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Abstract: Smoke detection based on video surveillance is important for early fire warning. Because 
the smoke is often small and thin in the early stage of a fire, using the collected smoke images for 
the identification and early warning of fires is very difficult. Therefore, an improved lightweight 
network that combines the attention mechanism and the improved upsampling algorithm has been 
proposed to solve the problem of small and thin smoke in the early fire stage. Firstly, the dataset 
consists of self-created small and thin smoke pictures and public smoke pictures. Secondly, an at-
tention mechanism module combined with channel and spatial attention, which are attributes of 
pictures, is proposed to solve the small and thin smoke detection problem. Thirdly, to increase the 
receptive field of the smoke feature map in the feature fusion network and to solve the problem 
caused by the different smoke scenes, the original upsampling has been replaced with an improved 
upsampling algorithm. Finally, extensive comparative experiments on the dataset show that im-
proved detection model has demonstrated an excellent effect. 

Keywords: smoke detection; small and thin; lightweight network; attention mechanism; improved 
upsampling algorithm 
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1. Introduction 
Fire frequently occurs in human daily life, bringing great annoyance. Life and prop-

erty may suffer from significant losses as a result at the same time. According to human 
common consensus, smoke appears both before the fire and appears with the fire. There-
fore, detecting smoke quickly is one of the most important fire warning directions. How-
ever, traditional smoke sensors are only used for detections indoors and have large re-
quirements for the concentration and size of smoke. Fortunately, with the development 
of technology [1–3], there are many smart monitoring devices, and IoT detection is on the 
agenda. However, most smoke detection does not focus on the small and thin smoke in 
the early stage of the fire. Moreover, very small and thin smoke datasets can be found in 
the early stages of a fire. Given the above problems, detecting small and thin smoke in the 
early stage of intelligent fire based on real-time monitoring is of great significance. 

This paper is described later as follows. Section 2 contains a consideration of related 
work. In Section 3, methods of the paper are introduced. Section 4 presents the results of 
the experiments. In Section 5, a conclusion and future work are depicted. 

2. Related Work 
Existing methods of intelligent smoke detection have been collected and summarized 

by us. After comparison, the methods can be divided into two categories: smoke detection 
based on traditional machine learning and smoke detection based on deep learning con-
volutional neural network feature extraction. Based on traditional machine learning, there 
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are usually three steps: (1) using foreground extraction or subregional interception of im-
ages; (2) followed by the design of digital image processing according to distinctive fea-
tures; (3) input the numerical features to the machine learning classifier. In [4], the types 
of feature extraction algorithms commonly used in machine learning are detailed. Most of 
the existing algorithms are based on color [5–7], texture [8–10], motion features [11,12], 
and shape [13]. In [6], a color segmentation method was used to classify the smoke moving 
pixel points successfully. In [7], the authors combined LBP, KPCA, and GPR to propose a 
new smoke detection channel. Therefore, the smoke was classified according to its texture. 
Although the smoke constantly moves, this feature was also captured in [9]. Firstly, the 
area where the smoke was located was known through the color distribution rules, and 
then the motion energy was used to estimate the saliency map of the pre-segmentation, 
and the accurate smoke segmentation result is obtained. An innovative method for seg-
menting the smoke region was proposed to classify smoke pixels based on smoke’s color 
and motion features [11]. In [13], although only pedestrians were detected, it was quite 
close to the method for detecting smoke. This paper mentioned that the optimal hyper-
plane is obtained through the distribution in the multi-channel image space. Then, the 
pedestrian was segmented by shape statistics. This method could also be used in smoke 
detection. Although traditional detection methods detect smoke more accurately, they can 
be much slower in terms of efficiency than deep learning methods. Traditional machine 
learning methods require subjective judgments on the features to be extracted, and they 
often tend to lack large data to support the diversity of smoke features caused by different 
environments at different times. Moreover, when detecting small smoke, the accuracy 
needs to be improved. Therefore, people now prefer to use deep learning convolutional 
neural networks for smoke detection. 

