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Abstract: This paper derives accurate and efficient analytic approximations for the prices of both
European and American continuous-installment call and put options. The solutions are in the form of
series in time-to-expiry with explicit formulae for the coefficients provided. Unlike other solutions for
installment options, no Laplace inverses are needed, and there is no need to solve complex, recursive
systems or integral equations. The formulae provided fast yield and accurate solutions not just for
the prices, but also for the critical boundaries. We also compare the solutions with those obtained
using an existing method and show that it surpasses it delivering more correct option prices and
critical stock prices.
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1. Introduction

Installment options are contracts in which investors pay the purchase price, or pre-
mium, in installments over the life of the option and give the investors the flexibility to
abandon the option early if they so desire. The investor of an installment option pays a
minimum premium at the opening of the contract and can then decide whether to maintain
the option by continuing with the installment payments, or else abandon the option by
discontinuing installment payments. Because of the opportunity to be able to abandon
the installment option early, the sum total of the premium for the installment option is
always higher than for the premium of the corresponding vanilla option. However, with
the reduction in the up-front premium, compared to other financial derivatives, installment
options are traded actively on exchanges as well as on over-the-counter (OTC) markets. In
particular, installment options are popular in Foreign Exchange markets, where there is
uncertainty in the future cash flow. (An investor who needs to buy a particular currency
in the future and fears the exchange rate will increase can lock in an exchange rate by
buying the currency installment call option. With the installment option, the investor can
split the premium over time. In the instance that a corresponding vanilla call option is
out-of-the-money, then even selling the vanilla before expiry would probably not give
him as much as the amount between the vanilla and the sum of the installment payments
to date.) Applications of installment options have also been identified in real options
models. For instance, rent-to-own and contract-for-deed sales in residential real estate
can be analyzed as installment call options (see e.g., [1]). Another example is the funding
by Venture Capital (VC) which provides companies with initial funding for projects and
then further funding at later times, provided the companies meet prescribed targets. If the
company fails to meet the target at some stage, the VC investor can abandon the project
with no recovery value (see [2]). Further, installment options are often used by pension
fund managers to safeguard their portfolios at a lower fee, as well as being used in other
markets such as equity and interest rate markets.
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The installment payments themselves may be paid discretely (DI) on a finite number
of exercise dates, or else continuously (CI) in a succession of installments, at a given rate
per unit time. As well as European-style installment options, there are also American-style
installment options, whereby the holder may not only choose to exit the option early, but
can also choose to exercise the option early.

For European DI options, Davis et al. ([3,4]) obtained no-arbitrage bounds on the
initial premium by using the ideas of compound options and NPV. This was carried out in
the Black–Scholes–Merton framework [5]. Then, Griebsch et al. [6] derived a closed-form
formula for the value of the DI option, which was expressed in terms of multidimensional
cumulative normal distribution functions.

Solving the CI options price, however, is more complicated, and no known exact
solution has been found to date. For European CI options, Alobaidi, et al. [7] used a
partial Laplace transform of the governing nonhomogeneous partial differential equation
(PDE) for the value of the option and investigated the asymptotic properties of the optimal
stopping boundary near expiry. Kimura [8] obtained an explicit Laplace transform of the
initial premium of the European CI, as well as its Greeks. However, inverting Laplace
transforms is difficult and needs to be performed numerically. To show how this can be
achieved, Mezentsev et al. [9] investigated the Kryzhnyi method for the numerical inverse
Laplace transformation and applied it to the European CI option pricing problem. They
compared their results with other classical methods for the inversion of Laplace transforms.

In a different approach, Yi et al. [10] considered a parabolic variational inequality that
arises from valuing the European installment put option and established the existence and
uniqueness of the solution to the problem. In 2011, Ciurlia [11] derived integral expressions
for the initial premium as well as the optimal stopping boundary. He also posed the
problem as an optimal stopping problem and then used a Monte Carlo (MC) approach to
solve it. Then, Jeon and Kim [12], examined the pricing of European CI currency options in
the mean-reversion environment. They derived the integral equation representation for the
optimal stopping boundary using Mellin transforms and compared their results with the
least square MC method.

American CI options can be exercised early, and so the solution to these involves not
one, but two free boundaries. This adds to the complexity of the problem. Ciurlia and
Roko [13] formulated the solution of the initial premium for the American CI option in terms
of integrals. Then, they applied the multi-piece exponential function (MEF) method to the
valuation formulas. They compared their results with those found from the finite-difference
and Monte Carlo methods. Their method, however, has a major shortcoming, as the MEF
method produces a discontinuity in the optimal stopping and early exercise boundaries.
More recently, in [14], Kimura explicitly found the Laplace transform of the initial premium.
This was expressed in terms of the value of the corresponding European option (with the
same payoff) and the premiums from early exercise and halfway cancelation. He also
obtained a pair of nonlinear equations for the Laplace transforms of the boundaries. Ciurlia
and Caperdoni [15] extended the analysis to the perpetual CI case.

Furthering their work on European CI options, Yang and Yi [16] considered a parabolic
variational inequality problem resulting from the American-style CI options. They also
proved the existence and uniqueness of the solution to the American CI option valuation.
Ciurlia [17] extended his work on European CI options and presented an integral equation
approach for the valuation of American-style CI options. Using a Fourier transform-based
solution technique, he formulated a system of coupled recursive integral equations for the
value of the two free boundaries. He then formulated an analytic representation of the
option price.

Other authors have considered different types of CI options and/or other types of
underlying processes for the Geometric Brownian motion. In [18] Huang et al. considered
the pricing of the American CI option on a bond under an interest rate model. Deng [19]
considered the pricing of a barrier-type American CI option. Deng and Xue [20] price
American-style CI options under the constant elasticity of variance (CEV) diffusion model
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for the asset price. Deng [21] uses an integral equation approach to price American CI
options when the stock price is assumed to follow Heston’s stochastic volatility model.

The solution method employed in this paper is based on a modification of the method
used by Medvedev and Scaillet [22] to price American put options. In their paper, the au-
thors present a new analytical approximation method that they say ‘is both computationally
tractable and general enough to be successfully applied to a three factor diffusion model
without jumps’. Their approach is to replace the used optimal exercise rule with a simple
suboptimal exercise rule to exercise the option when its level of moneyness (measured in
standard deviations) reaches a particular level. The price for the American option is written
as an infinite series with respect to time-to-expiry. However, finding the coefficients of their
series solution involves solving complicated recursive systems.

In this paper, we derive analytical approximations for both European and American
CI call and put options, in the form of series solutions for which explicit formulae for
the coefficients are given. The European CI call (put) option has one critical boundary
below (above), for which the option should be withdrawn, and the American call (put)
has two critical boundaries; one boundary, below (above), for which the option should be
withdrawn and the other boundary above (below) for which the option should be exercised.
We derive analytical approximations for all these boundaries. To find the solution, as stated
above, we adapt the method of Medvedev and Scaillet in a different form, such that we
are able to solve for coefficients in the series solution without having to solve complicated
recursive systems. This then leads to fast results. We then compare the performance of
our models with the numerical finite-difference Crank–Nicolson method, which is used
as the proxy to the true solution. The method presented in this paper is found to yield
very accurate and efficient option prices. Quite often, methods that lead to accurate option
prices do not achieve very accurate critical stock prices. However, our method was found to
achieve excellent accuracy for critical stock prices as well as the option prices. Further, we
compare our European CI prices with those obtained via Kimura’s analytic approximation
method [8] and find that our method outperformed Kimura’s method for both option
values and exit boundaries. We also examine the behavior of the free boundaries near
expiry and find that the exit/withdrawal boundary acts similarly with respect to expiry
time in all cases, independent of the level of the other parameters. However, the behavior
of the early exercise boundaries for the American CI options depends on a relationship
between the interest rate, dividend yield, strike price, and installment rate.

