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Abstract: The temporal linear instability of a viscoelastic liquid sheet moving around an inviscid gas
in a transverse electrical field is analyzed. The fluid is described by the leaky dielectric model, which
is more complex than existing models and enables a characterization of the liquid electrical properties.
In addition, the liquid is assumed to be viscoelastic, and the dimensionless dispersion relation of the
sinuous and varicose modes between the wavenumber and the temporal growth rate can be derived
as a 3 × 3 matrix. According to this relationship, the effects of the liquid properties on the sheet
instability are determined. The results suggest that, as the electrical Euler number and the elasticity
number increase and the time constant ratio decreases, the sheet becomes more unstable. Finally, an
energy budget approach is adopted to investigate the instability mechanism for the sinuous mode.
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1. Introduction

Sheet instabilities have been extensively studied in recent years because of their vital
importance in the fields of mathematical physics and industry [1,2]. In scientific fields, such
instabilities are classic issues in solving differential equations that are especially worthy for
studying the behavior of the liquid sheet in an electrical field. Moreover, the instabilities of
a liquid sheet are regularly encountered in spray combustion processes, ultra-fine water
mist fire suppression systems [3], gas turbines, inkjet printing, and even liquid rocket
engines [4].

Squire [5] conducted pioneering work on sheet instabilities by exploring the instability
of a thin inviscid sheet surrounded by still air. Hagerty and Shea [6] developed this theory
through linear analysis and concluded that there existed two modes, namely, the sinuous
mode and the varicose mode. On this foundation, numerous researchers became interested
in sheet electrodynamic behavior, and the stability of the sheet in an electric field was
extensively investigated. In earlier studies, the sheets were considered as perfect conductors
or dielectrics. Melcher and Schwarz [7,8] described how the disturbed surface waves of the
viscous liquid sheet, which was treated as a perfectly insulating fluid, propagated along
the lines of electric field intensity. They showed that the dominant effect of the charge
relaxation was to improve the instability. El-Sayed [9] extended the analysis of Melcher [8]
to the case of a fluid moving in the same direction as an air stream. It was concluded that
the aerodynamic force reduced the stability when the Weber number was less than some
critical value, whereas the electric force increased the stability. Under the perfect conductor
model, Yang et al. [10] conducted an electrified viscoelastic liquid sheet injected into a
dielectric stationary ambient gas.

In 1969, Taylor and Melcher [11] published a breakthrough paper in which they
proposed a more accurate electric–leaky dielectric model (the Taylor–Melcher model).
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Saville [12] comprehensively summarized the basic equations of this model and, through
the analysis of numerous experimental results, concluded that the theory was consistent
with the practice. Research in this field then flourished. Cimpeanu [13] theoretically
examined the classical Rayleigh–Taylor instability of thin films in a horizontal electric
field, and Savettaseranee [14] examined the competition among surface tension, van der
Waals, viscous, and electrically induced forces when a sheet was placed in an electric field
parallel to its velocity. Moreover, Tilly et al. [15] concentrated on the nonlinear stability
of an inviscid sheet between two electrodes. They found that the electric field led to a
nonlinear stability for the sheet, delaying the formation of its singularity.

In fact, for many industrial and commercial applications, such as atomization and
liquid rocket engines, the fluid of the sheet is non-Newtonian and can be characterized
by viscoelastic properties. Therefore, it is necessary to understand the instability and
breakup of viscoelastic sheets. Liu [16] performed a linearized stability analysis in which
two-dimensional non-Newtonian liquid sheets moved in an inviscid gaseous environment.
It was found that non-Newtonian liquid sheets had a higher growth rate than Newtonian
liquid sheets for both symmetric and antisymmetric disturbances. Brenn et al. [17] extended
this analysis to three-dimensional disturbances. Jia et al. [18] manipulated the linear
temporal instability of viscoelastic planar liquid sheets in the presence of gas velocity
oscillations. They found that the absence of shear viscosity, the stress relaxation time, and
the deformation retardation time all affected the unstable regions.

To date, there have been few studies considering the instability of a viscoelastic sheet
in an electric field, especially those that simulated the liquid sheet using the leaky dielectric
model. The present study focused on the linear temporal instability of viscoelastic liquid
sheets subjected to a transverse electric field and explained the physical mechanism using
an energy approach. The influence of various parameters related to the non-Newtonian
characteristics (the elasticity number and the time constant ratio) of the fluid on the stability
of the jet is considered in detail. This research can better understand the mechanism of
liquid film breaking. It has important academic value for science and engineering applica-
tions. In practical engineering applications, such as liquid rocket engines, most propellants
are non-Newtonian fluids. Our contributions were important for two reasons. Firstly,
we considered the effect of electrical properties that were similar to real-world scenarios
alongside the viscoelasticity of the liquid sheet, which has not previously been explored.
Secondly, this study used energy analysis to quantitatively describe the contribution of
various forces, including the electric force and the elastic force, to the sheet stability.