Many approaches have also emerged in smoke detection using deep learning convo-
lutional neural networks since the introduction of AlexNet [14], one of the convolutional 
neural networks. In [1,15], the VGG16 convolutional neural network [16] was used as the 
backbone network of model detection and improved accordingly. In order to address the 
identification of smoke in haze and improve the robustness of the network model, an ar-
tificial smoke dataset was also used in [1]. Moreover, the authors use ImageNet to pretrain 
the weights before training their dataset, thus solving the problem of interference caused 
by the natural environment, as expected. Furthermore, in [15], the authors also used 
VGG16 as the backbone network [16] and added spatial and channel attention mecha-
nisms. Finally, feature-level and decision-level fusion models were added to reduce the 
model parameters. Therefore, it reduced the size of the model and improved the accuracy. 

Moreover, [17] also studied smoke detection in haze weather. A dark channel-as-
sisted, hybrid attention, and feature fusion algorithm was proposed. An unbalanced data 
set was trained first, improving smoke detection accuracy in a haze environment. In ad-
dition, to solve the large deformation of smoke shape in the case of large outdoor wind 
speed, [18] proposed a cascade classification of smoke and a deep convolutional neural 
network based on AlexNet to improve smoke detection in some extreme environments. 
In both [19,20], the authors included a BN (batch normalize) [21] layer, which aimed to 
unify the scattered data and normalize the data in each layer, thus achieving a training 
model acceleration as well as overfitting mitigation. Dual deep convolutional neural net-
works, DCNN and SBNN, were used in [19]. The authors added BN layers to both net-
works to detect smoke accurately. The role of the SBNN network was to extract detailed 
information about smoke, and the role of the SCNN was to capture the basic information 
about the smoke. Finally, the ninth max-pooling layer of the SBNN network was removed 
and connected to the feature fusion to achieve the dual network connection. In [20], the 
data set was first preprocessed by detecting the dynamic track of smoke, and the suspi-
cious smoke area was obtained. Next, the SqueeezeNet lightweight convolutional net-
work [22] was used for feature extraction. It is worth noting that the authors used a three-
network progressively improved SqueezeNet network, a network with BN layers, and a 
depth-wise separable convolution instead of the traditional convolutional network. In 
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[23], to reduce the detection difficulty and real-time detection monitoring, the existing 
convolutional neural was modified and a new convolutional neural network SCCNN was 
proposed to get good results for real-time smoke detection. In [24], the authors adopted 
the lightweight object detection network Efficientdet-D2 [25]. The problem of false-nega-
tive detection results caused by insufficient consideration of scene information in actual 
smoke scenes was solved by adding a self-attention mechanism to the network. Further-
more, the problem of false detection caused by class smoke was solved by successfully 
obtaining multi-level nodes for a multi-feature fusion of smoke. 

In general, the deep learning smoke detection methods proposed above all have 
achieved excellent smoke detection results. However, there are two main problems with 
smoke detection. (1) In [1,15,18], the authors mainly solve the problem of smoke in the 
haze environment. Nevertheless, there is less corresponding work for detecting small and 
thin smoke in the early stage of the fire. This is one of the most effective and rapid ways 
to prevent fire occurrence. (2) The detection algorithm can be more lightweight because 
Edge computing based on lightweight algorithms is the trend in deep learning. Using a 
more lightweight detection model smoke was detected faster without internet interfer-
ence. Therefore, there are the following challenges: (1) Deep learning relies heavily on an 
effective dataset and finding an effective small and thin smoke dataset in the early stage 
of fire from the internet are difficult. (2) Detections for small and thin are more difficult 
than normal smoke detection because they are located in small areas and carry less infor-
mation. (3) The accuracy of smoke detection using a lightweight model is usually lower 
than that of a large network model. 

In order to solve the problems raised above, an improved YOLO v5s CNN network 
based on the spatial and the channel attention mechanisms and replacing the original up-
sampling content-aware reassembly of features (CARAFE) is proposed by us. Firstly, 
smoke video was shoot from an empty warehouse through cameras. Frame-by-frame 
screenshots have been taken to get the initial dataset and use public datasets to enhance 
the scene robustness of data. Secondly, a channel and spatial attention mechanism is 
added after the first two C3 convolutions in the feature fusion network [26]. A novel up-
sampling CARAFE [27] instead of the first one in the feature fusion network upsampling 
was used. The proposed smoke detection framework is shown in Figure 1. Specifically, 
• In order to solve the problem of being less small and thin smoke in the early stage of 

fire, practical shooting was carried out to collect real-time dataset. Smoke generators, 
sheets, and cotton ropes were used during the shooting as different small and thin 
smoke sources. 