2. The Mathematical Model and Solutions for the American and European CI Options

In this section, we present the main result of the paper for the CI call options, whereby
we give the series representations for the American and European CI call prices as well
as the associated critical boundaries. These series depend on coefficients for which ex-
plicit formulae are given. As the solution procedure for the CI put options is very sim-
ilar, we have provided the solutions to the European and American CI put options in
Appendices A and B, respectively.

Suppose that the price of American and European CI options (either calls or puts),
with exercise price X and expiry T are given by Va(S, t) and Ve(S, t), respectively, where
the stock price S follows the usual risk-neutral log normal process, i.e.,

dS/S = (r− q)dt + σdZ, (1)

where r, q, σ > 0, are, respectively, the constant risk-free interest rate, dividend yield, and
volatility and Z is a Wiener process under a risk-neutral measure. Additionally, suppose
that the continuous installment rate is L > 0, so that in a time dt, the holder pays the
amount Ldt in order to continue the contract.
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Then, in the continuation region of the contracts, both Va(S, t) and Ve(S, t) satisfy the
partial differential equation (PDE) (see e.g., [23])

Vt +
σ2S2

2
VSS + (r− q)SVS − rV = L. (2)

We note that without the term L, (2) is the usual Black–Scholes PDE [5].

2.1. American CI Call Option Valuation

If we denote the upper critical optimal exercise boundary (OEB), above which the
option should be exercised, by Se(T− t) and the lower critical boundary below which the
option should expire or withdrawn (and so is worthless) by Sw(T− t), then the continuation
region for the American CI call option is Sw(T− t) ≤ S ≤ Se(T− t) and V = Va(S, t) needs
to satisfy (2) subject to

V(S, T) = max(S− X, 0), (3a)

V(Se(T − t), t) = Se(T − t)− X, (3b)

VS(Se(T − t), t) = 1, (3c)

V(Sw(T − t), t) = 0, (3d)

VS(Sw(T − t), t) = 0. (3e)

As mentioned in the Introduction, our solution method is based on an approach due to
Medvedev and Scaillet [22]. In pricing an American put option with price P(S, t) with free
boundary S f (T − t), Medvedev and Scaillet [22] substituted the smooth-pasting condition
PS(S f (T− t), t) = −1 with an explicit exercise rule and presumed that the critical boundary,
the optimal exercise boundary (OEB), was of the specific form

S f (T − t) = Xe−yσ
√

T−t, (4)

where y is a decision variable which determines the suboptimal rule. In our current problem,
for the American CI, we have two free boundaries. However, we will use a similar idea for
both of the free boundaries of the American CI option and, unlike Medvedev and Scaillet,
give explicit formulae for the coefficients in the series representation for the American CI.
The following theorem gives our main solution for the American CI call option.

Theorem 1. Define x = ln(X/S) and τ = T− t. An approximation of the short-term American
CI call option price in Sw(τ) ≤ S ≤ Se(τ), where Se(τ) and Sw(τ), respectively, are the exercise
(upper) and withdraw (lower) critical boundaries, is

V(x, τ) = max
z≥ x

σ
√

τ
,y≥− x

σ
√

τ

V(x, τ; y, z) = V(x, τ; ŷ, ẑ), (5)

where

V(x, τ; y, z) = − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[

Ci M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
+DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for ln

(
X

Se(τ)

)
≤ x ≤ 0 (i.e., X ≤ S ≤ Se(τ)), (6)
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= − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[(

Ci +
2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
−DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for 0 < x ≤ ln

(
X

Sw(τ)

)
(i.e., Sw(τ) ≤ S < X), (7)

with A =
r−q− σ2

2
σ2 , B = − (r−q+ σ2

2 )2

2σ2 and M and U representing the Kummer-M and Kummer-U
functions, respectively (see [24]).

The coefficients Ci and Di are given by

Ci =
(ρ1)iUy − (ρ2)i(ρ3)i

MzUy −My(ρ2)i
(8)

Di =
Mz(ρ3)i − (ρ1)i My

MzUy −My(ρ2)i
(9)

where

(ρ1)i =
L
r

ψie
z2
2 (10a)

(ρ2)i =
2
√

π

Γ(1 + i
2 )

Mz −Uz (10b)

(ρ3)i =

(
Xγi + (

L
r
− X)ε̂i

)
ey2/2 (10c)

My = M
(

1 + i
2

,
1
2

,
y2

2

)
, Mz = M

(
1 + i

2
,

1
2

,
z2

2

)
, (10d)

Uy = U
(

1 + i
2

,
1
2

,
y2

2

)
, Uz = U

(
1 + i

2
,

1
2

,
z2

2

)
, (10e)

ε̂i =
i

∑
j=0

εjbi−j, γi =
i

∑
j=0

bj(β′)i−j, ψi =
i

∑
j=0

ajbi−j, (10f)

with

bn =

{
0 n = 1, 3, 5, ...
(q−B)n/2

(n/2)! n = 0, 2, 4, ...
(10g)

am =
(−Azσ)m

m!
, m = 0, 1, 2, 3... (10h)

εm =
(Ayσ)m

m!
, m = 0, 1, 2, 3... (10i)

β′m =
((1 + A)yσ)m

m!
, m = 0, 1, 2, 3, ... (10j)

The upper (exercise) and lower (withdraw) critical boundaries are given, respectively, by

Se(τ) = Xeyσ
√

τ (11)

and
Sw(τ) = Xe−zσ

√
τ , (12)
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y, z ≥ 0, where approximations θ̂1, θ̂2 for the true early exercise level of moneyness, are given by

θ̂1(τ) = min
θ= x

σ
√

τ

{θ ≤ 0 : ŷ(θ, τ) = −θ}, (13)

and
θ̂2(τ) = min

θ= x
σ
√

τ

{θ ≥ 0 : ẑ(θ, τ) = θ}, (14)

where ŷ and ẑ are implicitly defined in (5) or as argmaxz≥ x
σ
√

τ
,y≥− x

σ
√

τ
V(x, τ; y, z).