The remainder of this paper is organized as follows. Section 2 describes the theoretical
model and derives the dispersion relation by solving the governing equations and boundary
conditions. Section 3 presents an energy analysis to explain the mechanism of the instability.
Section 4 analyzes the influence of physical parameters. Finally, the conclusions to this
study are presented in Section 5.

2. Theoretical Model

In the case of this paper, the physical model is extracted from the atomization experi-
ment. The liquid film is sprayed into the static air (Ug = 0) from the nozzle, and the electric
field is applied to the external field to study the physical mechanism at the initial stage
of the atomization process. As shown in Figure 1, a viscoelastic sheet moving through an
inviscid gas in a transverse electric field is considered. The coordinates are chosen such that
the x-axis is parallel to the direction of the liquid sheet flow and the y-axis is normal to the
liquid sheet. The leaky dielectric model is employed to describe the electrical properties of
the liquid with finite conductivity and permittivity, while the gas is assumed to be a perfect
dielectric with the associated permittivity in a vacuum. The liquid sheet is characterized by
a viscoelastic model that includes three main parameters: zero shear viscosity µ0, the stress
relaxation time λ1, and the deformation retardation time λ2. Gravity is ignored because the
liquid film is very thin, and gravity is negligible compared to other forces for this model.
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Figure 1. Schematic diagram of moving liquid sheet in an electric field.

In the present case, the relationship between the stress tensor and the velocity field
can be described by the Oldroyd-B constant equation [19,20], which can be written as

τ+ λ1

(
∂τ
∂t + (v · ∇)τ− (∇v) · τ− τ · (∇v)T

)
= µ0

( .
γ+ λ2

[
∂

.
γ

∂t + (v · ∇) .
γ− (∇v) · .

γ− .
γ · (∇v)T

])
,

(1)

where τ is the extra stress tensor and
.
γ = ∇v + (∇v)T is the strain rate tensor.

Physical quantities are defined with appropriate values, and the corresponding scales
are presented in Table 1. Both the liquid and the gas are assumed to be incompressible and
the force of gravity is ignored.

Table 1. Scales of dimensionless parameters.

Dimensionless Parameter Meaning Scale

x Distance parallel to the basic flow a

y Distance normal to the basic flow a

t Time a/U

u x-direction velocity U

v y-direction velocity V

φg Gas phase velocity Ua

P0 Basic flow pressure ρlU2

P Liquid phase pressure ρlU2

τ Liquid stress tensor ρlU2

η0 Initial disturbance amplitude a

d Distance from electrode to sheet surface a

λ1 Stress relaxation time a/U

λ2 Deformation retardation a/U

η0 Initial disturbance amplitude a

2.1. Governing Equations

The governing equations for the liquid and gas phases are given as follows. The mass
conservation equations are

∇ · v = 0,−a + η < y < a + η, (2)

∇2φg = 0, y < −a + η ory > a + η, (3)

where the liquid velocity vector is v =
(
u v 0

)
.
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The equations of momentum for the liquid phase are expressed as

∂v
∂t

+ (v · ∇)v = −∇p +∇ · τ,−a + η < y < a + η, (4)

pg = −ρ

[
∂φg

∂t
+

1
2
(
∇φg

)2
]

, y > a + η or y < −a + η. (5)

2.2. Solutions for Electrical Field

An electrical potential function V is first introduced to satisfy the Laplace equations
for the gas phase and the liquid phase, which are written as follows:

∇2Vg = 0, (6)

∇2Vl = 0. (7)

The strength of the electrical field can be expressed as

E = −∇V. (8)

The electric boundary conditions for the gas are simple:

Vg = V0, y = a + η,
Vg = 0, y = a + d.