• A combination of spatial attention mechanism and channel attention mechanism net-
work has been added to the feature fusion network of YOLO v5s to solve the problem 
of small and thin smoke detection at the beginning of a fire. Instead of a single spatial 
attention module, a combination of spatial and channel modules has been used. 
When extracting smoke, this will assign a higher weight to the area where the smoke 
is located and the channel. Therefore, the model can pay more attention to the smoke 
itself to reduce the interference of the scene and solve the problem of such small and 
thin smoke detection. 

• In order to further improve the detection effect of smoke, the improved upsampling 
CARAFE has been taken in the feature fusion network of YOLO v5s instead of the 
original nearest neighbor interpolation upsampling. Compared with the nearest 
neighbor interpolation upsampling, the CARAFE algorithm can obtain a larger re-
ceptive field in the smoke photo to aggregate information. The contents of the smoke 
pictures are perceptually processed by generating adaptive kernels in real-time. 
Moreover, the algorithm has fewer parameters and a faster calculation speed, which 
is suitable for purpose of detecting smoke. 
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Figure 1. Overall framework. 

3. Methods 
An efficient smoke detection method that combines an attention mechanism with a 

novel upsampling algorithm has been proposed to address small and thin smoke detec-
tion in the early stage of fire. As seen from Figure 1, firstly, offline videos of common 
combustibles were taken just as they were starting to burn. Then, the original video data 
were preprocessed to obtain data in the form of images. The normal smoke dataset in 
different scenarios and the smoke-free dataset in different scenarios were combined to 
form a complete smoke dataset, divided into training, validation, and test datasets. Next, 
based on the YOLO v5s network, the structure of the convolutional neural network was 
redesigned, and an attention mechanism combined with spatial and channel has been 
added. The attention mechanism is used after the C3 module in feature fusion. Next, the 
first upsampling of the feature fusion network has been replaced with a novel upsampling 
CARAFE. Then, the training set was used to train the new convolutional neural network 
to obtain the smoke detection model. Finally, the smoke detection model types are normal 
smoke, small smoke, and non-smoke. 

3.1. YOLO v5 Object Detection Network 

Since Joseph Redmon proposed the YOLO [28] object detection algorithm in 2016, 
there has been increasing acceptance of this single-stage object detection algorithm. Com-
pared with Fast RCNN [29], Faster RCNN [30] and other two-stage object detections, the 
YOLO series may be inferior to them in terms of detection accuracy. However, the signif-
icant reduction in the size of network parameters and the significant increase in detection 
speed will make it more suitable for real-time target detection. So far, the original author 
has continued to propose YOLO v2 [31], YOLOv3 [32] versions whereas Alexey Bochkov-
skiy proposed YOLO v4 [33] and YOLO v5 series that have been updated and maintained 
on GitHub. These YOLO series object detection algorithms continue improving target de-
tection accuracy. It would be a suitable choice for us to use for smoke detection in real-
time. Therefore, the more lightweight version s in YOLO v5s was chosen to conduct ex-
periments and improve its performance to obtain higher object detection evaluation indi-
cators. 

As can be seen in Figures 2 and 3, the model of YOLO v5s removes the region pro-
posal network and significantly improves the detection speed compared with the two-
stage algorithm mentioned above. The model of YOLO V5 consists of three parts, namely 
Backbone Network, Neck Network, and Detect. Backbone Network is the most important 
part of the overall network. Because it takes a critical role in feature extraction of smoke 
pictures, which is an initial part of the network. The role of the Neck Network is to fuse 
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features from the Backbone Network. The part of Detect can create a bounding box (loca-
tion box) to detect smoke. YOLO V5 is configured with four performance models of dif-
ferent sizes. The parameters are arranged from low to high as YOLO v5s, YOLO V5m, 
YOLO V5l, and YOLO V5x. YOLO V5 uses CSPDarknet53 as a feature extraction network 
[34]. The feature fusion neck network is composed of an integrated spatial pyramid pool-
ing fast (SPPF) network, feature pyramid networks (FPN) [35], and pixel aggregation net-
work (PAN) [36]. 
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Figure 2. YOLO v5s algorithm model (1). 
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Figure 3. YOLO v5s algorithm model (2). 