Proof. We begin by turning (2) into a homogeneous, forward equation by letting V =
W − L/r and τ = T − t to get

Wτ =
σ2S2

2
WSS + (r− q)SWS − rW, (15)

to be solved subject to

W(S, 0) = max(S− X, 0) + L/r, (16a)

W(Se(τ), τ) = Se(τ)− X + L/r, (16b)

WS(Se(τ), τ) = 1, (16c)

W(Sw(τ), τ) = L/r, (16d)

WS(Sw(τ), τ) = 0. (16e)

It is useful to separate the continuation domain into the two regions Sw(τ) ≤ S < X
and X ≤ S ≤ Se(τ). In the continuation region of the American CI call option, W(S, τ)
satisfies Equation (15), which in

Sw(τ) ≤ S < X needs to be solved subject to

W(Sw(τ), τ) = L/r, (17)

and in X ≤ S < Se(τ), subject to W(Se(τ), τ) = Se(τ)− X + L/r.
Note: We will introduce the transformation θ = x

σ
√

τ
, x = ln

(
X
S

)
and through this

transformation, the condition at τ = 0 is shifted to infinity. As the continuation region will
be a finite interval, −y ≤ θ ≤ z, we actually avoid the condition at expiry.

We also require continuity of the option’s value and its derivative over the strike price
X, i.e.,

lim
S→X−

W = lim
S→X+

W,

lim
S→X−

WS = lim
S→X+

WS.

For an exact, classical solution to PDE (2), we would also require continuity of VSS (the
second derivative) across the strike price. However, this will follow automatically, as will
be seen in the proof.

Making the substitutions

S = Xe−x, W = e−qτY(x, τ),

PDE (15) becomes

Yτ =
σ2

2
Yxx +

[
σ2

2
+ (q− r)

]
Yx − (r− q)Y. (18)
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We solve (18) on (−yσ
√

τ, 0) subject to Y(−yσ
√

τ, τ) = eqτ [Xeyσ
√

τ − X + L/r] and
on (0, zσ

√
τ) subject to Y(zσ

√
τ, τ) = eqτ L/r. The continuity conditions become

lim
x→0−

Y = lim
x→0+

Y,

lim
x→0−

Yx = lim
x→0+

Yx.

We let Y = exp(Ax + Bτ)u(x, τ) where A =
r−q− σ2

2
σ2 , B = σ2 A2

2 + A(q − r + σ2

2 )−
(r− q) which reduces (18) to the classical heat equation

uτ =
σ2

2
uxx. (19)

Lastly, we let θ = x
σ
√

τ
to get

2τuτ = uθθ + θuθ , (20)

to be solved on −y ≤ θ ≤ 0 subject to

u(−y, τ) = exp(Ayσ
√

τ − Bτ) exp(qτ)[X exp(yσ
√

τ)− X + L/r], (21)

and on 0 < θ ≤ z subject to

u(z, τ) = exp(−Azσ
√

τ − Bτ) exp(qτ)L/r. (22)

The continuity conditions are

lim
θ→0−

u = lim
θ→0+

u,

lim
θ→0−

uθ = lim
θ→0+

uθ .

Equation (20) has separable solutions of the type

u(θ, τ) = e
−θ2

2

∞

∑
i=1

τ
i
2

[
Ci M

(
1 + i

2
,

1
2

,
θ2

2

)
+ DiU

(
1 + i

2
,

1
2

,
θ2

2

)]
, (23)

where M and U are, respectively, the Kummer-M and Kummer-U functions. In (23), the
separation constant that was used is λi =

i
2 , where i is a positive integer. This is because it

has been shown (see e.g., [25]) that series in the square root of time have been successful in
solving other linear diffusion equations which involve free boundaries. We will use (23) to
describe the solutions in −y ≤ θ ≤ 0.

For 0 < θ ≤ z, we use different constants and write

u(θ, τ) = e
−θ2

2

∞

∑
i=1

τ
i
2

[
Fi M

(
1 + i

2
,

1
2

,
θ2

2

)
+ GiU

(
1 + i

2
,

1
2

,
θ2

2

)]
. (24)

Determining the Solution Coefficients

In order to satisfy the limit conditions at θ = 0, we need

Ci + Di

√
π

Γ(1 + i
2 )

= Fi + Gi

√
π

Γ(1 + i
2 )

, (25)

Di = −Gi. (26)

Hence, we set Fi = Ci +
2
√

π

Γ(1 + i
2 )

Di and Gi = −Di.
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We now note that for continuity at x = 0 of the second derivative, we need

iCi + iDi

√
π

Γ(1 + i
2 )

= iFi + iGi

√
π

Γ(1 + i
2 )

.

This, however, follows automatically from (25). This means that at x = 0, derivatives
of all orders are continuous.

Hence, we have

u(θ, τ) = e
−θ2

2

∞

∑
i=1

τi/2
[

Ci M
(

1 + i
2

,
1
2

,
θ2

2

)
+ DiU

(
1 + i

2
,

1
2

,
θ2

2

)]
for − y ≤ θ ≤ 0 , (27)

= e
−θ2

2

∞

∑
i=1

τi/2
[(

Ci +
2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
θ2

2

)
−Di U

(
1 + i

2
,

1
2

,
θ2

2

)]
for 0 < θ ≤ z,

To find the constants Ci and Di, we initially apply the boundary condition at θ = −y.
In series form, the condition there is

u(−y, τ) =
∞

∑
i=0

[Xγi + (L/r− X)ε̂i]τ
i/2, (28)

where ε̂i and γi are defined in (10f)–(10j). Hence, equating coefficients of τi/2, we get

Di =
[Xγi + (L/r− X)ε̂i]ey2/2 − Ci M

(
1+i

2 , 1
2 , y2

2

)
U
(

1+i
2 , 1

2 , y2

2

) , (29)

We now apply the boundary condition at θ = z. The condition there in series form is

u(z, τ) =
L
r

∞

∑
i=0

ψiτ
i/2, (30)

where ψi is defined in (10f)–(10j). Hence, equating coefficients of τi/2, we get

L
r

ψi = e−z2/2
[(

Ci +
2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
z2

2

)
− DiU

(
1 + i

2
,

1
2

,
z2

2

)]
. (31)

Solving (29) and (31), we get Ci and Di as given in (8) and (9).
The conditions for early exercise and exit (13) and (14), respectively, are derived by

realizing that with θ = x
σ
√

τ
, if θ = −ŷ(θ, τ) or θ = ẑ(θ, τ) then the option should be

exercised/withdrawn.

2.2. European CI Call Option Valuation

We now concentrate on the European CI call option, where the early exercise feature is
not available. We will denote the critical boundary, below which the option should expire
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(and so has zero value) by Sz(T − t), and so the continuation region for the European CI
option is Sz(T − t) ≤ S < ∞ and V = Ve(S, t) needs to satisfy (2) subject to

V(S, T) = max(S− X, 0), (32a)

V(Sz(T − t), t) = 0, (32b)

VS(Sz(T − t), t) = 0. (32c)

We now give the analytic approximation for the European CI call option in the follow-
ing theorem. As the proof follows the same lines as Theorem 1, it will be omitted.

Theorem 2. Let x = ln(X/S) and τ = T− t. An approximation to the short-term European CI
call option price in Sz(τ) ≤ S ≤ ∞, where Sz(τ) is the exit (or withdrawal) and OEB is

V(x, τ) = max
z≥ x

σ
√

τ

V(x, τ; z) = V(x, τ; ẑ), (33)

where

V(x, τ; z) = − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[

Ci M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
+DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for −∞ ≤ x ≤ 0 (i.e., X ≤ S ≤ ∞), (34)

= − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[(

Ci +
2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
−DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for 0 < x ≤ ln

(
X

Sz(τ)

)
(i.e., Sz(τ) ≤ S < X), (35)

with A =
r−q− σ2

2
σ2 , B = − (r−q+ σ2

2 )2

2σ2 , and M and U represent the Kummer-M and Kummer-U
functions, respectively, (see [24]).