(9)

The electric stress in the liquid phase Tl
e and in the gas Te

g can be obtained as follows:

Tl
e = εElEl −

1
2

δεEl · ElI, Te
g = EgEg −

1
2

δEg · EgI, (10)

where δ is the Kronecker delta and I is the identity matrix.
The boundary conditions for the liquid sheet are much more complicated. The model

requires the continuity of the tangential electrical field strength, Gauss’ law, and the
conservation law of interface charge on the gas-to-liquid surface, which are expressed,
respectively, as

n×
(
El − Eg

)
= 0 , y = ±a + η, (11)(

ε1El − ε2Eg
)
· n = qs, y = ±a + η, (12)

∂qs

∂t
+ v · ∇qs − qsn · (n · ∇) · v− (σEl) · n = qs, y = ±a + η. (13)

2.3. Boundary Conditions

The kinematic boundary conditions for the liquid and gas phases are

∂H
∂t

+ v · ∇H = 0, y = ±a + η, (14)

∂H
∂t

+∇φg · ∇H = 0, y = ±a + η, (15)

where H = y− η(x, t) and H = 0 denote the two gas-to-liquid interfaces.
Because the gas is inviscid and there exists a tangential electrical stress Te

t , the dynamic
boundary condition parallel to the interfaces should be

(n · τ)× n = Te
t , y = ±a + η, (16)

where n = ∇H/|∇H| is the interface unit normal vector.
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The dynamic boundary condition normal to the interface is written as

− p + (n · τ) · n +
1

We
(∇ · n)− ρ

[
∂φgj

∂t
+

1
2

(
∂φgj

∂x

)2

+
1
2

(
∂φgj

∂y

)2
]
= Te

t , y = ±a + η.

(17)

2.4. Linear Stability Analysis

To solve Equations (1)–(17), we employ linear instability analysis [12,13] using the
form of the normal mode. For a sufficiently small disturbance, the following equation
is obtained:

(η, u, v, p,τ,
.
γ, φg, pg, Vg, Vl) =

[η(y), u(y), v(y), p(y),τ(y),
.
γ(y), φg(y), pg(y), Vg(y), Vl(y)] · exp(ikx + ωt),

(18)

where k is the wavenumber and ω is the complex frequency ω = ωr + iωi, where ωr
represents the temporal growth rate of the disturbance and ωi represents the disturbance
frequency). Substituting Equation (18) into Equation (1) yields

τ+ λ1

(
∂τ

∂t
+

∂τ

∂x

)
=

1
Re

[
.
γ1 + λ2

(
∂

.
γ

∂t
+

∂
.
γ

∂x

)]
, (19)

Re1 =
1 + λ1(ik + ω)

1 + λ2(ik + ω)
Re, (20)

where Re1 is the effective Reynolds number for the viscoelastic fluid.
The two modes of liquid film are shown in Figure 2 below. The left figure describes the

pattern in which the upper and lower boundaries are disturbed in the opposite direction,
which is called varicose or symmetric, while the right figure is the pattern in which the
upper and lower boundaries are disturbed in the same direction, which is called sinusoidal
or antisymmetric.
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Substituting Equation (18) into Equations (2)–(5) and the constitutive relation in Equation (19),
the solution of the disturbance flow field can be obtained with a set of integration constants, which
can be determined from the boundary conditions in Equations (14)–(17). The requirement of a
nontrivial solution to the linear homogeneous equations leads to the dispersion relation.

Dsin(ω1, k, Re1) = 0, or Dvar(ω1, k, Re1) = 0, (21)

where the subscripts ”sin” and ”var” represent the sinuous (antisymmetric) mode and the
varicose (symmetric) mode, respectively. The two modes exist at the same time for the
sheet instability, and their final expressions are as follows.
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For the sinuous mode, the dispersion relation should be

det(A) = (τ − L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

)(−2 cosh(K))D33

+ε L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

cosh(K)
KDsinh(K)

V0
d D32

+(τ − L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

)V0
d D32

−ε L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

2 cosh(K)D33= 0,

(22)

where
V0
d D32 = −K2+L2

K2−L2 2coth(K) cosh(K)KEu
D2 + 4K2L

(K2−L2)
cosh(K)
tanh(L)

Eu
D2

−2sinh(K)KEu
D2 ,

D33 = − (K2+L2)
2

K
1

Re2 tanh(K) + 4K2L
Re2 tanh(L)− K2

We − ρ Ω2

K .

(23)

Similarly, the varicose mode can be given as

det(A) = (τ − L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

)(−2sinh(K))D′33

+ε L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

sinh(K)
KD cosh(K)

V0
d D′32

+(τ − L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

)V0
d D′32

−ε L2−K2

Re
1+λ·El(iK+Ω)
1+El(iK+Ω)

2sinh(K)D′33= 0.