The loss function of YOLO v5s consists of three parts, classification loss, localization 
loss, and confidence loss. Using binary cross entropy (BCE) loss, classification loss is used 
to indicate whether the anchor box matches the previously calibrated classification. Local-
ization loss indicates the difference between the prediction and calibration frames using 
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Complete-IOU (C-IOU). Moreover, confidence loss also represents the confidence error of 
the network with BCE loss. 

3.2. Small and Thin Smoke Detection Using Spatial and Channel Attention Mechanisms 
The timely detection of small and thin smoke in the early stages of fire is a key factor 

affecting the ability to detect fires early and protect lives and property accurately. Since 
small objects are always located in small areas and carry little information, the features 
finally extracted by the multi-layer convolutional neural network are few compared with 
the background, resulting in weak feature expression ability and reduced detection ability 
for small objects. A combined channel and spatial attention mechanism module has been 
added to address this issue. 

As shown in Figure 4, channel attention emphasizes the channel features of smoke, 
which give higher weights to object regions in the image. After the channel attention, the 
color of the photos input channel is more obvious. The weight of model becomes higher. 
Spatial attention emphasizes the location features representing the smoke and gives them 
higher weight. After the spatial attention algorithm, the location’s color representing the 
smoke becomes darker. Therefore, in extracting smoke features, this attention mechanism 
can pay more attention to the location of smoke to reduce background interference and 
improve the accuracy of small and thin smoke detection. 

Channel

Channel
Attention

Spatial
Attention

Spatial

Channel

SpatialSpatial

Channel

Input
Feature

Output
Feature

 
Figure 4. Attention mechanism. 

Taking the output of C3 of the basic convolutional neural network YOLO v5s feature 
fusion network as the input feature Xi, the channel attention layer is composed of convo-
lutional layers with W1 and B1 parameters, which represent the weight and bias of the 
convolutional layer, respectively. In the channel attention layer, average pooling and max 
pooling operations have been used to aggregate feature information. Then, feature extrac-
tion is performed through multiple fully connected layers. Finally, sigmoid activation has 
been used to generate the weights W1 for each channel. When the feature Xi passes through 
the channel attention, the output feature Xo1 is obtained, as 

 (1)

Two pooling operations have been used consecutively in the spatial attention layer 
to aggregate the channel information from the Xo1 feature maps. Next, feature extraction 
is performed through multi-layer convolution. Finally, the sigmoid activation generates 
the weighted spatial attention W2. The final output feature Xo2 obtained from the output 
feature Xo1 after channel attention as input and B2 is biased, as 

 (2)

3.3. CARAFE Upsampling 
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In the original YOLO V5s, the feature fusion network upsampling is achieved by 
nearest-neighbor interpolation. However, nearest-neighbor interpolation only considers 
sub-pixel neighborhoods. It cannot capture the rich semantic information required for 
dense prediction tasks. In addition, deconvolution [37] is also one of the upsampling ap-
proaches. However, it also has two drawbacks: a deconvolution operator covers the same 
kernel throughout the image, regardless of the underlying content. This limits its ability 
to respond to local changes, and it comes with a large number of parameters. However, 
CARAFE has the attributes of a larger field of view, content-aware handing, lightweight, 
and fast to compute. Large field of view can receive more information of smoke pictures 
to complete the detection task. The attribute of content-aware handing uses adaptive ker-
nels instead of the fixed kernel to better process different features of smoke. Lightweight 
and fast to compute, can detect smoke in real-time without increasing parameters much, 
which is the expectation of using a lightweight CNN. 

