent properties of viscosity and thermal conductivity on the buoyant convection of cold water
around its density extremum in a tilting chamber. The equations for thermal conductivity and
viscosity were derived based on the reference temperature parameter. The entropy generation and
cup mixing temperature were also calculated. The governing mathematical model was solved by the
finite-volume-based iterative technique. The obtained results were deliberated for several values of
inclination angles and for the density reversal parameter for variable viscosity and thermal conduc-
tivity cases. It was detected that density inversion has a strong effect on stream and thermal patterns
through the development of a bi-cellular arrangement due to density inversion.
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1. Introduction

The convective flow of cold water around its density extremum (3.98 ◦C) happens
universally in the environment and in some engineering and technical processes [1–3].
Since the convective stream and thermal transfer of water around its density extremum
is a complex phenomenon, experimental and theoretical investigations into the buoyant
convective stream of water near its extreme density in a rectangular closed domain have
been reported by many researchers [4–7]. Ho and Tu [8] (2001) numerically and experimen-
tally inspected the free convective stream of water near its extreme density in a rectangular
closed container. Moraga and Vega [9] (2004) scrutinized the variable physical properties
of water in a 3D buoyant convection flow. Hossain and Rees [10] (2005) deliberated the
unsteady laminar convective flow of water subject to density reversal in a rectangular cham-
ber in the presence of (internal) heat generation. Sivasankaran and Ho [11–13] explored
the effects of temperature-based water properties on the free convection of cold water near
its density extreme region in a chamber. Varol et al. [14] made a numerical simulation to
find an interesting result from the convective motion of (cold) water at 4 ◦C in a porous
container with a thick bottom wall.

Li et al. [15] explored the three-dimensional Rayleigh–Bénard (RB) convection of
water around its density extremum in a cylindrical domain with an aspect ratio of two.
Hu et al. [16] experimentally and numerically examined the impact of aspect ratios on
the Rayleigh–Bénard (RB) convective flow of (cold) water near its density supremum in
cylindrical containers. They found that density inversion has a negative effect on heat
transfer rates. Mastiani et al. [17] examined the density extremum effects of nano liquids on
combined convection in a lid-driven chamber with various vertical wall movements. They
used both non-Boussinesq and Boussinesq approximations in the study. Hua et al. [18]
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explored the effects of density inversion, aspect ratio, and thermal border conditions on the
RB convection of cold water. Huang et al. [19] studied the effects of density inversion on
Rayleigh–Bénard fluid motion and heat transfer in a cylindrical container. Hu et al. [20]
explored the free convective flow of water-based nanofluids near their density inversions
in an annulus. They established that Brownian motion must be taken into account when
considering the free convection of water-based nanofluids at their density supremum.
Bindhu et al. [21] explored the density inversion effect with various combinations of
heater and cooler locations in a buoyant convective flow regime inside a square container.
Sivasankaran et al. [22] found the impact of temperature-dependent water properties on
buoyant flow around the density extreme region in a square chamber. From all these
studies, we understand that flow around the vicinity of the density inversion point is more
complicated and requires more detailed investigation.

In some situations, we have a thermal and mechanical system with a certain inclination
from the ground (horizontal position). Therefore, it is essential that the flow and thermal
transports in a tilted chamber are explored. Much research on the inclination of geometry
under various conditions has been conducted during past three decades [23–25]. However,
research exploring the effects of fluid properties in a tilted geometry is very limited. Cheng
et al. [26] numerically deliberated the influence of tilting angles and aspect ratios on
convective flow in a rectangular geometry with sinusoidal-type heating. Sivakumar and
Sivasankaran [27] explored the impacts of nonuniform heating on mixed convection in
a lid-driven inclined cavity. The impact of the direction of moving walls in a lid-driven
geometry with sinusoidal heating was studied by Sivasankaran et al. [28]. The effects of
various thermal border conditions on buoyant convection in an inclined triangular chamber
was explored by Sivasankaran et al. [29]. Alshomrani et al. [30] inspected the influence
of tiling angle, heater locations, and cooler locations on buoyant convection in a 3D box.
Sivasankaran and Janagi [31] explored the effects of inclination and baffle size on mixed
convective streams in a channel cavity.

