
Citation: Qiu, J.; Yin, X.; Pan, Y.;

Wang, X.; Zhang, M. Prediction of

Uniaxial Compressive Strength in

Rocks Based on Extreme Learning

Machine Improved with Metaheuristic

Algorithm. Mathematics 2022, 10, 3490.

https://doi.org/10.3390/

math10193490

Academic Editors: Shaofeng Wang,

Linqi Huang, Xin Cai and

Zhengyang Song

Received: 26 August 2022

Accepted: 20 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Prediction of Uniaxial Compressive Strength in Rocks
Based on Extreme Learning Machine Improved with
Metaheuristic Algorithm
Junbo Qiu 1, Xin Yin 1,*, Yucong Pan 1, Xinyu Wang 2 and Min Zhang 3

1 School of Civil Engineering, Wuhan University, Wuhan 430072, China
2 Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China
3 Beijing Aidi Geological Engineering Technology Co., Ltd., Beijing 100144, China
* Correspondence: yinxin_engineering@163.com

Abstract: Uniaxial compressive strength (UCS) is a critical parameter in the disaster prevention of
engineering projects, requiring a large budget and a long time to estimate in different rocks or the
early stage of a project. If predicted accurately, the UCS of rocks significantly affects geotechnical
applications. This paper develops a dataset of 734 samples from previous studies on different
countries’ magmatic, sedimentary, and metamorphic rocks. Within the study context, three main
factors, point load index, P-wave velocity, and Schmidt hammer rebound number, are utilized
to estimate UCS. Moreover, it applies extreme learning machines (ELM) to map the nonlinear
relationship between the UCS and the influential factors. Five metaheuristic algorithms, particle
swarm optimization (PSO), grey wolf optimization (GWO), whale optimization algorithm (WOA),
butterfly optimization algorithm (BOA), and sparrow search algorithm (SSA), are used to optimize the
bias and weight of ELM and thus enhance its predictability. Indeed, several performance parameters
are utilized to verify the proposed models’ generalization capability and predictive performance.
The minimum, maximum, and average relative errors of ELM achieved by the whale optimization
algorithm (WOA-ELM) are smaller than the other models, with values of 0.22%, 72.05%, and 11.48%,
respectively. In contrast, the minimum and mean residual error produced by WOA-ELM are less
than the other models, with values of 0.02 and 2.64 MPa, respectively. The results show that the UCS
values derived from WOA-ELM are superior to those from other models. The performance indices
(coefficient of determination (R2): 0.861, mean squared error (MSE): 17.61, root mean squared error
(RMSE): 4.20, and value account for (VAF): 91% obtained using the WOA-ELM model indicates high
accuracy and reliability, which means that it has broad application potential for estimating UCS of
different rocks.

Keywords: uniaxial compressive strength; prediction model; extreme learning machine; metaheuristic
algorithm

MSC: 68T99

1. Introduction

Uniaxial compressive strength (UCS) plays a vital role in rock engineering projects
from design to construction and operation. In general, the UCS can be obtained by conduct-
ing laboratory tests using the approaches provided by the International Society of Rock
Mechanics (ISRM2007) and the American Society for Testing Materials (ASTM2001a) [1].
However, the uniaxial compression test requires high quality and strict specimen size.
Therefore, obtaining a core sample from soft, weak, highly weathered, or fragile rocks is
almost impossible. In addition, direct estimation of UCS in the laboratory is costly, com-
plicated, and time-consuming [2]. Therefore, the precise prediction of UCS is a challenge.
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As a result, proposing a method for obtaining UCS conveniently and quickly to overcome
associated problems and save time and cost is vital.