The original upsampling has been changed to CARAFE up-sampling. As shown in 
Figure 5, CARAFE consists of two steps: the kernel prediction module and the content-
aware reorganization module. In the kernel prediction module, the feature map of a given 
smoke image is C × H × W, and a convolution kernel with a 1 × 1 channel compression 
convolution C2 was performed. Then, to encode convolution, the number of channels 
were redistributed, where σ is the upsampling factor (assuming as an integer). Then, pixel 
shuffling is performed to expand the receptive field of upsampling for the smoke feature 
map. Next, the feature map is normalized to reduce the number of parameters in opera-
tion. Then, in the content-aware recombination module, the feature map obtained using 
the prediction kernel and the feature map obtained by ordinary upsampling are used for 
the dot product to reorganize the feature with the prediction kernel. Therefore, the for-
mula of the kernel prediction module and the content-aware reorganization module are 
as follows: 

Channel
Compressor

Content
Encoder

Pixel
Shuffle

Kenel
Normalizer

Input
Feature

Nearest neighbor 
upsampling Output

Feature

Umsample Prediction Moudle

Cntent-Aware Reassembly Module

 
Figure 5. Flow of CARAFE. 
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 (4)

 (5)
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Among them, every target location requires a kup × kup reassembly kernel, where kup is 
the reassembly kernel size. ψ represents the kernel prediction module, Kencoder is the convo-
lution kernel of the coding convolution, N (Xl, k) is the X sub-region of X centered on this 
position, and Wo is the output of the prediction module. ϕ is the content-aware reorgani-
zation module, and Zo is the total output of the upsampling model. 

3.4. Innovative Datasets 
A unique dataset was sought to address the lack of small and thin smoke in the early 

stages of fire in public datasets. These data include the smoke data of the smoke generator 
after the smoking sheet and the cotton rope is burned. The normal smoke and non-smoke 
pictures of the public dataset were combined to create a new dataset. 

As shown in Figure 6, the smoke in the first photo of a column of small smoke of 
Figure 6 is from the smoke generator, the second photo from a smoke sheet, third photo 
from cotton rope. A total of 120 videos were collected, and the videos are divided into 
three types of smoke, namely the smoke from the smoke generator, the smoking sheet, 
and the cotton rope. The small and thin smoke dataset is unique. Because the small and 
light smoke images within 100 × 100 pixels from the high-definition video screenshots of 
1080 × 1920 pixels were screened out, the smoke of the smoke generator is relatively uni-
form. Its smoking principle is to use the manual button to smoke, and the difficulty of 
smoke detection is relatively simple compared with the other two types of smoke. The 
smoke emitted by the cotton rope and the smoking sheet after burning will not be so ob-
vious. Its initial smoke and smoke are relatively small, equivalent to the smoke of indoor 
objects that do note easily cause fires. Moreover, the smoke of cotton rope is particularly 
small, which is in line with the requirements of small and thin smoke in the early stage of 
fire. 

 

(a) (b) (c) 

Figure 6. Dataset. (a) The smoke images were downloaded from the internet; (b) The small and thin 
images were created in a warehouse; (c) The non-smoke images were downloaded from the internet. 

In addition, in Figure 6, photos are added of normal smoke and non-smoke from the 
internet for training to enhance the robustness of model, which will lead to an imbalance 
between smoke and non-smoke data. Moreover, as shown in Figure 7, a dataset was added 
for the small and thin, such as horizontal flip (a), rotating 45 degrees (b), and rotating 315 
degrees (c). 
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(a) (b) (c) 

Figure 7. Data enhanced images. (a) The images were made horizontal flip; (b) The images were 
rotated 45 degrees; (c) The images were rotated 315 degrees. 

As shown in Table 1, 10,800 pictures have been used. After data enhancement, there 
will be 4000 pictures, and then add 3400 pictures to the public data set, so there are 7400 
pictures of smoke data. Moreover, 3400 pieces of non-smoke photos are also prepared. So 
the total dataset contains a total of 10,800 images. The dataset has been divided into a 
training set, validation set, and test set, accounting for 81%, 9%, and 10%, respectively. 

Table 1. Number of dataset categories. 

Type Train Val Test Total 
Smoke 2475 306 340 3400 

Small Smoke 3640 360 400 4000 
Non-smoke 2475 306 340 3400 

Total 8590 972 1080 10,800 

4. Results 
Open-source deep learning framework PyTorch has been used to train a smoke detec-

tion model based on the basic convolutional neural YOLO V5s, combining an attention 
mechanism and an improved upsampling network CARAFE3.1. To evaluate the algo-
rithm’s performance, firstly, the algorithm is tested on public smoke datasets and a smoke 
dataset. Secondly, the algorithm is compared with the existing excellent algorithms based 
on different evaluation metrics. The model’s detection speed and parameters are tested to 
verify the algorithm’s real-time detection performance. In order to verify the effect of CA-
RAFE, a comparative experiment is applied. Ablation experiments with the attention 
mechanism are also conducted. 