The coefficients Ci and Di are given by

Ci =
Γ( (1+i)

2 )(2σ2)i/2
√

π

[
X(A + 1)i

i!
+

(
L
r
− X

)
Ai

i!

]
(36)

Di =

[
L
r ψie

z2
2 − Ci M

(
1+i

2 , 1
2 , z2

2

)]
2
√

π

Γ(1+ i
2 )

M
(

1+i
2 , 1

2 , z2

2

)
−U

(
1+i

2 , 1
2 , z2

2

) (37)

where

ψi =
i

∑
j=0

ajbi−j, (38a)

with

bn =

{
0 n = 1, 3, 5, ...
(q−B)n/2

(n/2)! n = 0, 2, 4, ...
(38b)
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am =
(−Azσ)m

m!
, m = 0, 1, 2, 3... (38c)

The withdraw/exit critical boundary is given by

Sz(τ) = Xe−zσ
√

τ , (39)

z ≥ 0, where the approximation θ̂0 for the true early exercise level of moneyness is

θ̂0(τ) = min
θ= x

σ
√

τ

{θ ≥ 0 : ẑ(θ, τ) = θ}, (40)

where ẑ is implicitly defined in (33) or explicitly as argmaxz≥ x
σ
√

τ
V(x, τ; z).

3. Early Exercise Price at Short Times to Expiry

At τ = 0, we know (see, e.g., Kimura [14]) that for American CI call options Se =

max
(

rX−L
q , X

)
and Sw(0) = X, while for European CI call options we have Sz(0) = X. We

now examine the behavior of the free boundaries near τ = 0, remembering that we defined
θ = x

σ
√

τ
where x = ln

(
X
S

)
.

3.1. American Case

We now demonstrate how our representation of the solution gives an approximation
θ̂2 of the early withdrawal level for the lower boundary Sw in (12) as τ tends to zero, which
is independent of r, q, and L > 0.

Proposition 1. Solution (5) leads to an approximation θ̂2 of the early withdrawal/exit level in (12)
that is ∼

√
ln(1/τ) as τ tends to zero.

Proof. We have in 0 ≤ θ ≤ z,

V(θ, τ; y, z) = e−qτeAσ
√

τθeBτ

{
L
r
+ e−θ2/2

[√
τ

{
(C1 + 4D1)M

(
1,

1
2

,
θ2

2

)
− D1U

(
1,

1
2

,
θ2

2

)}
+ R(θ, τ; y, z)τ]} − L

r
,

where

R(θ, τ; y, z) =
∞

∑
i=2

τ
i−2

2

[(
Ci +

2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
θ2

2

)
− DiU

(
1 + i

2
,

1
2

,
θ2

2

)]
.

From (14), we have for small τ that Vz(θ̃2, τ; ∞, θ̃2) = 0. From this we get

√
τ

{
(C1 + 4D1)z M

(
1,

1
2

,
θ̂2

2
2

)
− (D1)zU

(
1,

1
2

,
θ̂2

2
2

)}
+ Rz(θ̂2, τ; ∞, θ̂2)τ = 0. (41)

For large z, we know

er f
(

z√
2

)
∼ 1− 2

z
√

2π
e−z2/2, (42)

so that we get
Xσ

θ̂2
√

2π
∼ −Rz

√
τ. (43)

We now examine the leading order term of Rz, namely
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(C2 + 2
√

πD2)z M
(

3
2

,
1
2

,
θ2

2

)
− (D2)zU

(
3
2

,
1
2

,
θ2

2

)
. (44)

Using (42) the leading order behavior is ∼ −2Leθ̂2
2/2

θ̂2
.

So from (43) we have
σX

2
√

2πL
e−θ̂2

2/2 ∼
√

τ. (45)

On rearranging (45) we have θ̂2 ∼
√

ln(1/τ).

Proposition 2. Solution (5) leads to an approximation Y = −θ̂1 > 0 of the early exercise level
in (11) that is∼

√
ln(1/τ) as τ tends to zero, when (q− r)X+ L > 0 and when (q− r)X+ L = 0

behaves like
√

τ as τ tends to zero.

Proof. We have in −y ≤ θ ≤ 0

V(θ, τ; y, z) + e−qτeAσ
√

τθeBτ

{
L
r
+ e−θ2/2

[√
τ

{
C1M

(
1,

1
2

,
θ2

2

)
+ D1U

(
1,

1
2

,
θ2

2

)}
+ R(θ, τ; y, z)τ]} − L

r
,

where

R(θ, τ; y, z) =
∞

∑
i=2

τ
i−2

2

[
Ci M

(
1 + i

2
,

1
2

,
θ2

2

)
+ DiU

(
1 + i

2
,

1
2

,
θ2

2

)]
.

From (13), we know Vy(Y, τ; Y, ∞) = 0. This gives

√
τ

{
(C1)y M

(
1,

1
2

,
Y2

2

)
+ (D1)yU

(
1,

1
2

,
Y2

2

)}
+ Ry(Y, τ; Y, ∞)τ = 0.

Using the relation for large y as specified in (42), we have

Xσ

Y
√

2π
∼ −Ry

√
τ. (46)

We now examine the leading order term of Ry; that is,[
(C2)y M

(
3
2

,
1
2

,
θ2

2

)
+ (D2)yU

(
3
2

,
1
2

,
θ2

2

)]
. (47)

Using (42), we get the leading order behavior

∼ −2eY2/2[(q− r)X + L]
Y

(48)

so that upon using (46) and (48) we have

e−Y2/2 ∼ 2
√

2π

Xσ
[(q− r)X + L]

√
τ. (49)

This only makes sense if [(q − r)X + L] > 0, in which case e−Y2/2 ∼
√

τ so that
Y ∼

√
ln(1/τ).

When [(q− r)X + L] = 0, then the leading order behavior of Ry is ∼ −
√

2L√
πY2 .
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Hence from (46) we have

σX
Y
√

2π
∼
√

2/πL
Y2

√
τ. (50)

From this, we get Y ∼
√

τ. Note that for an American call option, the early exercise
level ∼

√
ln(1/τ) when q ≥ r, as τ tends to zero.

3.2. European Case

We now demonstrate how our representation of the solution gives an approximation
θ̂0 of the early withdrawal level for the lower boundary Sz in (39), as τ tends to zero, which
is independent of r, q, and L.

Proposition 3. Solution (33) leads to an approximation θ̂0 of the early withdrawal/exit level in (39)
that is ∼

√
ln(1/τ) as τ tends to zero.

Proof. We have in 0 ≤ θ ≤ z,

V(θ, τ; y, z) = e−qτeAσ
√

τθeBτ

{
L
r
+ e−θ2/2

[√
τ

{
(C1 + 4D1)M

(
1,

1
2

,
θ2

2

)
− D1U

(
1,

1
2

,
θ2

2

)}
+ R(θ, τ; y, z)τ]} − L

r
,

where

R(θ, τ; y, z) =
∞

∑
i=2

τ
i−2

2

[(
Ci +

2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
θ2

2

)
− DiU

(
1 + i

2
,

1
2

,
θ2

2

)]
.