There are three methods to determine the UCS, including empirical formulation,
multiple regression analysis, and soft computing modeling. Some empirical models with
non-destructive test results to estimate UCS were proposed to overcome the difficulty in
preparing core specimens. Several researchers investigated the relationship between UCS
and other physical properties of rock mass, such as Brazilian tensile strength [3], point load
strength index [4–6], slake durability index [7], Schmidt hammer rebound number [8,9],
and P wave velocity [9–11]. The empirical formulas derived using these techniques are
often applied to the sampling area or the same rock type. Empirical formulas include
multiple fitting forms but usually consider a single factor, ignoring the effects of multiple
factors. Other researchers proposed fuzzy and multiple regression analysis [12–15] to
obtain UCS, hence controlling the aforementioned issues. However, these methods cannot
solve the nonlinear relationship between UCS and other rock parameters; consequently,
the soft computing method was presented to address this issue. Sarkar et al. [16] proposed
an artificial neural network (ANN) model to estimate the UCS using slake durability index,
dynamic wave velocity, density, and point load index. Yagiz et al. [17] predicted UCS using
an ANN model and nonlinear technique. They discovered that ANN models are more
accurate in determining UCS than regression techniques. In addition, Yesiloglu et al. [18]
developed an adaptive neuro-fuzzy inference system (ANFIS) and an ANN to predict UCS,
considering tensile strength, point load index, block punch index, and P-wave velocity as
input parameters. They indicated that the performance evaluation of the ANFIS model
was more precise than others. Gene expression programming (GEP) [19] and Multilayer
Perceptron Neural Network (MLPNN) [20] were utilized to estimate UCS. Li and Tan [21]
suggested a least squares vector machine for the UCS prediction model. Nevertheless,
Mahmoodzadeh et al. [22] utilized machine learning methods to predict UCS, proving that
Gaussian process regression (GPR) performed best. Gupta and Natarajan [23] assessed
the ability of density-weighted least squares support vector machine, extreme learning
machine (ELM), and random forest (RF) to estimate UCS of rocks and concluded that an
improved unique machine learning model has a better predictive capability than other
normal models. Recently, a comprehensive model has been combined with the ANN model
and particle swarm algorithm (PSO) to predict UCS [24]. Fang et al. [25] also put effort into
developing two comprehensive predictive models using hybrid ANN with a imperialism
competitive algorithm (ICA) and artificial bee algorithm (ABC).

These methods are valuable for determining UCS with rock physical properties ob-
tained by non-destructive tests. However, empirical formula measures performed unique
effects with different factors. Multiple regression models cannot map the nonlinear relation-
ship between UCS and influence factors. Machine learning models have a better predictive
capability to estimate UCS than traditional models. Support vector machine (SVM) and
Radial basic neural network (RBF) had good performance with small data [26,27]. However,
the weight and bias of ANN and the hyper-parameters of the machine learning model
demand optimization and have some constraints, such as falling into local minimum and
including a low learning rate [28]. The ELM is a single hidden layer feedforward neural
network introduced by Huang [29]. Some previous studies revealed that ELM is better
than ANN and SVM in overcoming low learning rates and local minimum problems of
regression analysis [30]. Therefore, the ELM is used to map the nonlinear relationship
between UCS and the influential factors. Meanwhile, the ELM requires optimization algo-
rithms to achieve improved performance. The metaheuristic algorithms inspired by the
natural behavior of animals have good performance [31]. Additionally, the datasets for
these associated measures for obtaining UCS come from the same area or rock type and
are short datasets. The simple data mining methods normally do not provide the required
efficiency for small data [32,33]. Hence, a bigger dataset must be established to estimate
UCS. Accordingly, the present study aims to develop a new forecast model that estimates
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UCS using a dataset of various rocks collected from previous research based on an ELM
coupled metaheuristic algorithm.

The main contribution of this paper can be summarized as follows:

1. Collecting a dataset of 734 samples from previous studies of magmatic rocks, sedimen-
tary rocks, and metamorphic rocks in different countries to overcome the problem of
requiring a large budget and a long time to estimate UCS in different rocks or at the
early stage of a project.

2. Optimizing the hidden neurons and activation function between ELM to map the
nonlinear relationship between the UCS and the non-destructive test indices.

3. Utilizing five metaheuristic algorithms (PSO, GWO, WOA, BOA, and SSA) to estimate UCS.
4. Comparing the optimized model to other techniques to prove efficiency.

The remainder of this paper is organized as follows: Section 2 contains the character-
istics and visualization of the dataset; Section 3 describes the mathematical relationships
of the ELM and metaheuristic algorithm; Section 4 describes the optimization procedures
of the ELM optimized by PSO, GWO, WOA, BOA, and SSA; Section 5 contains the statis-
tical evaluation indices of the models; Section 6 summarizes the results of this work and
compares the proposed models’ effectiveness with other approaches; Section 7 contains the
conclusions and recommendations for future research.

2. Dataset

One of the drawbacks of previous studies is that they mainly focused on datasets that
are based on a single rock type. Accordingly, this study collects 734 magmatic, sedimentary,
and metamorphic rock samples in a single dataset (see Supplementary Materials) to develop
the prediction models. Some of these data points are rocks from quarries and natural
outcrops in Turkey [14,34–38] and Iran [1,39], while others are natural outcrops and tunnels
in India [15,40], Malaysia [24,41,42], and China [43]. Previously, the tensile strength, point
load index (Is), block punch index, density, porosity, and P-wave velocity were utilized as
inputs to the numerical models for estimating the UCS. Some studies used the point load
index, P-wave velocity (Vp), and Schmidt hammer rebound number (SRn) to estimate UCS.
Accordingly, this study collects these non-destructive test results when developing the
UCS dataset. Considered ranges of UCS and influence factors are provided in the Table 1
and Figure 1. Table 1 shows brief descriptive statistics of the dataset used in this research.
The SRn ranges from 10 to 72, the maximum value of Vp is 4675 m/s, and its min value is
375 m/s. In addition, the Is value ranges from 0.53 MPa to 23.10 MPa. Moreover, the UCS
ranges from 2.03 MPa to 239 MPa.