(24)

where
V0
d D′32 = −K2+L2

K2−L2 2tanh(K)sinh(K)KEu
D2 + 4K2L

(K2−L2)
sinh(K)
coth(L)

Eu
D2

−2sinh(K)KEu
D2 ,

D′33 = − (K2+L2)
2

K
1

Re2 coth(K) + 4K2L
Re2 coth(L)− K2

We − ρ Ω2

K

− (K2+L2)
K2−L2

KEu
D2 tanh(K) + 2K2L

(K2−L2)
Eu
D2 tanh(L) + Eu

D3 .

(25)

3. Energy Budget

To investigate the mechanism of the sheet instability, we conduct an energy budget
analysis [21,22], which can trace the perturbation kinetic energy and the effects of various
forces, especially the elastic force and the electric field force.

Firstly, we linearize the momentum equation and the constitutive relations of the
liquid are as follows:

∂v
∂t

+
∂v
∂x

= −∇p +∇ · τ, (26)

τ =
1

Re
.
γ− λ1

(
∂τ

∂t
+

∂τ

∂x

)
+

λ2
Re

(
∂

.
γ

∂t
+

∂
.
γ

∂x

)
. (27)

Combining Equations (24) and (25), the following equation is obtained

∂v
∂t

+
∂v
∂x

= −∇p +
1

Re
∇2v− λ1∇ ·

(
∂τ

∂t
+

∂τ

∂x

)
+

λ2
Re
∇ ·

(
∂

.
γ

∂t
+

∂
.
γ

∂x

)
. (28)

Secondly, we multiply both sides of Equation (26) by the perturbation velocity v and
integrate over one wavelength λ = 2π/k to get the energy equation. The results can be
written as

.
ek =

.
wp +

.
wvis +

.
wEl +

.
wλ, (29)

where the left-hand side
.
ek represents the rate of change in the kinetic energy of the

disturbance; the terms on the right-hand side represent different mechanisms:
.

wp is the
total contribution of liquid pressure;

.
wvis is the viscous dissipation;

.
wEl is the effect of

elasticity; and
.

wλ is the retardation of the deformation. The specific expressions for these
terms are
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.
ek =

k
2π

∫ 2π
k

0

∫ 1

−1
v ·
(

∂v
∂t

+
∂v
∂x

)
dydx, (30)

.
wp =

k
2π

∫ 2π
k

0

∫ 1

−1
−v · ∇pdydx, (31)

.
wvis =

k
2π

∫ 2π
k

0

∫ 1

−1
v · 1

Re
∇2vdydx, (32)

.
wEl =

k
2π

∫ 2π
k

0

∫ 1

−1
−v · λ1∇ ·

(
∂τ

∂t
+

∂τ

∂x

)
dydx, (33)

.
wλ =

k
2π

∫ 2π
k

0

∫ 1

−1
v · λ2

Re
∇ ·

(
∂

.
γ

∂t
+

∂
.
γ

∂x

)
dydx. (34)

Finally, we substitute Equations (2) and (17) into Equation (29) and the results should be

.
wp =

.
wg +

.
wσ +

.
wτyy +

.
wew +

.
wez, (35)

.
wg =

k
2π

∫ 2π
k

0
ρ

[(
v

∂φg

∂t

)
y=a
−
(

v
∂φg

∂t

)
y=−a

]
dx, (36)

.
wσ =

k
2π

∫ 2π
k

0

1
We

[(
v

∂2η

∂x2

)
y=a

+

(
v

∂2η

∂x2

)
y=−a

]
dx, (37)

.
wτyy =

k
2π

∫ 2π
k

0

[
−
(
vτyy

)
y=a +

(
vτyy

)
y=−a

]
dx, (38)

.
wew =

k
2π

∫ 2π
k

0

[
−
(

v
2Eu

D3

)
y=a

+

(
v

2Eu

D3

)
y=−a

]
dx, (39)

.
wez =

k
2π

∫ 2π
k

0

[
−
(

v
2KEu

D2 sinh(k)
)

y=a
+

(
v

2KEu

D2 sinh(k)
)

y=−a

]
dx, (40)

where
.

wg is the result of gas pressure;
.

wσ is the effect of surface tension;
.

wτyy is the work
of additional surface stress;

.
wew is the product of the normal electrical force; and

.
wez is the

comprehensive effect of the tangential and normal electrical forces.
In summary, we have

.
ek =

.
wvis +

.
wEl +

.
wλ +

.
wg +

.
wσ +

.
wτyy +

.
wew +

.
wez. (41)

In the Equation (41), the rate of change in the kinetic energy of the disturbance
.
ek represents the degree of instability of the viscoelastic sheet according to the energy
analysis. The more rapidly the kinetic energy grows, the more unstable the sheet becomes.
Additionally, the amount of work performed by any force component can be used to
measure the contribution to the sheet instability. The positivity or negativity of this value
determines the stability or instability of the liquid film, and the magnitude reflects the
contribution to the instability [23].