From (40), we know that for small τ, Vz(θ̃0, τ; ∞, θ̃0) = 0. This gives

√
τ

{
(C1 + 4D1)z M

(
1,

1
2

,
θ̂2

0
2

)
− (D1)zU

(
1,

1
2

,
θ̂2

0
2

)}
+ Rz(θ̂0, τ; ∞, θ̂0)τ = 0. (51)

Applying the relation for large z as in (42) we have

Xσ

θ̂0
√

2π
∼ −Rz

√
τ. (52)

We now examine the leading order term of Rz, namely

(C2 + 2
√

πD2)z M
(

3
2

,
1
2

,
θ2

2

)
− (D2)zU

(
3
2

,
1
2

,
θ2

2

)
. (53)

Using (42), the leading order behavior is ∼ −2Leθ̂2
0/2

θ̂0
.

So from (52) we have
σX

2
√

2πL
e−θ̂2

0/2 ∼
√

τ. (54)

On rearranging (54) we get θ̂0 ∼
√

ln(1/τ).

4. Computational Results
4.1. Some Comparisons with Existing Methods

In this section, we study the performance of the formulas in Results 2.1, 2.2, A.1, and
B.1 for near and short-term European and American CI put and call options with those
obtained via the Crank–Nicolson finite difference method with successive over-relaxation
(CNSOR). We used the parameter values X = 2, r = 0.05, q = 0.04, and σ = 0.2 for all
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the options and q = 0.065 for American CI put options. The CNSOR method is accurate
to O(dt2, dS2) [23], where dt and dS are, respectively, small increments in time and asset
price, and it is used as the proxy to the true solution. We also examine the performance
of our formulas for European CI options with those obtained using Kimura’s procedure
in [8]. To value European CI options, Kimura [8] uses the Laplace–Carson transform of
the integral representation of the solution. Hence, to find the solution, one first needs
to find the stopping boundary by numerically inverting the transform of the stopping
boundary and then computing the definite integral via numerical integration. Kimura
used an ‘Euler-based’ method to invert the Laplace transform of the stopping boundary.
We found that we obtained identical answers to those of Kimura in his paper using the
Gaver–Stehfest method for Laplace inversion in Matlab [26].

For European CI call and put options, from Table 1, we note the excellent accuracy
of our formulae with that of CNSOR, with four decimal place accuracy in most cases for
options up to one-year expiry. This is achieved even though the method in this paper
is devised for short-term options, as it is based on an expansion in time-to-expiry. For
the call options, the RMSE for options up to and including 6 months expiry time is less
than 2.36× 10−5, while for over 30 examples of options up to 1 year expiry, it is less that
7.96× 10−5. For the put options, the RMSE for options up to and including 6 months expiry
time is approximately 4.72× 10−5, while over the 30 examples of options up to 1 year
expiry, it is approximately 8.37× 10−5. Kimura’s method did not perform as well, with
RMSE for call (put) options up to and including 6 months expiry time of approximately
3.05× 10−4(2.65× 10−4), while over the 30 examples of calls (puts) up to 1 year expiry, the
RMSE was approximately 4.64× 10−4(4.21× 10−4).

From Table 2, we find that we also have excellent accuracy for the critical exit boundary
for both the CI call and put options. This is true for all values tested, up to and including
time to expiry τ = 1. While many approximation methods might yield reasonable accuracy
for the value function or the exit boundary, it is remarkable to get such good accuracy for
both value functions and critical boundaries. Again, Kimura’s method did not perform as
well with an RMSE over all the 12 values of about 23 times higher than ours for the CI calls
and 21 times higher for the CI puts.

From Table 3, similar results were found for the American CI call and put option values
as for the European cases. For the call (put) the RMSE for options up to and including
6 months expiry time is less than 5.27× 10−5 (6.67× 10−5), while using all values to one
year expiry the RMSE is approximately 1.35× 10−4 (1.52× 10−4). Further, from Table 4,
there was excellent agreement on the critical exercise and exit boundaries for both the call
and put options.

As a further test, we compared the computational times of the CNSOR method [22]
with that of the proposed formulae in the paper. Using the computer algebra package
Maple [27] on a Dell x64 PC (Intel Core i5 processor, 16 GB RAM, CPU @1.6 GHz), we
found that for the European CI options using n = 4 terms in the series solution for the
option price, the proposed new method in this paper took about 0.75 s in real time or about
0.4 s in CPU time to yield the option price. With n = 5 terms, the proposed new method
took just under 0.8 s (0.421 s CPU). The Kimura method took between 11.1 to 133 s (or 12 to
134 s CPU) depending on the time to expiry. For the American CI options using n = 4 terms
took approximately 0.875 s (0.531 s CPU) while with n = 5 terms it took 0.913 s (0.578 s
CPU). In contrast, the CNSOR method could take between 31 and 104 s based on the time
to expiry, or between 103 and 360 s CPU time.

Given that in practice investors require rapid and accurate answers, the new formulae
provided in this paper may be an important development in the area of option pricing.

4.2. Analysis

We now look at the results to examine the behavior of the options and critical bound-
aries with respect to some parameter values.



Mathematics 2022, 10, 3494 14 of 27

We refer again to Tables 1 and 3. As with European and American vanilla call/put
options, the value of European and American CI call/put options increase/decrease with
the underlying price S and all options increase with time-to-expiry τ. In all cases, the
increase in installment rate L decreases the option value. This is to be expected, as payments
of installments should make the initial premium lower. Hence, the larger L is, the lower
the initial premium. See Figures 1–4. Note that in Table 3, we used a different value of
q = 0.065 for the American CI put option so as to demonstrate the corresponding behavior
of the exercise boundary (Table 4) in that case. However, the values with q = 0.04 are
plotted in Figure 4a–d to compare with the European case.

Table 1. Comparison of European CI call and put option prices using CNSOR, Theorem 2, Theorem A1
and Kimura’s result in [8]. Parameters used: X = 2, r = 0.05, q = 0.04, σ = 0.2.