Table 1. Brief descriptive statistics of the dataset.

SRn Vp (m/s) Is (MPa) UCS (MPa)

Minimum 10 375 0.53 2.03
Maximum 72 7943 23.10 239.00
Average 42 4675 4.33 75.05

Standard deviation 11.83 1383.14 3.01 44.70

Figure 1 shows a visualization of the collected dataset. There is a wide distribution
of attributes and UCS in the dataset, which means that the collected data include a wide
range of rock types. Meanwhile, it can be noticed that the Pearson’s correlation coefficients
between the UCS and SRn, Vp exceed 0.64, indicating strong correlations. The correlation
between the UCS and Is is 0.42. Moreover, the correlations between the input parameters
range between 0.22 and 0.51, showing slight interactions.
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3. Methods

UCS is a critical parameter for rock-mechanic-related investigations in civil, mining,
and petroleum projects. However, experimentally evaluating this parameter is rather
expensive, complicated, and time-consuming. As a result, previous investigations tended
to develop soft-computing models for rapid UCS estimation. Indeed, this study aims
to propose a generalized numerical model based on the wide-range dataset present to
overcome the complexity of the test procedures. Within the study context, an ELM is
used for mapping the nonlinear relationship between the UCS and the non-destructive
test indices, and a metaheuristic algorithm is utilized to enhance the prediction ability of
the ELM.

3.1. Extreme Learning Machine

The ELM is a single hidden layer feedforward neural network introduced by Huang [29].
The ELM was proposed to solve the time-consuming training problem in feedforward
backpropagation neural networks. Similar to other feedforward neural networks, ELM has
an input, a hidden, and an output layer, as depicted in Figure 2.

For a data set R of D arbitrary distinct training samples R = {(xi, ti)|i = 1, 2, 3, . . . , D},
where xi = [xi1, xi2, . . . xiD]

T and ti = [ti1, ti2, . . . tiD]
T are the inputs and output, ELM

mathematic model is defined by Equation (1).

oi =
L

∑
i=1

βig(xi) =
L

∑
i=1

βig(mixi + ni) (1)

where oi is the output vectors, g(x) is the active function, typically defined as a sigmoid,
sine, or hardlim function as shown in Figure 3, mi is the connection weights between the
hidden layer and the input layer node, ni is the threshold between the hidden layer and the
input layer node, βi is the weight vector between the hidden layer and output layer nodes,
and L is the hidden modes.
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According to the two theorems proposed by Huang, when g(x) is infinitely differ-
entiable, the ELM with L hidden nodes and activation function can be fit to achieve a
zero-error approximation of any D samples. Hence, Equation (2) is established.

L

∑
j=1
||oi − ti|| = 0 (2)

According to Equation (2), there exists specific mi, ni, and βi to make the formula (3) hold.

L

∑
i=1

βig(mixi + ni) = ti (3)

The Equation (3) can be simplified in the form of Hβ = T, where H is the output
matrix of the hidden layer of ELM, T is the target matrix. Unlike traditional gradient-based
learning algorithms with fixed input weights and hidden layer bias, the ELM theories claim
that the parameters mi and ni can be assigned randomly. Then, the issue for training the
ELM is transformed into finding a least-square solution. The solution of Equation (3) in
the matrix form is defined in Equation (4). According to the two theorems proposed by
Huang, when the number of samples and hidden modes is the same, Equation (2) can be
established. Therefore, the sample size of the dataset is normally much larger than the
number of hidden neurons, and the pseudo-inverse of matrix H is required.

β̂ = H+T = (HT H)
−1

HTT (4)

where H+ is the Moore-Penrose generalized inverse of H.
Compared to the traditional intelligent algorithm, ELM can be rapidly trained by

determining the number of hidden layers. Indeed, the ELM solves the shortcomings of the
backpropagation gradient descent method represented by easily falling into local minima.
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When solving the weights of the hidden and output layers, a mathematical method with
uniqueness and global optimality is used. Therefore, the ELM has superior performance,
yet shows some shortcomings. The selection of the number of hidden neurons and the
activation function for an ELM model typically follows an iterative approach without a
theoretical basis. For practical problems, the network topology and functions optimization
require an experienced designer or lots of repeated trials, which increases its application
difficulties. In the ELM calculation process, the weights and thresholds of the hidden layer
and output layer are calculated using straightforward mathematical methods. However,
the weights and biases of an ELM model’s hidden and input layer are randomly initialized
between 0 and 1. The random weights and thresholds restrict the mapping performance of
the ELM. Therefore, the enhancement in the ELM is represented by improving the threshold
of random weights generated through the original network, improving the stability of
the network, and fully distilling the nonlinear relationship between input and output. In
this study, various intelligent algorithms are proposed to improve the shortcomings of the
ELM model.