4.1. Evaluation Criteria 
After the experiment, precision, recall, F1-Score, and AP0.5 (mAP0.5) are used to eval-

uate the model detection and compare it with the classic model. Precision is the ratio of 
the number of samples accurately predicted to be positive to the sum of the number of 
samples that are predicted to be true. A recall is the ratio of the number of samples accu-
rately predicted to be positive to the sum of the positive samples. F1 score is the harmonic 
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mean of precision and recall. AP0.5 is the average precision when the confidence level is 
0.5, and the area enclosed by the PR curve mAP0.5 is the average value of AP value under 
all categories. For example, Formulas (6)–(10), which refer to class i, belong to normal 
smoke, little smoke, and non-smoke. TPi means that the model predicts the i-th sample as 
the i-th sample. FPi means that the model predicts samples that do not belong to class i as 
class i. TNi means that the model predicts samples that do not belong to class i as not 
belonging to class i. FNi shows that the i-th sample predicted by the model does not belong 
to the i-th sample. The code of r is the abbreviation for recall and the code of P is the 
abbreviation for precision. The definition of P(r) is function with recall as abscissa and 
Precision as ordinate. The formulas are as follows: 

 (6)

 (7)

 (8)

 (9)

 
(10)

The algorithm was compared with some representative single-stage networks based 
on convolutional neural networks and excellent object detection networks, namely YOLO 
V4 [33], SSD [38], Efficient-d2, Retinanet [39], and YOLO V5s, to evaluate the performance 
of proposed smoke detection method. The most of the traditional smoke detection meth-
ods extract features subjectively, which is easily affected by the external environment. 
Their performance is lower than the use of depth features. 

Therefore, the comparison between method and traditional methods is not fair. 
The proposed model is compared with SSD, RetinaNet, Efficientdet-d2, YOLO v4, 

and YOLO v5s original models in the self-created dataset through four evaluation metrics, 
namely Precision, Recall, F1-Score, AP0.5(mAP0.5). To fully and objectively demonstrate 
proposed method’s effectiveness on the smoke object detection task, the following four 
experiments are conducted: (1) Overall experimental results from the data set were com-
pared. (2) The experimental results of detecting small smoke in the early stage of the fire 
were compared. (3) The detection experiments performed on the smoke-free pictures are 
compared. (4) The model detection speed and parameters of the models are compared. (5) 
The effects of CARAFE module are compared. 

4.2. Training Environment and Hyperparameters 
The experimental environment is based on the Ubuntu 18.04 operating system and 

GeForce RTX 3090 GPU. In the training parameter, the dataset is trained for 100 epochs 
with batch size 16. Moreover, SGD is an optimizer with a learning rate of 0.001. 
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4.3. Results Compared to Dataset 
Table 2 shows the overall evaluation metric of different object detection models in 

the dataset. The evaluation indicators of different target detection models are above 88% 
and close to 90%. Different target detection models have nice results for large-scale smoke 
image detection in this case. Among them, the SSD [38] and RetinaNet [39] object detection 
models perform weakly in the dataset compared to the other three models. Based on the 
result, the original YOLO V5s model has certain advantages over other models in dataset, 
which is why YOLO V5s was chosen for further improvement. Moreover, a channel at-
tention and spatial attention mechanism were used and improved upsampling CARAFE 
to improve YOLO V5s and get better results on our dataset. 

Table 2. Results of the overall dataset comparison. 