European CI Call European CI Put

T S L CNSOR Theorem 2 Kimura CNSOR Theorem A1 Kimura

1/12

1.92 0.02 0.0149 0.0149 0.0148 0.0927 0.0927 0.0927
0.05 0.0129 0.0129 0.0126 0.0903 0.0903 0.0903

2 0.02 0.0451 0.0451 0.0451 0.0434 0.0435 0.0434
0.05 0.0428 0.0428 0.0427 0.0411 0.0411 0.0411

2.08 0.02 0.0967 0.0967 0.0967 0.0155 0.0155 0.0154
0.05 0.0942 0.0942 0.0942 0.0135 0.0135 0.0133

3/12

1.92 0.02 0.0413 0.0413 0.0411 0.1152 0.1152 0.1151
0.05 0.0351 0.0351 0.0346 0.1080 0.1080 0.1079

2 0.02 0.0767 0.0767 0.0766 0.0717 0.0717 0.0716
0.05 0.0699 0.0699 0.0696 0.0649 0.0649 0.0646

2.08 0.02 0.1246 0.1246 0.1245 0.0408 0.0408 0.0406
0.05 0.1174 0.1174 0.1173 0.0345 0.0345 0.0341

6/12

1.92 0.02 0.0683 0.0683 0.0679 0.1362 0.1363 0.1361
0.05 0.0559 0.0559 0.0551 0.1223 0.1222 0.1220

2 0.02 0.1060 0.1060 0.1057 0.0961 0.0961 0.0959
0.05 0.0927 0.0926 0.0922 0.0827 0.0827 0.0823

2.08 0.02 0.1525 0.1525 0.1524 0.0648 0.0648 0.0645
0.05 0.1386 0.1386 0.1383 0.0523 0.0522 0.0516

9/12

1.92 0.02 0.0884 0.0884 0.0879 0.1506 0.1506 0.1504
0.05 0.0701 0.0699 0.0690 0.1300 0.1299 0.1296

2 0.02 0.1271 0.1271 0.1268 0.1125 0.1125 0.1122
0.05 0.1076 0.1075 0.1068 0.0927 0.0926 0.0921

2.08 0.02 0.1731 0.1731 0.1728 0.0816 0.0815 0.0811
0.05 0.1527 0.1526 0.1522 0.0629 0.0627 0.0621

1

1.92 0.02 0.1046 0.1046 0.1040 0.1612 0.1612 0.1610
0.05 0.0805 0.0803 0.0792 0.1342 0.1341 0.1337

2 0.02 0.1440 0.1440 0.1435 0.1247 0.1246 0.1243
0.05 0.1184 0.1182 0.1174 0.0987 0.0985 0.0980

2.08 0.02 0.1895 0.1895 0.1892 0.0943 0.0942 0.0937
0.05 0.1629 0.1627 0.1621 0.0696 0.0694 0.0687

RMSE 7.96× 10−5 4.64× 10−4 8.37× 10−5 4.21× 10−4
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Table 2. Comparison of critical exit Sz values for European CI call and put options with X = 2,
r = 0.05, q = 0.04, σ = 0.2.

European CI Call European CI Put

T L CNSOR Theorem 2 Kimura CNSOR Theorem A1 Kimura

1/100 0.02 1.89 1.89 1.85 2.11 2.11 2.16
0.05 1.90 1.90 1.87 2.10 2.10 2.13

1/12 0.02 1.75 1.75 1.67 2.29 2.29 2.39
0.05 1.79 1.79 1.74 2.24 2.24 2.29

3/12 0.02 1.62 1.62 1.53 2.48 2.48 2.60
0.05 1.69 1.69 1.64 2.37 2.37 2.42

6/12 0.02 1.52 1.52 1.42 2.65 2.65 2.78
0.05 1.62 1.62 1.58 2.47 2.47 2.52

9/12 0.02 1.45 1.45 1.35 2.77 2.77 2.91
0.05 1.57 1.57 1.54 2.54 2.53 2.57

1 0.02 1.40 1.40 1.31 2.87 2.87 3.00
0.05 1.54 1.54 1.51 2.59 2.58 2.61

RMSE 0 6.67× 10−2 4.08× 10−3 8.72× 10−2

Table 3. Comparison of American CI call and put option prices using CNSOR, Theorem 1 and
Theorem A2 . Parameters used: X = 2, r = 0.05, σ = 0.2.

American CI Call with q = 0.04 American CI Put with q = 0.065

T S L CNSOR Theorem 1 CNSOR Theorem A2

1/12

1.92 0.02 0.0149 0.0149 0.0957 0.0957
0.05 0.0129 0.0129 0.0937 0.0937

2 0.02 0.0451 0.0451 0.0455 0.0455
0.05 0.0430 0.0430 0.0433 0.0433

2.08 0.02 0.0967 0.0967 0.0165 0.0165
0.05 0.0947 0.0947 0.0145 0.0145

3/12

1.92 0.02 0.0414 0.0414 0.1230 0.1230
0.05 0.0355 0.0354 0.1169 0.1168

2 0.02 0.0768 0.0768 0.0777 0.0777
0.05 0.0705 0.07050 0.0714 0.0714

2.08 0.02 0.1249 0.1249 0.0450 0.0450
0.05 0.1188 0.1187 0.0389 0.0389

6/12

1.92 0.02 0.0685 0.0685 0.1507 0.1506
0.05 0.0569 0.0568 0.1389 0.1388

2 0.02 0.1064 0.1064 0.1080 0.1080
0.05 0.0944 0.0943 0.0958 0.0957

2.08 0.02 0.1532 0.1532 0.0742 0.0742
0.05 0.1414 0.1413 0.0623 0.0621

9/12

1.92 0.02 0.0889 0.0889 0.1714 0.1713
0.05 0.0719 0.0717 0.1542 0.1540

2 0.02 0.1280 0.1279 0.1302 0.1301
0.05 0.1105 0.1103 0.1125 0.1123

2.08 0.02 0.1744 0.1744 0.0962 0.0962
0.05 0.1571 0.1570 0.0786 0.0784
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Table 3. Cont.

American CI Call with q = 0.04 American CI Put with q = 0.065

T S L CNSOR Theorem 1 CNSOR Theorem A2

1

1.92 0.02 0.1056 0.1055 0.1883 0.1881
0.05 0.0834 0.0831 0.1660 0.1656

2 0.02 0.1454 0.1453 0.1481 0.1480
0.05 0.1227 0.1223 0.1251 0.1248

2.08 0.02 0.1917 0.1915 0.1142 0.1141
0.05 0.1691 0.1688 0.0913 0.0909

RMSE 1.35× 10−4 1.52× 10−4

Table 4. Comparison of optimal exercise Se prices and exit/withdraw Sw prices for American CI call
and put options with X = 2, r = 0.05, σ = 0.2.

American CI Call with q = 0.04 American CI Put with q = 0.065

CNSOR Theorem 1 CNSOR Theorem A2

T L Sw Se Sw Se Sw Se Sw Se

1/100 0.02 1.89 2.13 1.89 2.13 2.12 1.83 2.12 1.83
0.05 1.90 2.11 1.90 2.11 2.10 1.90 2.10 1.90

1/12 0.02 1.75 2.33 1.75 2.33 2.30 1.70 2.30 1.70
0.05 1.78 2.26 1.78 2.26 2.25 1.77 2.25 1.77

3/12 0.02 1.62 2.51 1.62 2.51 2.49 1.59 2.49 1.59
0.05 1.69 2.40 1.69 2.40 2.39 1.67 2.39 1.67

6/12 0.02 1.52 2.67 1.52 2.66 2.68 1.50 2.68 1.50
0.05 1.61 2.51 1.62 2.50 2.51 1.60 2.51 1.61

9/12 0.02 1.45 2.77 1.45 2.76 2.82 1.45 2.81 1.45
0.05 1.57 2.59 1.57 2.58 2.59 1.56 2.58 1.57

1 0.02 1.40 2.85 1.41 2.84 2.94 1.41 2.94 1.42
0.05 1.54 2.64 1.54 2.63 2.66 1.53 2.64 1.54

RMSE 4× 10−3 7.07× 10−3 7.07× 10−3 5.77× 10−3

For the critical exit boundary, we can see from Tables 2 and 4 that Sz and Sw approach
X = 2 as τ tends to zero. This agrees with the results of Kimura ([8,14]). For the European
CI call, for all expiries τ, Sz(τ) < X = 2, as expected, so the option is out-of-the-money
when the option is withdrawn. The amount that it is out-of-the money decreases with
L, i.e., |Sz − X| decreases with L, so for larger installment payments there are less values
of the asset price where it is best to keep paying installments. As a function of τ, for the
parameters listed for the call, Sz decreases from X = 2. However, this may not always be
the case, and is discussed a little bit further.