3.2. Particle Swarm Algorithm (PSO)

The PSO algorithm is a bionic intelligent optimization algorithm proposed by Kennedy
and Eberhart [44] in the 1990s. In this algorithm, each solution of the optimization problem
is simplified to a particle, i.e., a bird swarm individual. The algorithm-solving process aims
to find food for each bird swarm individual through group collaboration. The mathematical
model of the PSO algorithm is as follows: based on the problem’s type, the initial population
is set in the D-dimensional search space, and the position and velocity of particles are
determined by pbestt

id and gbestt
d. The selection of pbestt

id and gbestt
d is intended to move

each particle to a different point in the solution area. Finally, the optimal solution is obtained
through a continuous change of velocity and position. Equations (5) and (6) are used to
update the velocity and position, respectively.

vt+1
id = vt

id + c1r1(pbestt
id − xt

id) + c2r2(gbestt
d − xt+1

id ) (5)

xt+1
id = xt

id + vt
id (6)

where vt+1
id is the particle velocity in the t + 1 generation, c1 and c2 are constants between

(0, 2), r1 and r2 are constants between (0, 1), t is the iteration time, and xt+1
id is the position

of a particle in the t + 1 generation.

3.3. Grey Wolf Optimization (GWO)

Grey wolf optimization is a meta-inspired algorithm that simulates the hunting behav-
iors of grey wolves. It was proposed by Mirjalili [45] in 2014. In this method, the wolves
are divided into αwolf, β wolf, γ wolf, and ω wolf according to their fitness from high to
low. The wolf of α, β, and γ leadership search and locate the prey. With the wolf group
evolution, the distance of the prey is reduced, and theωwolf is guided to track and capture
the prey. The implementation of the grey wolf algorithm is shown in the following steps:

Step 1, surround the prey. Identify and surround the prey before preying. The
following three equations show the distance and updating formulas between the wolf and
prey in each grade of the grey wolf group.

D =
∣∣E · Xp(t)− X(t)

∣∣ (7)

X(t + 1) = Xp(t)− A · E (8)

A = 2 · a · r2 − a
E = 2r1

(9)

where XP and X(t + 1) are the location of prey when the number of iterations is t and t + 1,
respectively, X(t) is the position of a grey wolf when the number of iterations is t, A and E
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are the convergence vector and coefficient vector, respectively, a linearly decreases from 2
to 0, respectively, and r1 and r2 are constants between (0, 1).

Step 2, hunt for prey. Once the prey is surrounded, the wolves begin to hunt. The
optimal, sub-optimal, and third-optimal solutions are α, β, and γ wolves according to the
fitness ranking. Their positions are updated as shown in Equation (8). The first three grades
of wolves guide the other wolves, and Equation (9) is the update mode.

Dα =|C · Xα(t)− X(t)|, X1 = Xα(t)− A1 · Dα

Dβ =
∣∣C · Xβ(t)− X(t)

∣∣, X2 = Xβ(t)− A2 · Dβ

Dγ =|C · Xγ(t)− X(t)|, X3 = Xγ(t)− A3 · Dγ

(10)

X(t + 1) =
X1 + X2 + X3

3
(11)

where X(t + 1) is the position update of ω wolves,Dα, Dβ and Dγ are the distance update
of α, β, and γ wolves and prey, respectively, and X1, X2 and X3 are the position update of
α, β, and γ wolves, respectively.

Step 3, attack prey. Similar to the last two steps, the wolf attacks when the prey is
exhausted. The mathematical model can be expressed as follows (10) and (11), where A is a
random number in the range of [−2a, 2a]. When A is outside [−1, 1], it enhances ergodicity.
In order to approach prey and reduce the value of a, A will decrease, and when A is within
[−1, 1], the grey wolf group attacks.

3.4. Whale Optimization Algorithm (WOA)

The whale optimization algorithm is a nature-inspired algorithm mimicking the mo-
tion of whales when hunting their prey. It was first developed by Mirjalili and Lewis [46]
to solve optimization problems. The algorithm simulates the actions of the humpback
whale in searching the prey and the bubble-net feeding method of encircling prey. The
mathematical model of a whale’s unique action is following:

3.4.1. Encircling Prey

The humpback whale can recognize the location of prey when they enter the target
area or perception space. WOA assumes that the best position (solution) is the target prey.
Once the best search agent is proposed, the rest agents try to update their location toward
the best position (solution) as described in (12)–(14).