The second law of thermodynamics explains the concept of entropy in a thermody-
namic system. The analysis of entropy generation (EG) or irreversibility analysis is a key
factor due to the calculation of energy loss, and EG can compute energy transmission and
can estimate thermal performance. Since the irreversibility analysis exists on both due to
fluid flow and thermal transport [32–34], numerous interdisciplinary sectors need to know
about it in detail. Moreover, a reduction in EG is essential in order to save energy and
improve the performance of the thermal system. Recently, investigations into entropy opti-
mization have dramatically increased in the thermo-fluid field and its related disciplines.
Many basic results on EG, with applications, have been derived by Bejan [35–38].

Alsabery et al. [39,40] explored entropy generation and convective flow hybrid nanoflu-
ids in a wavy walled container with a hot-half partition. They found that varying geo-
metrical parameters induced different effects on entropy generation and Bejan number.
Ghalambaz et al. [41] explored thermal convective transport and the entropy generation of
hybrid nano liquids in an oddly shaped chamber. Khetib et al. [42] numerically explored the
free convection and generation of entropy of nanofluids in a square inclined cavity under
a constant magnetic field. They used three different fin configurations (straight, curved,
and inclined) in order to analyze the results. Cherif et al. [43] explored heat transferal
rates and the generation of entropy for a water-based hybrid nanofluid inside a 3D porous
triangular-shaped cavity with a spinning cylinder. Alshare et al. [44], having performed
numerical simulations, found an interesting result that thermal transport is responsible for
entropy production when the magnetic and frictional effects are marginal. Le et al. [45],
having examined entropy in the convection of nano-suspensions in a cavity, found that the
addition of nanoparticles reduced the strength of heat transfer and diminished entropy
generation. Abderrahmane et al. [46] deliberated the mixed convection and entropy genera-
tion of hybrid nanofluids in a 3D triangular enclosed area with a spinning circular cylinder
in the middle of the domain. Mourad et al. [47] studied the MHD free convection and EG
of (Cu–water) nano liquid in a porous annulus.
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We have found that the convective flow of cold water with temperature-based physical
properties in inclined cavities has not explored in previous research thus far. Hence, the
current study inspects the influence of temperature-dependent viscosity and thermal
conductivity of the water near its density extremum point on buoyant convection in a tilted
cavity. The entropy generation and cup-mixing temperature are also explored here. The
present research may be very useful for environmental thermal systems.

2. Mathematical Modelling

We studied a two-dimensional square chamber of size “D” that was filled with cold
water, as shown in Figure 1. The isothermal vertical borders of the enclosed space were
well preserved at dissimilar (constant) temperatures Th* and Tc*, with the condition that
Th

* > Tc
*. The horizontal borders of the enclosed space were adiabatic. The gravitational

force acted in a downwards direction. In the x and y directions, the velocity components u
and v are given. The chamber was tilted to have an acute angle γ with the horizontal axis.
The subsequent assumptions were adopted for this study: the flow is two-dimensional,
unsteady, laminar, and incompressible. The Boussinesq approximation was valid. The
viscous dissipation and radiation were neglected in this study. Water density has a non-
linear relation with temperature, as follows [8,11]:

ρ = ρm

(
1− β|T ∗ −Tm

∗|b
)

(1)

where β = 9.2971730 × 10−6, Tm = 4.0293250 ◦C, ρm (=999.9720) is the maximum density of
water, and b = 1.894816. The thermal conductivity of water and the viscosity of water vary
with temperature. The water viscosity varies with temperature, as follows [11,12]:

µ(T*) = a0 + a1 T* + a2 T*2 + a3 T*3 (2)

where a0 (=1.791084), a1 (=−6.144 × 10−2), a2 (=1.451 × 10−3), and a3 (=−1.6826 × 10−5)
are the temperature quantities of the viscosity of water. Equation (2) can be written as:

µ = µr

{
1 + A1εT + A2

[
(1 + εT)2 − 1

]
+ A3

[
(1 + εT)3 − 1

]}
(3)

where ε =
T∗h−T∗c

Tr
, A1 = a1Tr

µr
, A2 = a2 Tr

2

µr
, and A3 = a3 Tr

3

µr
. The variable Tr denotes the

reference temperature. ε denotes a parameter of the reference temperature, which plays an
essential role on the water stream when variable properties are considered. The thermal
conductivity of water [11–13] varies with temperature, as follows:

k(T*) = b0 + b1 T* + b2 T*2 + b3 T*3 (4)

where b0 (=0.561965), b1 (=2.15346× 10−3), b2 (=−1.55141× 10−5), and b3 (=1.01689 × 10−7)
are the temperature coefficients of the thermal conductivity of water. The equation can be
written as:

k = kr

{
1 + B1εT + B2

[
(1 + εT)2 − 1

]
+ B3

[
(1 + εT)3 − 1

]}
(5)

where B1 = b1Tr
kr

, B2 = b2 Tr
2

kr
, and B3 = b3 Tr

3

kr
.
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Figure 1. Physical Configuration (a) and sample grid structure (b). 

The governing equations of vorticity, stream function, and temperature with temper-
ature-dependent liquid properties are: 

















∂

−∂
−

∂

−∂
+







∂
∂−

∂
∂









∂
∂+

∂
∂+

∂
∂

∂
∂+

∂∂
∂

∂
∂+

∂
∂

∂
∂+








∂
∂+

∂
∂=








∂
∂+

∂
∂+

∂
∂

)()(

242

****

2

2

2

2

2

2

2

2

2

γγρβμμ

μωμμωωωμωωωρ

Sin
y

TT
Cos

x

TT

yxx
v

y
u

yyyxy
v

xxyxy
v

x
u

t
b

m

b

m

r

 (6)

02

2

2

2

=+
∂
∂+

∂
∂ ωψψ

yx
 (7)












∂
∂

∂
∂+











∂
∂

∂
∂=

∂
∂+

∂
∂+

∂
∂

y
T

c
k

yx
T

c
k

xy
Tv

x
Tu

t
T

prpr

*****

ρρ  (8)

where g denotes acceleration due to gravity, cp—specific heat, t—time, k—thermal con-
ductivity, T—temperature, μ viscosity, and ρr—density. 
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Figure 1. Physical Configuration (a) and sample grid structure (b).

The governing equations of vorticity, stream function, and temperature with temperature-
dependent liquid properties are:

ρr

(
∂ω
∂t + u ∂ω

∂x + v ∂ω
∂y

)
= µ

(
∂2ω
∂x2 + ∂2ω

∂y2

)
+ 2 ∂ω

∂x
∂µ
∂x + 4 ∂v

∂y
∂2µ

∂x∂y + 2 ∂ω
∂y

∂µ
∂y

+
(

∂u
∂y + ∂v

∂x

)(
∂2µ

∂x2 −
∂2µ

∂y2

)
+ ρβ

[
∂|T∗−Tm

∗ |b
∂x Cos(γ)− ∂|T∗−Tm

∗ |b
∂y Sin(γ)

] (6)

∂2ψ

∂x2 +
∂2ψ

∂y2 + ω = 0 (7)

∂T∗

∂t
+ u

∂T∗

∂x
+ v

∂T∗

∂y
=

∂

∂x

(
k

ρrcp

∂T∗

∂x

)
+

∂

∂y

(
k

ρrcp

∂T∗

∂y

)
(8)

where g denotes acceleration due to gravity, cp—specific heat, t—time, k—thermal conduc-
tivity, T—temperature, µ viscosity, and ρr—density.

The initial values are taken as u = v = 0, T∗ = T∗c in the whole domain. The boundary
conditions are as follows: the no-slip condition (u = v = 0) for velocities was taken on all
the solid walls at x = 0&D,y = 0&D. The temperature conditions are ∂T∗

∂y = 0 at y = 0&D,
T∗ = T∗h at x = 0, and T∗ = T∗c at x = D.

The non-dimensional variables used here are given below.