With the European CI put, for all expiries τ, Sz(τ) > X = 2, as expected, so the option
is out-of-the-money when the option is withdrawn. Again, the amount that it is out-of-the
money decreases with L, i.e., |X− Sz| decreases with L, so for larger installment payments,
there are fewer values of the asset price where it is best to keep paying installments. As a
function of τ for the parameters listed for the put, Sz increases from X = 2.

While the exit boundaries for the CI call (put) options in the cases L = 0.02, 0.05
decrease (increase) as a function of time-to-expiry, up to τ = 1, it seems unreasonable
to believe that the investor would continue to pay installments for increasing out-of-the
moneyness for all times-to-expiry. This is even more so the case for larger L. To test this, we
used L = 0.2 and for the European CI call option found that the exit boundary decreased
from X = 2 to 1.83 at τ = 3/12, but then increased towards X = 2, so that at τ = 1 it was
1.88. By τ = 1.5 it was 1.93. Hence, it is in fact a convex function of τ.
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Figure 1. (a) European CI call (V) values with L = 0.02, (b) European CI call (V) values with
L = 0.05 and (c) European CI call (V) values with S = 2 for various expiries (τ). Parameters used:
r = 0.05, q = 0.04, σ = 0.2, X = 2.
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Figure 2. (a) European CI put (V) values with L = 0.02, (b) European CI put (V) values with
L = 0.05 and (c) European CI put (V) values with S = 2 for various expiries (τ). Parameters used:
r = 0.05, q = 0.04, σ = 0.2, X = 2.
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Figure 3. (a) American CI call (V) values with L = 0.02, (b) American CI call (V) values with L = 0.05,
(c) American CI call (V) values with S = 2 and (d) European and American CI call (V) values with
L = 0.05 for various expiries (τ). Parameters used: r = 0.05, q = 0.04, σ = 0.2, X = 2.
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Figure 4. (a) American CI put (V) values with L = 0.02, (b) American CI put (V) values with L = 0.05,
(c) American CI put (V) values with S = 2 and (d) European and American CI put (V) values with
L = 0.05 for various expiries (τ). Parameters used: r = 0.05, q = 0.04, σ = 0.2, X = 2.
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For smaller L, it takes much longer to reach the turning point. For L = 0.05, Sz slowly
decreases with τ to about a minimum of 1.44 at τ = 4, but by τ = 10, its value is 1.52.

In a similar way, the exit boundary for the CI put option is concave as a function of τ
so that |X− Sz| increases, then decreases. See Figure 5a,b.

For the exercise boundaries of American CI call options, from Table 4, we see that the
results in the limit as τ tends to zero agree with Se(0) = max

(
rX−L

q , X
)

. When L = 0.02
and 0.05, we have Se tending towards X = 2. Similarly for the exercise boundaries of
American CI put options, from Table 4, we see that the results in the limit as τ tends to
zero agree with Se(0) = min

(
rX+L

q , X
)

. When L = 0.02, we have Se tending towards 1.846,
while for L = 0.05, Se tends towards 2 as τ tends to zero. See Figure 6a,b.
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Figure 5. (a) Critical exit Sz values for the European CI call and (b) Critical exit Sz values for the
European CI put for various expiries (τ). Parameters used: r = 0.05, q = 0.04, σ = 0.2, X = 2.
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Figure 6. (a) Optimal exercise Se values for the American CI call and (b) Optimal exercise Se values
for the American CI put for various expiries (τ). Parameters used: r = 0.05, q = 0.04, σ = 0.2, X = 2.

5. Conclusions

Financial contracts that offer reduced upfront premiums are very popular in financial
markets. One such contract is the installment option, which allows the investor to pay
the premium in installments over the life of the contract, and also allows the investor to
exit (or cancel) the contract early if they so desire. In this paper, we have addressed the
issue of pricing short-term continuous installment options—both call and put options of
both the European and American type. Given that there are currently no exact pricing
formulae for these options, this issue is very important. We have formulated accurate
and efficient analytical approximations for all these options with short tenor. As the
majority of options in the market have expiries of less than 9 months, this is an important
development in this field. It was demonstrated that not only did the solutions yield
very accurate and efficient results for the option price, but also for the exit stock price
boundaries and the exercise boundaries for the American CI options. In the absence of
scaling invariance, multiple free boundaries and even single free boundaries are extremely
difficult to locate in closed analytical form. Therefore, finding very accurate approximations
for them is, we believe, an important achievement. Our results also outperformed the
results from Kimura’s method [8]. Further, having analytic approximations, we were able
to determine the behavior of the critical boundaries near expiry. The exit boundaries for the
European and American CI call and put options close to expiry were found to have levels
of moneyness θ ∼

√
ln(1/τ) which do not depend on the parameters r, q and L. However,

the early exercise levels of moneyness for the American CI call close to expiry ∼
√

ln(1/τ)
when (q− r)X + L > 0 and ∼

√
τ when (q− r)X + L = 0. For the American CI put, the
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early exercise levels of moneyness ∼
√

ln(1/τ) when (r− q)X + L > 0 and ∼
√

τ when
(r− q)X + L = 0.
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Appendix A

We now present the solution V = V(S, t) for the value of the European CI put option.
We denote the critical boundary, above which the option should expire (and so has zero
value) by Sz(T − t) and so the continuation region for the European CI put option is
0 ≤ S ≤ Sz(T − t). The solution V(S, t) needs to satisfy (2) subject to

V(S, T) = max(X− S, 0), (A1a)

V(Sz(T − t), t) = 0, (A1b)

VS(Sz(T − t), t) = 0. (A1c)

The analytic approximations for the European CI put option and the critical exit
boundary are given in the following theorem. The proof follows along the same lines as
for Theorem 1, except that we use the transformation x = ln(S/X) for convenience. It will
be omitted.

Theorem A1. Define x = ln(S/X) and τ = T− t. An approximation for the short-term European
CI put option price in 0 < S ≤ Sz(τ), where Sz(τ) is the exit (or withdrawal) critical boundary is

V(x, τ) = max
z≥ x

σ
√

τ

V(x, τ; z) = V(x, τ; ẑ), (A2)

where

V(x, τ; z) = − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[

Ci M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
+DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for −∞ < x ≤ 0 (i.e., 0 ≤ S ≤ X), (A3)

= − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[(

Ci +
2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
−DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for 0 < x ≤ ln

(
X
Sz

)
(i.e., X < S ≤ Sz(τ)), (A4)

with A = − (r−q− σ2
2 )

σ2 , B = − (−σ2+2(q−r))2

8σ2 and M and U represent the Kummer-M and Kummer-
U functions, respectively, (see [24]). Further, the coefficients Ci and Di are given by
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Ci =
Γ( (1+i)

2 )(2σ2)i/2
√

π

[
−X(A− 1)i

i!
+

(
L
r
+ X

)
Ai

i!