DI =
∣∣C ·Wp(t)−W(t)

∣∣ (12)

W(t + 1) = Wp(t)− K · DI (13)

K = 2 · k · r2 − k
C = 2r1

(14)

where t is the current iteration, W(t) indicates the position of prey, K and C are coefficient
vectors, Wp is the position of the optimal solution, k is a variable linearly decreasing from 2
to 0, and r1 and r2 are constants between (0, 1).

3.4.2. Bubble-Net Attack Method

This section mainly introduces the shrinking encircling mechanism and spiral update
position. First, the value of K is changed with k decreases by Equation (14) to achieve
the shrinking encircling mechanism, and the whales’ positions are updated according to
Equations (15) and (16). As the whales are close to the prey (best solution), the distance
between the whales and the prey can be calculated. A spiral update equation is then created
to mimic the helix-shaped movement of the whales as follows:

W(t + 1) = DSebt cos(2πt) + Wp(t) (15)
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DS = Wp(t)−W(t) (16)

where DS is the distance between the whale and the prey (current best solution), b is a constant
which defines the shape of the logarithmic spiral, and t is a constant between (0, 1).

According to the previous equation, the whale can have two strategies to move close
to the prey. The mathematical equation is as follows:

W(t + 1) =
{

Wp(t)− K · DI i f p < 0.5
DSebt cos(2πt) + Wp(t) i f p > 0.5

(17)

where p is a random number in (0, 1).

3.4.3. Exploration Phase

Humpback whales randomly search the prey based on the constant variation to obtain
the best solution. This process is mathematically described as follows:

DI =|C ·Wrand(t)−W(t)| (18)

W(t + 1) = Wrand(t)− K · DI (19)

where Wrand(t) represents the random whale in the current population.

3.5. Butterfly Optimization Algorithm (BOA)

Inspired by the living habits of butterflies in nature, a butterfly optimization algo-
rithm [47] (BOA) was proposed to simulate butterflies’ foraging and mating behaviors.
Unlike other metaheuristic algorithms, this method’s advantage is that each butterfly has
its unique odor. The butterfly can perceive and analyze the odor in the air to determine the
potential direction of food sources/mating partners. In BOA, the fragrance is formulated
as a function of the stimulus’s physical strength, as follows:

F = cIa (20)

where F is the concentration of aroma emitted by butterflies, c is the sensory mode, I is the
stimulus intensity, and a is the power index dependent on the mode, indicating different
absorption degrees of aroma among different butterflies.

In most cases, it is possible to define a and c within the range of [0, 1]. When a is 1, the
butterfly does not absorb the fragrance. That is, another butterfly perceives the amount of
fragrance emitted by a specific butterfly at the same capacity.

The BOA algorithm is divided into three parts, and the detailed steps are as follows:
Initializes the butterfly population by randomly generating the butterfly position in

the search space and calculating and storing each butterfly’s fragrance and fitness value.
The fitness values of randomly generated butterfly populations are sorted to store the
butterfly in the best position. Butterflies move toward the best position. The position
update equation is as follows:

Xt+1
i = Xt

i + (r2 + pt
best − Xt

i )•F(Xi) (21)

where r is the random number in (0, 1), indicating the best butterfly for current itera-
tions t, and F(Xi) represents the aroma fitness value of the first butterfly at the current
iteration number.

The mathematical model of butterfly population local search stage is as follows

Xt+1
i = Xt

i + (r2 + pt
r1
− pt

r2
)•F(Xi) (22)

where pt
r1

and pt
r2

represent random two butterfly locations for the tth iteration in the search
space, and r1 and r2 are random numbers between (0, 1).
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3.6. Sparrow Search Algorithm (SSA)

Inspired by the group wisdom, foraging and anti-predation behaviors of the sparrow
in nature, Xue [48] proposed the sparrow search algorithm to solve optimization problems.
In the SSA, there are two types of sparrows: producer and scrounger. The producers with
high levels of energy reserves can search for food sources and guide the movement of the
entire population. The position update equation is as follows:

Xt+1
i,j =

{
Xt

i,j · exp ( −i
α·itermax

) i f R2 < ST
Xt

i,j ·Q · L i f R2 ≥ ST
(23)

where t is the current iteration, itermax is the maximum number of iterations, Xt
i,j and Xt+1

i,j
indicates the position of a sparrow, i is the number of sparrows, j is the dimension of the
optimization problem, α is the random number in (0, 1), R2(R2 ∈ [0, 1]) is the alarm value,
represents the safety threshold, Q is the random number which obeys normal distribution,
and L is a matrix in which each element inside is 1.

When producers expand the search range to find foods without predators threatening
and enter the wide search mode, if R2 ≥ ST the sparrows quickly move to safe areas when
predators move close to them.

As for the scroungers, if they detect that the producer has found good food, they
immediately move the objective position to get food. On the one hand, if scroungers defeat
the producer, the update formula is as shown in Equation (23). In contrast, if the producer
wins, the scrounger enforces Equation (24).