(X, Y) =
(x, y)

D
, (U, V) =

(u, v)
µr

Dρr

, t0 =
t µr

D2ρr
, µ∗ =

µ

µr
, k∗ =

k
kr

, Ψ =
ψ

µr/ρr
, Ω =

ωD2ρr

µr
and T =

T∗ − Tr

T∗h − T∗c

The governing model equations after non-dimensionalization are:
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∂Ω
∂t0

+ U ∂Ω
∂X + V ∂Ω

∂Y = µ∗
(

∂2Ω
∂X2 + ∂2Ω

∂Y2

)
+ 2 ∂Ω

∂X
∂µ∗

∂X + 2 ∂Ω
∂Y

∂µ∗

∂Y + 4 ∂V
∂Y

∂2µ∗

∂X∂Y

+
(

∂U
∂Y + ∂V

∂X

)(
∂2µ∗

∂X2 −
∂2µ∗

∂Y2

)
+ Ra

Pr

[
∂|T−Tm |b

∂X Cos(γ)− ∂|T−Tm |b
∂Y Sin(γ)

] (9)

∂2Ψ
∂X2 +

∂2Ψ
∂Y2 + Ω = 0 (10)

∂T
∂t0

+ U
∂T
∂X

+ V
∂T
∂Y

=
1
Pr

[
∂

∂X

(
k∗

∂T
∂X

)
+

∂

∂Y

(
k∗

∂T
∂Y

)]
(11)

The relation of velocity to stream function and vorticity are:

U = −ΨY, V = ΨX and Ω = UY −VX (12)

The dimensionless form of the initial values are: U = V = Ψ = T = Ω = 0. The
boundary conditions are:

Ψ = U = V = 0;
∂T
∂Y

= 0; Y = 1&0 (13)

Ψ = U = V = 0; T = 0; X = 1

Ψ = U = V = 0, T = 1; X = 0

The non-dimensional parameters that appear in the equations are: Tm = Tm−Tr
T∗h−T∗c

, the

density inversion parameter; Ra = gβ(Th−Tc)
bD3ρr

µrαr
, the Rayleigh number; Pr = µr

ρrαr
(=11.6),

the Prandtl number. The density extremum parameter assisted us in tracing the maximum
density plane inside the enclosed space. This was due to the existence of two dissimilar
horizontal layers of water with dissimilar density gradients divided by the extreme density
plane. Tm values are between 0 and 1. Suppose Tm = 1(0), the hot (cool) barrier is at
temperature Tm

∗ so the density of water rises (declines) with temperature inside the domain.
Computing the thermal gradient on a solid wall is vital in convective flow problems. The
rate of heat transfer at the hot (left side) wall was measured using the local Nusselt number
and is defined by Nu = −k∗ ∂T

∂X

∣∣∣
X=0

. Then, the average Nusselt number is computed by:

Nu =
1∫

0
NudY.

3. Entropy Generation

The EG was computed from well-known velocity and thermal fields because the
entropy production resulted from the irreversible process of thermal transfer and viscos-
ity effects. We can use the entropy generation values to discern the optimal settings for
real world applications. The local EG (per unit area) was derived subject to heat trans-
mission and fluid friction. That is, the total local EG was the sum of the two quantities
(SGen = Sheat + Sfluid).

SGen = k
T2

c

[(
∂T∗
∂x

)2
+
(

∂T∗
∂y

)2
]
+
(

µ
Tc

){(
∂u
∂y + ∂v

∂x

)2
+ 2
[(

∂u
∂x

)2
+
(

∂v
∂y

)2
]}

(14)

The dimensionless formula for EG is attained in a usual way:
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Stotal = S∗heat + S∗f luid

Stotal =

(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
+ φ2

{(
∂U
∂Y

+
∂V
∂X

)2
+ 2

[(
∂U
∂X

)2
+

(
∂V
∂Y

)2
]}

The whole EG calculation is achieved by integrating the local EG over the enclosed region.