]
(A5)

Di =

[
L
r ψie

z2
2 − Ci M

(
1+i

2 , 1
2 , z2

2

)]
2
√

π

Γ(1+ i
2 )

M
(

1+i
2 , 1

2 , z2

2

)
−U

(
1+i

2 , 1
2 , z2

2

) (A6)

where ψi is given in (38a)–(38c).
The (withdraw/exit) critical boundary is given by

Sz(τ) = Xezσ
√

τ , (A7)

z ≥ 0, where the approximation θ̂p for the true early exercise level of moneyness is

θ̂p(τ) = min
θ= x

σ
√

τ

{θ ≥ 0 : ẑ(θ, τ) = θ}, (A8)

where ẑ is implicitly defined in (A2) or explicitly as argmaxz≥ x
σ
√

τ
V(x, τ; z).

At τ = 0, we know (see e.g., Kimura [14]) that for European CI put options, we have
Sz(0) = X. We now examine the behavior of the free boundary near τ = 0, remembering
that we defined θ = x

σ
√

τ
where x = ln

(
X
S

)
.

Proposition A1. Solution (A2) leads to an approximation θ̂p of the early withdrawal/exit level
in (A7) that is ∼

√
ln(1/τ) as τ tends to 0.

The proof is similar to that for Proposition 3.

Appendix B

We now present the solution V = V(S, t) for the value of the American CI put option.
If we denote the lower optimal exercise boundary (OEB), below which the option

should be exercised, by Se(T − t) and the upper critical boundary, above which the option
should expire or withdrawn (and so is worthless) by Sw(T − t), then the continuation
region for the American CI put option is Se(T − t) ≤ S ≤ Sw(T − t) and V(S, t) needs to
satisfy (2) subject to

V(S, T) = max(X− S, 0), (A9a)

V(Se(T − t), t) = X− Se(T − t), (A9b)

VS(Se(T − t), t) = −1, (A9c)

V(Sw(T − t), t) = 0, (A9d)

VS(Sw(T − t), t) = 0. (A9e)

The analytic approximation for the American CI put option and the associated critical
boundaries are given in the following theorem. The proof follows along the same lines as
Theorem 1, except that we again use the transformation x = ln(S/X) for convenience. It
is omitted.
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Theorem A2. Let x = ln(S/X) and τ = T − t. An approximation for the short-term American
CI put option price in Se(τ) ≤ S ≤ Sw(τ), where Se(τ) and Sw(τ), respectively, are the exercise
(lower) and withdraw (upper) OEBs is

V(x, τ) = max
z≥ x

σ
√

τ
,y≥− x

σ
√

τ

V(x, τ; y, z) = V(x, τ; ŷ, ẑ), (A10)

where

V(x, τ; y, z) = − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[

Ci M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
+DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for ln

(
Se(τ)

X

)
≤ x ≤ 0 (i.e., Se(τ) ≤ S ≤ X), (A11)

= − L
r
+ e−qτeAx+Bτ

{
L
r
+ e

−x2

2σ2τ

∞

∑
i=1

τi/2
[(

Ci +
2Di
√

π

Γ(1 + i/2)

)
M
(

1 + i
2

,
1
2

,
x2

2σ2τ

)
−DiU

(
1 + i

2
,

1
2

,
x2

2σ2τ

)]}
for 0 < x ≤ ln

(
Sw(τ)

X

)
(i.e., X ≤ S ≤ Sw(τ)), (A12)

with A = − (r−q− σ2
2 )

σ2 , B = − (−σ2+2(q−r))2

8σ2 and M and U represent the Kummer-M and Kummer-
U functions, respectively, (see [24]).

Further, the coefficients Ci and Di are given by

Ci =
(ρ1)iUy − (ρ2)i(ρ3)i

MzUy −My(ρ2)i
(A13)

Di =
Mz(ρ3)i − (ρ1)i My

MzUy −My(ρ2)i
(A14)

where

(ρ1)i =
L
r

ψie
z2
2 (A15a)

(ρ2)i =
2
√

π

Γ(1 + i
2 )

Mz −Uz (A15b)

(ρ3)i =

(
−Xφi + (

L
r
+ X)ε̂i

)
ey2/2 (A15c)

My = M
(

1 + i
2

,
1
2

,
y2

2

)
, Mz = M

(
1 + i

2
,

1
2

,
z2

2

)
, (A15d)

Uy = U
(

1 + i
2

,
1
2

,
y2

2

)
, Uz = U

(
1 + i

2
,

1
2

,
z2

2

)
, (A15e)

ε̂i =
i

∑
j=0

εjbi−j, φi =
i

∑
j=0

pjbi−j, ψi =
i

∑
j=0

ajbi−j, (A15f)
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with

bn =

{
0 n = 1, 3, 5, ...
(q−B)n/2

(n/2)! n = 0, 2, 4, ...
(A15g)

am =
(−Azσ)m

m!
, m = 0, 1, 2, 3... (A15h)

εm =
(Ayσ)m

m!
, m = 0, 1, 2, 3... (A15i)

pm =
((A− 1)yσ)m

m!
, m = 0, 1, 2, 3, ... (A15j)

The lower (exercise) and upper (withdraw) optimal exercise boundaries are given, respec-
tively, by

Se(τ) = Xe−yσ
√

τ (A16)

and
Sw(τ) = Xezσ

√
τ , (A17)

y, z ≥ 0, where approximations θ̂3, θ̂4 for the true early exercise level of moneyness are given by

θ̂3(τ) = min
θ= x

σ
√

τ

{θ ≤ 0 : ŷ(θ, τ) = −θ}, (A18)

and
θ̂4(τ) = min

θ= x
σ
√

τ

{θ ≥ 0 : ẑ(θ, τ) = θ}, (A19)

where ŷ and ẑ are implicitly defined in (A10) or as argmaxz≥ x
σ
√

τ
,y≥− x

σ
√

τ
V(x, τ; y, z).

At τ = 0, we know (see, e.g., Kimura [14]) that for American CI put options Se =

min
(

rX+L
q , X

)
and Sw(0) = X. We now look at the behavior of the free boundaries near

τ = 0. Recall that we defined θ = x
σ
√

τ
where x = ln

(
X
S

)
.

Proposition A2. Solution (A10) leads to an approximation θ̂3 of the early upper withdrawal/exit
level in (A17) that is ∼

√
ln(1/τ) as τ tends to 0. When L + X(r − q) > 0, it leads to an

approximation θ̂4 of the early exercise level (lower) in (A16) that is ∼
√

ln(1/τ) as τ tends to zero
and when L + X(r− q) = 0 that is ∼

√
τ as τ tends to 0.

The proof is similar to that for Propositions 1 and 2. Note that the early exercise level
for an American put option ∼

√
ln(1/τ) when r ≥ q as τ tends to zero.
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