Xt+1
i,j =

 Q · exp (
Xt

worst−Xt
i,j

i2 ) i f i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L otherwhise
(24)

where Xt+1
p is the optimal position of the producer, Xt

worst is the current global worst posi-

tion, A+ = AT(AAT)
−1 and A is a one-dimensional matrix with each element randomly

assigned −1 or 1, when i > n/2, the scrounger with the worst fitness value cannot find the
food.

In SSA, some sparrows, which account for 10% or 20% of the total population, are
assumed to be aware of the danger. In such a case, sparrows at the edge of the group
quickly move forward to the safety area to get a better position, and other sparrows in the
middle group move to others. The mathematical model can be expressed by:

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ i f fi > fg

Xt
i,j + λ ·

( ∣∣∣Xt
i,j−Xt+1

worst

∣∣∣
( fi− fw+δ) ) i f fi = fg

(25)

where Xbest is the current global best position, β is a step control parameter that obeys the
normal distribution of random numbers with a mean value of 0 and a variance of 1, λ is a
random number in (0, 1), fi, fg and fw are the fitness value of the current sparrow, current
best fitness, and current worst values, respectively, and δ is the smallest constant to avoid
zero-division-error.

4. ELM Optimized by PSO, GWO, WOA, BOA, and SSA

This study uses ELM to map the nonlinear relationship between influence factors and
UCS. However, the weights and thresholds of the hidden and input layers of the ELM
algorithm are random numbers between 0 and 1, which can cause problems. The random
weights and thresholds restrict the mapping performance of ELM. To obtain a reliable
prediction, it is essential to improve the predictability of ELM. Hence, as an optimizer of
weights and thresholds between inputs and hidden layers, PSO, GWO, WOA, BOA, and
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SSA are utilized in this study. The development of the optimized ELM to predict UCS has
the following steps:

1. To considerably distill the information governing the relationship between the UCS
and the input variables, a database including 734 samples was developed in this study
and divided into 700 samples for the training and 34 for the testing.

2. Firstly, the training set is used to optimize the ELM model’s hidden layer neurons
and activation function. After that, the test set is input into the trained ELM, and
the obtained results are used to compute the performance metrics, including the root
mean squared error (RMSE). The optimized hidden neurons and activation function
can be determined when the RMSE is minimized.

3. To enhance the ELM model predictability, the PSO, GWO, WOA, BOA, and SSA
are utilized to optimize weights and thresholds between inputs and hidden layers.
Figure 4 depicts a process for optimizing ELM using the multi-algorithm.

4. Compare the predicted results and calculate the statistical evaluation indices to select
the most precise and reliable model.
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5. Statistical Evaluation Indices

In order to evaluate the accuracy of the proposed prediction models, some statistical
indices, including root mean squared error (RMSE), coefficient of determination (R2),
amount of value account for (VAF), and mean squared error (MSE), are calculated using
Equations (26)–(29).

RMSE =

√
(

1
n
)

n

∑
k=1

(yi − y′i ) (26)

R2 = 1− sum squared regression (SSR)
sum of square total (SST)

(27)

VAF =

[
1−

var(yi − y′i )
var(yi)

]
× 100% (28)

MSE = (
1
n
)

n

∑
k=1

(yi − y′i ) (29)

where yi is the measured value, y′i is the predicted value, and n is the number of observa-
tions.



Mathematics 2022, 10, 3490 11 of 18

6. Calculation Results and Discussion
6.1. ELM Parameters Optimization

As previously stated, the variables had distinct units and wide distribution. The data
should be normalized to a value between 0 and 1 before training based on ELM to get good
performance, as shown in Equation (30).

xn =
xa − xmin

xmax − xmin
(30)

where xn is the normalized value, xa is the actual value, xmax and xmin are the maximum
and minimum values of the dataset.

The hidden layer neurons and activation function must be optimized for the ELM. The
RMSE of ELM was utilized to predict a model to tune them. Table 2 and Figure 5 indicate
the effects of the number of hidden layer neurons and activation function.

Table 2. Effects of the number of hidden modes on the ELM performance.

Number of Hidden Modes
RMSE

Maximum Average Standard Deviation

1 68.475 53.568 9.446
2 50.799 27.179 16.706
3 32.572 12.253 9.216
4 12.072 8.396 1.433
5 11.590 8.297 1.330
6 13.803 8.803 1.904
7 12.338 9.709 1.745
8 13.035 10.368 1.801
9 12.875 11.181 0.853

10 15.286 12.113 1.762
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Figure 5 depicts the impact of the number of hidden layer modes on the ELM perfor-
mance. When the number of modes is 5, the standard deviation, maximum, and average
error are the smallest. Therefore, there are five hidden modes in the present study. When
the activation function for the ELM is a hardlim function, the maximum, average, and
standard deviation of error are more significant than the other two functions. The predicted
errors in the other two functions are relatively small when the activation function is the
sigmoid function; hence, the activation function of the ELM model is the sigmoid function.