SGtotal =
∫

V
Stotal(X, Y)dA

The local Bejan number gives the strength of the EG subject to the irreversibility of
thermal transference. It is defined as:

Bel =
S∗heat
Stotal

(15)

It is interesting to note that heat transfer irreversibility dominates when Bel >
1
2 . On

the other hand, fluid friction irreversibility dominates when Bel <
1
2 . The thermal and

viscous irreversibilities are equal at Bel =
1
2 . The mean Bejan number provides the relative

impact of thermal current energy transfer irreversibility for the whole domain.

Be =

∫
A Bel(X, Y)dA∫

A dA
(16)

The final steady state values of the thermal and flow fields were taken to estimate the
EG inside the enclosed area.

4. Thermal Mixing Analysis

The cup-mixing temperature was derived to determine thermal mixing in the enclosed
space. The velocity-weighted mean temperature was more appropriate for convective
currents than the spatial average temperature. The cup-mixing temperature (Tcup) is
given as:

TCup =

s
V̂ TdYdX

s
V̂dYdX

where V̂(X, Y) =
√

U2 + V2.
The RMSD (Root Mean Square Deviation) was used to quantify the amount of temper-

ature regularity. The RMSDTcup is defined based on the cup-mixing temperature values,
as follows:

RMSDTcup =

√
∑N

i=1
(
θi − TCup

)2

N
(17)

The lower values of RMSD specify greater temperature uniformity in the enclosed
space and vice versa. The RMSD values cannot exceed unity because the dimensionless
temperature diverges between 0 and 1.

5. Numerical Technique

The non-dimensional modelled Equations (9)–(12) with the initial and border condi-
tions (13) are discretized by the control volume method. The diffusion terms were treated
with the central difference scheme and the convective terms were treated with the upwind
scheme. The physical domain was divided into a number of control volumes based on a
non-uniform grid in both X and Y directions (Figure 1b). The grids were gathered near the
walls of the chamber. The grid sizes were examined from 41× 41 to 161× 161 for Pr = 11.60,
Ra = 106, and Tm = 0. It was perceived from the grid independence examination that a grid
of size of 141 × 141 was adequate in order to explore the problem. The resulting algebraic
equations were solved by the (Gauss-Seidel) iterative method using the successive over
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relaxation technique. This sequence was repeated until we reached the preferred accuracy
for the convergence condition.∣∣∣∣∣ ϕ(n+1)(i, j)− ϕ(n)(i, j)

ϕ(n+1)(i, j)

∣∣∣∣∣ ≤ 10−6

where “I” and “j” denote the grid nodes in X and Y directions, and the subscript “n”
denotes the time step.

6. Validation

The computation was performed using ForTran in-house coding. The free convection
of cold water near its density supremum with constant properties in a (square) cavity was
taken for numerical verification. Since the validation of the in-house code is essential in
research utilizing numerical simulations, the justifications for the current computational
program were tested against the existing available results for free convection in a (square)
cavity filled with cold water near its density supremum (Tong [5]; Lin and Nansteel [2]).
The various values of Ra and Tm that were found are depicted in Table 1. A remarkable
agreement was acquired between the current and previous values.

Table 1. Comparison of Nu results for the diverse density extremum parameter and Ra.

Ra Tm

Nu

Present Tong [5] (1999) Lin and Nansteel [2] (1987)

106 1.0
0.5

9.1452
4.0281

9.2742
4.0272

9.195
4.090

105 1.0
0.5

4.7895
2.0725

4.7143
2.0298

4.709
2.080

104 1.0
0.5

2.2441
1.0691

2.2739
1.0655

2.278
1.076

103 1.0
0.5

1.1127
1.0003

1.1186
1.0007

1.1190
1.0009

7. Results and Discussion

Numerical simulations exploring the buoyant convective flow of cold water around
its density inversion point in an inclined chamber are made for a diverse combination of
parameters with variable thermal conductivity and variable viscosity. The interaction of
two mechanisms (namely, the inclination angle affecting geometry and buoyancy force due
to the temperature gradients present in the body of the liquid) were explored in the present
study. The effects result from two different phenomena. The goal of the present research
was to inspect the interaction of these two effects on water current and heat transfer in the
vicinity of 4 ◦C inside the cavity with variable fluid properties. The range of the significant
parameters were wisely scrutinized. The density reversal parameter diverged from 0 to 1,
and the Rayleigh number was fixed at 106. The inclination angle varied from 0◦ to 90◦. The
reference temperature parameter diverged from 0.0 to 0.3.