Method/Crieria Precision (%) Recall (%) F1-Score (%) mAP0.5 (%) 
SSD 90.44 86.65 88.50 90.58 

Retinanet 90.31 89.24 89.31 89.57 
Efficientdet-d2 90.22 88.90 89.50 91.39 

YOLO v4 90.80 80.33 89.70 90.30 
YOLO v5s 91.23 89.82 90.49 91.51 
Proposed 92.72 91.20 91.92 92.61 

4.4. Results Compared on the Small and Thin Smoke Dataset 
As shown in Table 3, the evaluation indicators were used to obtain by different mod-

els to detect objects only on the small smoke dataset in the early fire stage. As shown in 
Table 3, yolov4 performs poorly overall on unique dataset. Although the original model 
of YOLO V5s also has a good detection effect on the detection of small smoke in dataset, 
better results were obtained on the small smoke data set in the early stage of the fire, and 
the four evaluation indicators all reached more than 83%. Therefore, the proposed model 
to detect small and thin smoke has achieved an ideal result. 

Table 3. Results on the small and thin smoke dataset in the early fire stage. 

Method/Crieria Precision (%) Recall (%) F1-Score (%) AP0.5 (%) 
SSD 79.56 75.60 77.50 80.82 

Retinanet 80.49 78.32 78.40 79.53 
Efficientdet-d2 81.78 79.31 80.52 81.13 

YOLO v4 78.51 76.00 77.00 77.16 
YOLO v5s 83.72 80.21 81.92 83.34 
Proposed 87.84 83.71 85.75 85.93 

4.5. The Result of the Detection Experiment on the Non-Smoke Dataset 
Table 4 shows that different models have been used to detect non-smoke pictures in 

the test dataset. The table shows that different object detection models, whether the pro-
posed model or other models, detect non-smoke pictures well. 

Table 4. Results on the non-smoke dataset. 

Method/Crieria Precision (%) Recall (%) F1-Score (%) AP0.5 (%) 
SSD 99.27 99.32 99.78 99.32 

Retinanet 98.78 99.39 99.28 99.14 
Efficientdet-d2 99.64 99.01 99.48 99.39 

YOLO v4 99.79 99.79 99.48 99.33 
YOLO v5s 99.49 99.35 99.39 99.68 
Proposed 99.75 99.53 99.28 99.83 
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4.6. Detection Speed and Parameter Results 
In order to evaluate whether the detection speed of the algorithm reaches real-time 

detection, the average detection speed of different methods on the test set was tested, and 
the test results are shown in Table 5. From the table, SSD [38] has the fastest detection speed 
on test set, reaching 75.38 detections per second. The proposed model is not the fastest 
among the comparison models due to network changes, and its detection speed is slightly 
slower than the original model. However, it also detected 69 pictures per second, which is 
far beyond the frame rate of everyday HD cameras. Furthermore, the parameter of original 
YOLO v5s is the smallest of them all. However, there is a conclusion that though the im-
proved model’s parameter is not the smallest, the parameter of the attention mechanism 
and CARAFE upsampling algorithm is small. 

Table 5. Result of detecting speed of smoke picture and parameter of models. 

Method Detection Speed Parameter 
SSD 75.38 fps 26,151,824 

Retinanet 38.97 fps 37,968,692 
Efficientdet-d2 11.91 fps 8,086,869 

YOLO v4 20.83 fps 64,363,101 
YOLO v5s 77.52 fps 7,018,216 
Proposed 69.00 fps 7,325,300 

4.7. Image Example of a Model Detection Result 
Figure 8 shows the effect of the proposed model and different contrasting models in 

smoke detection. In order to ensure fairness, the detection effects of the same image in 
each category in the dataset for comparison were selected. From the result, the proposed 
model has better detection performance. 
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Figure 8. Detection results. (a,d) The detection result of smoke; (b,e) the detection result of small 
and thin smoke; (c,f) The detection result of non-smoke. 

4.8. Comparative Experiment of CARAFE 
In this subsection, the improved upsampling CARAFE method is only used to com-

pare it with existing object detection models, such as SSD, Retinanet, Efficientdet-2, YOLO 
v4, and YOLO 5s, based on created smoke dataset. 

The experimental results of the improved upsampling are shown in Table 6. CARAFE, 
with a detection effect of 92.52% for precision, 90.74% for recall, 91.60 for F1-Score, and 
91.83% for AP0.5, achieved the best results among all comparison models. Moreover, all 
the upsampling in the feature fusion network with the CARAFE module was replaced. 
After replacing the original upsampling in the YOLO v5s feature fusion network with the 
improved upsampling CARAFE, the detection effect was more than 0.5% lower than the 
effect of replacing only one upsampling. The improved upsampling CARAFE can increase 
the receptive field of the smoke feature fusion network and adapt to the content infor-
mation of specific smoke in real-time. There is a conclusion that if CARAFE modules re-
place both upsampling, the weights of the front and rear feature fusion networks will be 
disordered, which is not better for smoke detection. 
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Table 6. Comparison of carafe experiment. 