6.2. Calculation Results and Performance Comparison

A multi-algorithm is applied to enhance the ELM model predictability after optimizing
the parameters of the activation function and the number of hidden neurons. Figure 6
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depicts the predicted results using a single ELM model and ELM optimized by PSO, GWO,
WOA, BOA, and SSA.
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WOA, BOA, and SSA. (a) predicted results and relative errors of ELM model; (b) predicted results
and relative errors of PSO-ELM model; (c) predicted results and relative errors of GWO-ELM model;
(d) predicted results and relative errors of BOA-ELM model; (e) predicted results and relative errors
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Figure 6a illustrates that only a few predicted values are close to the actual values;
thus, a single ELM model mispredicted UCS. The random generation of the weights and
thresholds of the input and hidden layers can limit the performance of ELM. Figure 6b,f
show that the actual and predicted curves change together, indicating that the optimized
ELM by PSO (PSO-ELM) and SSA (SSA-ELM) can estimate UCS using point load index,
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P-wave velocity, and Schmidt hammer rebound. The predicted performance of an ELM
optimized by the PSO and SSA model is better than a single ELM model. The minimum
and average relative errors of PSO-ELM and SSA-ELM are 0.34% and 0.55%, respectively,
which are smaller than the single ELM model. However, the maximum relative errors of
PSO-ELM and SSA-ELM are 171.62% and 150.67%, respectively, relatively less than the
single ELM model. It indicates that PSO and SSA can relatively enhance ELM predictability,
and PSO-ELM and SSA-ELM models are unstable. Compared to the above two algorithms,
BOA also improves the predictability of ELM. Figure 6d demonstrates that BOA-ELM
predicts better performance than the single ELM, PSO-ELM, and SSA-ELM models. The
minimum, maximum, and average relative errors of BOA-ELM are 0.22%, 72.05%, and
11.48%, respectively, smaller than single ELM, PSO-ELM, and SSA-ELM models. However,
the maximum relative errors of single ELM, PSO-ELM, SSA-ELM, and BOA-ELM are nearly
greater than 50%, indicating that at the lowest value of UCS, its predictive accuracy is
almost awful. This can be utilized if data are lacking in ranges with low UCS values or
if the ELM parameters require further optimization. As shown in Figure 6c,e, nearly all
predicted values are close to actual values, demonstrating that GWO and WOA can further
improve the predictability of the ELM model. At low values, the prediction accuracy of
GWO-ELM and WOA-ELM models is superior to that of the other three algorithms. The
minimum, maximum, and average relative errors of WOA-ELM are 0.22%, 72.05%, and
11.48%, respectively, smaller than the GWO-ELM model and significantly less than the
single ELM, PSO-ELM, and SSA-ELM models.

Figure 7 depicts the residual error results using a single ELM model optimized by
PSO, GWO, WOA, BOA, and SSA. The residual error histograms of six models exhibit
normal distributions. The range of residual errors of the single ELM model is between
0.25 and 22.21 MPa, with a mean of 5.07 MPa. The mean value of residual errors using
PSO-ELM is 3.2 MPa, varying widely from 0.10 to 15.28 MPa. The average residual errors
of BOA-ELM and SSA-ELM are 2.91 MPa (0.06–16.78 MPa) and 3.34 MPa (0.06–16.16 MPa).
The average value of GWO-ELM residual errors is 3.18, ranging from 0.05 to 14.51 MPa. The
minimum, maximum, and average residual errors derived from optimized ELM models are
less than the single ELM model. The maximum residual errors of PSO-ELM, GWO-ELM,
BOA-ELM, WOA-ELM, and SSA-ELM models are less than 20 MPa, and the smallest of
them is 14.51 MPa. The greatest residual error of the WOA-ELM model is 15.41 MPa,
which is relatively bigger than the smallest maximum residual error. The minimum and
mean values of residual errors (using WOA-ELM) are lower than others. It indicates that
a multi-algorithm can improve the ELM model’s predictability, and its best performance
is WOA.

Figure 8 illustrates the R2 results produced by a single ELM model and an ELM
optimized by PSO, GWO, WOA, BOA, and SSA for UCS.