Figure 2 demonstrates thermal spreading for the different values of the density inver-
sion parameter and the tilting angle for variable thermal conductivity and variable viscosity
cases. At Tm = 0, the density supreme plane was located at the hot wall. That is, there
was no density reversal inside the chamber. There was a single clockwise eddy inside the
container at γ = 0. When the tilting angle was increased to 30

◦
, a single eddy stretched

along the corner of the container. When the tilting angle was increased to 45
◦

and 60
◦
, we

observed two inner eddies. When γ = 90
◦
, the hot wall was located at the lower portion of

the container. Three multi-cellular flow patterns existed, with two re-circulating eddies at
the hot top and cold bottom corners of the container when Tm = 0. When Tm = 0.5, density
inversion existed inside the container. That is, two dissimilar (horizontal) water layers
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formed with two dissimilar density gradients, divided by the density maximum plane.
The dual cell structure of the stream was detected for all the tilting angles of the container.
However, the size and strength of the eddies depended on the tilting angle. When γ = 0

◦
,

the cold cell occupied the majority of the container. However, the hot cell occupied the
majority of the titled cavity. At γ = 90

◦
, two equally strong eddies formed. The energy

transfer from hot (left) wall to cold wall slowed down due to the dual cell pattern. This was
because of the transfer of heat energy from one cell to the other cell by the conduction mode.
After increasing the density inversion parameter value to Tm = 1.0, the density extremum
plane was located at the cold wall. That is, there was no density reversal inside the chamber.
A counter-rotating cell formed at this situation. When tilting the cavity, the cell stretched
diagonally when γ = 45

◦
, and two inner circulating cells formed inside the stretched eddy.

When the tilting angle was further increased to γ = 60
◦
, two strong counter-acting eddies

formed inside the container. When γ = 90
◦
, a tri-cellular pattern was observed. When

comparing the cases of variable thermal conductivity and variable viscosity and thermal
conductivity, the flow field had similar trends in most of the cases studied, except when
γ = 90

◦
and Tm = 0. Drastic changes to the flow field were found when γ = 90

◦
and

Tm = 0. The stream function value was lower for variable thermal conductivity case.
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circulating eddies at the hot top and cold bottom corners of the container when 𝑇 = 0. 
When 𝑇 = 0.5, density inversion existed inside the container. That is, two dissimilar 
(horizontal) water layers formed with two dissimilar density gradients, divided by the 
density maximum plane. The dual cell structure of the stream was detected for all the 
tilting angles of the container. However, the size and strength of the eddies depended on 
the tilting angle. When 𝛾 = 0°, the cold cell occupied the majority of the container. How-
ever, the hot cell occupied the majority of the titled cavity. At 𝛾 = 90°, two equally strong  
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Figure 2. Streamlines for various Tm, solid lines for k(T), and dashed lines for both k(T) and µ(T).

Figure 3 displays the thermal contours inside the container for various inclination
angles, density inversion parameters, and both cases of variable thermal conductivity and
variable viscosity. At Tm = 0 and γ = 0

◦
, vertical thermal stratification was observed.

When increasing the tilting angle, thermal stratification disappeared. The thermal boundary
layers along both isothermal walls were formed for all the inclination angle values at Tm = 0.
A small difference in thermal distribution was found between the cases of variable thermal
conductivity and the variable thermal conductivity and viscosity cases. When Tm = 0.5,
the density maximum plane moved inside the cavity, and strong temperature gradients
formed at the density maximum plane. The thermal boundary layers were not found along
the isothermal walls at γ = 0

◦
. In this situation, the density extremum plane was near the

hot (left) wall. When titling the cavity (γ = 30
◦ ∼ 60

◦
), the density extremum plane was

near the cold (right) wall. When γ = 90
◦
, the density extremum plane was in the middle

of the cavity. The difference between the thermal distribution of the two cases was clearly
visible at Tm = 0.5 for all the tilting angles. When the Tm( Tm = 1) was increased further,
the vertical thermal stratification was found for the vertical cavity (γ = 0