Method/Crieria Precision (%) Recall (%) F1-Score (%) AP0.5 (%) 
SSD 90.44 86.65 88.50 90.58 

Retinanet 90.31 89.24 89.31 89.57 
Efficientdet-d2 90.22 88.90 89.50 91.39 

YOLO v4 90.80 80.33 89.70 90.30 
2 × CARAFE 91.20 90.20 90.68 91.40 
1 × CARAFE 92.50 90.70 91.60 91.80 

4.9. Comparison of Attention Mechanism Ablation Experiments 
In this subsection, the proposed method using only the attention mechanism models 

is compared with existing object detection, such as SSD, RetinaNet, Efficientdet-D2, YOLO 
v4, and YOLO 5s, based on the self-created smoke dataset. The quantitative results of the 
Note module are shown in Table 7. From the table, when only using the channel attention 
module that removes the spatial attention model, the detection effect is not optimal or 
lower than the index of Recall and AP0.5 of the original model. However, when the spatial 
attention mechanism was added, the model’s precision was 93.20%, the recall was 89.1%, 
F1-Score was 92.10, and AP0.5 was 91.83%, achieving the best results among all comparison 
models. The proposed channel attention emphasizes the feature channel representing the 
smoke and gives it a higher weight. After channel attention, the color of the channel rep-
resenting the smoke becomes red, while the color of the background channel becomes 
smoke area. The model can thus focus on the smoke in the detection task, thereby improv-
ing the detection efficiency of small smoke. 

Table 7. Comparison of attention mechanism ablation experiment. 

Method/Crieria Precision (%) Recall (%) F1-Score (%) AP0.5 (%) 
SSD 90.44 86.65 88.50 90.58 

Retinanet 90.31 89.24 89.31 89.57 
Efficientdet-d2 90.22 88.90 89.50 91.39 

YOLO v4 90.80 80.33 89.70 90.30 
Channel Attention 92.00 89.17 90.53 91.20 

Channel + Spatial Attention  93.20 91.00 92.10 91.83 

In Figure 9, heatmaps of different small smoke in self-created dataset are compared. 
The column in (a) represents the original image, the column in (b) represents the heatmap 
without attention mechanism added, and the column in (c) represents the heatmap with 
attention added. Considering the situation, after adding attention, the focus on small 
smoke will be closer to the source of the smoke. This effect is consistent with the expecta-
tion that more attention will lead to the accelerated discovery of the source of the smoke 
in the early stage of the fire to prevent the fire from spreading. 
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(a) (b) (c) 

Figure 9. Heatmaps of the attention mechanism. (a) are different original images of small and thin 
smoke; (b) are the detections of (a) with no attention; (c) are the detections of (a) with our attention 
mechanism. After adding attention, the focus on small smoke will be closer to the source of the 
smoke. 

5. Conclusions and Future Work 
This paper proposes a new method with an attention mechanism and an improved 

upsampling algorithm to solve the small and thin smoke detection problem. Firstly, an 
innovative smoke dataset was created, consisting of self-created small and thin smoke 
images and public smoke images. Secondly, an attention mechanism module combining spa-
tial and channel attention is used to solve the problem of small and thin smoke detection. 
Thirdly, a light-weighted upsampling module is used to improve further the ability to identify 
small smoke and ensure the model’s real-time detection characteristics. Extensive experiments 
on the results show that the proposed method has higher precision, recall, F1-score and 
mAP0.5(AP0.5) than existing methods under the premise of guaranteeing real-time perfor-
mance. 

In the future, the proposed algorithm will be deployed on embedded systems and 
development boards, such as Jetson Nano, Beagle Bone, and Raspberry Pi 3B+. In addition, 
the algorithm will be improved to obtain detailed information about the smoke, such as 
the burning substances that cause it and the speed of the smoke spreading. 
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