The ELM model produces an R2 value for UCS of 0.682, as depicted in Figure 8a. The
accuracy of optimized ELM models is more than 0.80 and higher than that of a single ELM
model. It is understandable to see that a multi-algorithm can enhance the predictability
of the ELM model. Figure 8b, f shows that the R2 derived from PSO-ELM, SSA-ELM, and
GWO-ELM models are 0.812, 0.827, and 0.835, respectively. The R2 results generated by
the above three models fall between 0.80 and 0.85. Accordingly, three algorithms enhance
the prediction ability of ELM, but the accuracy must be improved. Figure 8d,e reveals
that the R2 of the BOA-ELM and WOA-ELM models is greater than 0.85, indicating their
performance is superior to that of the above three algorithms. Meanwhile, the R2 of the
WOA-ELM model is 0.861, which is higher than the R2 for the ELM and other optimized
ELM models. Therefore, the WOA-ELM model, being a combinatorial approach to the
modeling work, performed best compared to ELM and optimized models.
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Figure 8. UCS results utilizing a single ELM and hybrid ELM models optimized by PSO, GWO,
WOA, BOA, and SSA. (a) R2 of measured and predicted values of UCS using ELM model; (b) R2 of
measured and predicted values of UCS using PSO-ELM model; (c) R2 of measured and predicted
values of UCS using GWO-ELM model; (d) R2 of measured and predicted values of UCS using
BOA-ELM model; (e) R2 of measured and predicted values of UCS using WOA-ELM model; (f) R2 of
measured and predicted values of UCS using SSA-ELM model.

To further compare the proposed models, their performance indices, i.e., RMSE, VAF,
and MSE, were calculated as presented in Table 3. Theoretically, a predictive model is
better when the RMSE and MSE equal 0, and VAF is 100%. Table 3 indicates that the
MSE and RMSE of the ELM model are more significant than those of optimized ELM
models. The VAF value of the ELM model is 73% less than that of optimized ELM models.
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It should be noted that the ELM model must be improved, and the multi-algorithm can
increase the predictability of the ELM model. The RMSE and MSE of the WOA-ELM model
are significantly lower than PSO-ELM, GWO-ELM, and SSA-ELM models, and the VAF
produced by WOA-ELM is also larger than that of the above three models. Comparatively,
the RMSE and MSE of WOA-ELM are smaller than those of the BOA-ELM model. As
previously stated, the relative and residual errors of the WOA-ELM model are smaller than
those of others, and the R2 of the present model is closer to 1 than other models. In this
study, the WOA-ELM model can predict UCS with a higher degree of accuracy than the
ELM and combined ELM models.

Table 3. Performance indices of the proposed predictive models.

Model ELM PSO-ELM GWO-ELM BOA-ELM WOA-ELM SSA-ELM

R2 0.682 0.812 0.835 0.855 0.861 0.827
MSE 44.37 22.65 20.88 18.36 17.61 21.92

RMSE 6.66 4.76 4.57 4.28 4.20 4.68
VAF (%) 73 88 79 92 91 90

7. Conclusions

Predicting UCS is an interesting and challenging exercise. This study first collects
734 samples to conduct a new dataset that includes magmatic, sedimentary, and metamor-
phic rocks and rock-like materials from different countries. The ELM was proposed to map
the relationship between UCS and point load index, P-wave velocity, and Schmidt hammer
rebound number to estimate UCS. In order to further predict UCS, five algorithms (PSO,
GWO, WOA, BOA, and SSA) were applied to improve the predictability of ELM. Based on
the aforementioned statements, the following conclusions are drawn:

• The optimized ELM model consists of five hidden neurons and a sigmoid activation
function.

• Compared to the models proposed above, it can be stated that the predicted perfor-
mance of the six models for predicting UCS from high to low is as follows: WOA-ELM,
BOA-ELM, GWO-ELM, SSA-ELM, PSO-ELM, and ELM. The predicted indices (R2:
0.861; MSE: 17.61; RMSE: 4.20) produced by WOA-ELM illustrate that it is the more
precise model.

• The minimum, maximum, and average relative errors produced by ELM optimized
using the whale optimization algorithm (WOA-ELM) are 0.22%, 72.05%, and 11.48%
smaller than the other models.

• The minimum and mean residual error produced by WOA-ELM are 0.02 and 2.64
MPa, respectively, smaller than other models.

• The results showed that the WOA-ELM model is the best among other techniques
investigated in this study. Its performance indices reveal the high accuracy and
reliability of the new model for predicting UCS.

In all, the hybrid models proposed in this study are suitable for different rocks. Thus,
the proposed WOA-ELM model in this study has broad application potential in predicting
the UCS of various rocks.

The main limitation of this paper is that only one dataset was utilized to evaluate the
results of developed models. Meanwhile, this study did not consider that the proposed
algorithms have some limitations, such as local minima trapping issues and the inability to
exploit local space. To avoid this, additional research will be conducted in the future:

1. The developed model in this study will be applied to other datasets to demonstrate
its generalization ability and robustness.

2. We will present strategies to avoid the problem of local minima trapping issues and
the inability of metaheuristic algorithms to exploit local space and illustrate their
impact on the current model.
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