◦
). When the

tilting angle was changed, the thermal distribution was altered and vertical temperature
stratification existed. However, the boundary layers disappeared when the cavity was
tilted. At γ = 90

◦
, the hot wall went down, which changed much of the flow and thermal

fields. Here, the isotherms were almost straight lines and a conduction type of heat transfer
was evident.
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Figure 4 demonstrates the time history of the averaged Nusselt numbers for the diverse
values of Tm and for the variable viscosity and variable thermal conductivity cases. Initially,
the mean Nusselt number fell down and then reached a constant value after a specified time. A
shorter time was taken to reach the steady state at Tm = 0.5. However, the time taken to reach
the steady state was greater at Tm = 0.6. The average Nusselt number was initially overshot
when Tm ≤ 0.6. Figure 5 demonstrates the influence of local heat transfer for the various
values of Tm and γ with variable thermal conductivity and variable viscosity. The heat transfer
attained a minimum value at γ = 90

◦
for all the density inversion parameters. A higher local

heat transfer rate was observed at Tm = 0. When increasing the values of Tm from 0 to 1, the
local heat transport rate initially declined and then increased later at γ = 0

◦
. However, local

heat transfer attained the lowest value at Tm = 1.0 when γ = 90
◦
. Local heat transfer declined

when the values of Tm were raised at γ = 90
◦
. The local heat transfer rate was high at the

bottom edge when Tm ≤ 0.5, whereas it was high at the top edge of the cavity when Tm > 0.6.
A similar trend was observed for γ = 45

◦
. That is, the heat transport rate declined near the

bottom edge of the cavity when the values of Tm increased. However, the maximum value of
local heat transfer was attained at the middle of the hot wall when γ = 90

◦
.
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Figure 4. Time history of the averaged Nusselt number for different values of Tm for both
k(T) and µ(T).
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Figure 5. Local Nusselt numbers for various values of Tm and angles for both 𝑘(𝑇) and 𝜇(𝑇). 
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more, when inspecting these figures, a greater heat transfer was found to occur at 𝑇 =1.0 compared to 𝑇 = 0 and 0.5. 

Figure 5. Local Nusselt numbers for various values of Tm and angles for both k(T) and µ(T).

Figure 6 displays the local heat transfer rate for various tilting angles and the Tm
for both cases of varying properties (viscosity and thermal conductivity cases). The local
thermal transfer rate declined when the value of the tilting angle of the chamber was raised.
The local heat transfer rate declined with the height of the wall at Tm = 0. That is, a
higher local heat transfer was found at the lower portion of the hot wall at Tm = 0 and 0.5.
However, the opposite trend was shown for the local heat transfer rate at Tm = 1.0.
Furthermore, when inspecting these figures, a greater heat transfer was found to occur at
Tm = 1.0 compared to Tm = 0 and 0.5.
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Figure 7a,b demonstrates the influence of averaged heat transfer rates for both cases
with various values of inclination and different density inversion parameters. The averaged
Nusselt number behaves non-linearly with the density reversal parameter. The minimum
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average heat transfer rate was obtained at Tm = 0.5 when γ = 0
◦
, 15

◦
with changing Tm

values. For tilted cavities with γ = 45
◦
, the average Nusselt number decreased when the

value of Tm was raised. Two different behaviours were observed between vertical and
tilted cavities at the average Nusselt number. In the vertical cavity, the average Nusselt
number declined at Tm = 0.5 and then increased at Tm = 1.0. In comparing the two cases,
the variable thermal conductivity case had a smaller high energy transfer rate than both the
variable thermal conductivity and viscosity cases. While the vertical cavity gave a higher
(lower) heat transfer rate at either Tm = 0 or Tm = 1.0 (Tm = 0.5), the tilted cavity (γ > 60

◦
)

gave a higher (lower) heat transfer rate at Tm = 0 (Tm = 1.0). The cavity with a lower tilting
angle (γ < 30

◦
) behaved like a vertical cavity (γ = 0

◦
).
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Figure 7. Average Nusselt number versus the Tm of various tilting angles for (a) k(T) only and
(b) both k(T) and µ(T).

Figure 8a–d exposes the cup-mixing temperature and the RMSDTcup for various
inclination angles and both variable thermal conductivity and viscosity cases. The cup-
mixing temperature was high at γ = 90

◦
and Tm = 0.8 for the variable thermal conductivity

case, whereas it was higher at γ = 90
◦

and Tm = 0.6 for both variable viscosity and thermal
conductivity cases. When γ = 0

◦
and Tm = 0.5, the cup-mixing temperature and its

RMSDTcup was lower. Lower values of RMSD indicate good thermal (mixing) uniformity
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inside the enclosed region. RMSD never exceeded unity here. However, the RMSD values
that are close to unity will not cope well with thermal mixing. In comparing both cases, only
the variable thermal conductivity case provided better thermal mixing. When Tm < 0.5,
the inclined cavity gave a higher temperature uniformity inside the enclosed region. The
RMSD values of the vertical cavity (γ = 0

◦
) were similar for all the values of Tm. The

RMSD values increased when the values of Tm were raised in both cases.
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Figure 8. Cup-mixing temperature (a,b) and RMSDTcup (c,d) versus Tm for various tilting angles.

Figure 9 depicts the entropy generation for various inclination angle values and density
extremum parameters for the variable thermal conductivity and variable viscosity cases.
The entropy generation was limited to a narrow boundary along the thermal walls for
Tm = 0 and all the values of γ. That is, strong entropy gradients were found along the
isothermal walls. The generation of entropy happened near the boundary at Tm = 0 and
γ = 0

◦
. When the inclination was increased, entropy generation was distributed inside the

cavity. At Tm = 1, entropy generation existed throughout the cavity for all the inclination
angles. These are interesting results to note. Entropy production was very strong near the
vertical walls at Tm = 0 and 0.5 for all the values of γ.
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Figure 10 demonstrates the Bejan number versus Tm for various inclination angle
values with variable k(T) and both variable k(T) and µ(T) cases. The Bejan number values
were always above 0.65 (Be > 0.5) for all the considered cases. This clearly indicates that
entropy generation is dominant by heat transfer. The Bejan number increased whe the
values of Tm increased. The Bejan number was high (low) at γ = 0

◦(
90
◦)

when Tm < 0.5.
However, the Bejan number was higher (a lower value) at γ = 90

◦(
90
◦)

when Tm > 0.5. In
comparing both of these cases, the Bejan number was high for both the variable viscosity
and variable thermal conductivity cases.
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8. Conclusions

The influence of the tilting angle of the cavity, the variable viscosity and the variable
thermal conductivity of cold water near its density supremum on free convection in an
inclined closed chamber was investigated numerically. Cup-mixing temperature and
entropy generation were also explored.

# The temperature-dependent equations for thermal conductivity and viscosity were
derived with regards to the reference temperature parameter.

# The development of the dual cell arrangement and the strength of the cells depends
on the density supremum parameter and inclination angle. The dual cell arrangement
forbids convective thermal transfer across the chamber.

# The heat transfer rate for the variable thermal conductivity case was higher than the
heat transfer rate for both of the varying cases.

# The rate of thermal transport performs nonlinearly with the density extremum pa-
rameter and the inclination angle. The mean heat transfer rate declines first and then
increases when the density extremum parameter is raised when γ ≤ 45

◦
. However, it

always declines when the density extremum parameter increases when γ > 60
◦
.

# A small impact on the rate of thermal transport was found when the temperature
difference parameter varied.

# The cup-mixing temperature behaves non-linearly with the density extremum param-
eter. RMSDTcup values are enhanced when the density extremum parameter values
increase in both cases.

# The Bejan number increases when the density extremum parameter values increase. En-
tropy generation results can be used for the effective design of convective flow systems.

# The density extremum leaves a strong effect on the stream and the thermal distribution
due to development of the bicellular arrangement. The dual cell arrangement directly
prohibits the exchange of thermal energy between the hot region and the cold region.
This results in a reduction in the average Nusselt number.
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