4. Results and Discussion
4.1. Basic Case

In view of reality, the magnitude range of physical property parameters of viscoelastic
fluid was selected by referring to relevant parameters in previous literature [24], and we
adopted one set of real fluid parameters (PIB Boger 4000 ppm [24] and air) for analysis.
According to the physical properties of the fluid, the following dimensionless values were
chosen to discuss the basic case see (Table 2), which are displayed as
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[El, λ, Re, We, ρ, Eu, ε, τ, D] = [1, 0.5, 100, 400, 0.0012, 5, 0.0125, 5, 40]. (42)

Table 2. Definitions of dimensionless numbers and their appropriate values.

Dimensionless Number Definition Appropriate Values

Weber number We = ρlU2a/γ 100 ∼ 1000

Reynolds number Re = ρlUa/µ 1 ∼ 1000

Gas-to-liquid density ratio ρ = ρg/ρl 0.001 ∼ 0.1

Electrical Euler number Eu = ε1V2
0 /ρlU2a2 0 ∼ 10

Electrical relaxation time τ = σU/ε1a 0.1 ∼ 107

Dielectric constant ratio ε = ε2/ε1 0.01 ∼ 1

Dimensionless distance D = d/a 10 ∼ 50

Elasticity number El = λ1µ0/ρl a2 = λ1/Re 1 ∼ 5

Time constant ratio λ = λ2/λ1 0 ∼ 1

In addition, Table 2 introduces some dimensionless numbers and their appropriate values.
Figure 3 illustrates the dispersion relations for Oldroyd-B and Newtonian fluid sheets

in the electric field under the sinuous and varicose modes. In both modes, the growth rates
are greater when the sheet is a non-Newtonian fluid. The sheet becomes more unstable
when non-Newtonian rheological properties are considered. In this sense, research on
the instability of a viscoelastic liquid sheet could identify potential methods for breaking
liquid sheets into droplets. Additionally, in the varicose mode, there is greater discrepancy
between the two kinds of fluids. Overall, the sinuous mode plays a leading role in the
sheet instability of the two fluids. However, the unstable areas are almost the same for both
modes. The following sections analyze the effects of the physical properties of the sheet on
its instability.
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Figure 3. Temporal instability of an Oldroyd-B and Newtonian fluid sheet in the electric field for
sinuous and varicose modes.

4.2. Electrical Properties

This section explores the influence of the electric field strength (Eu, D), the relaxation
time of the surface charge (τ), and electric permittivity (ε) on the sheet instability.

The effect of the electric strength Eu on the sheet instability is depicted in Figure 4. It
can be observed obviously that the electric strength causes the liquid sheet to become dra-
matically more unstable in both modes. Furthermore, the unstable range of the wavenum-
ber widens as the electric strength increases. It can be seen that the maximum unstable
growth rate for the sinuous mode is greater than that for the varicose mode, indicating



Mathematics 2022, 10, 3488 9 of 14

that the sinuous mode plays a dominant role in the sheet instability. A liquid sheet with
a larger maximum unstable growth rate can behave with greater instability. The dom-
inant wavenumber is slightly larger in the varicose mode. According to the studies of
Yin [21] et al., increasing the Eu can promote the breakup process and obtain a smaller main
drop size.
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Figure 4. Effects of Eu on (a) sheet instability for sinuous mode, (b) sheet instability for varicose
mode, (c) maximum growth rate, and (d) dominant wavenumber.

The effect of the dimensionless distance D on the instability of the viscoelastic liquid
sheet is further studied in the present study, as shown in Figure 5. According to Equation (8),
the electric strength increases sharply as D decreases. In this situation, it is easy to conclude
that the sheet could become much more unstable in both modes if the distance between
the electrodes was decreased, as the unstable area would widen considerably (Figure 4).
Note that the varicose mode is more sensitive to variations in D. In brief, the electrical force
accelerates the sheet’s breakup. The mechanism is complicated because the sheet has been
formulated using the leaky dielectric model. According to recent studies, decreasing the
distance is beneficial to obtain a smaller main drop size after the breakup process. This is
discussed in detail in Section 4.3.

The fluid conductivity is represented by the electrical relaxation time τ and the relative
electrical permittivity ε. In fact, the effects of τ and ε are limited, which has been reported
in previous studies [23], because the two parameters only influence the conductive term of
the surface charge conservation in Equation (13). Compared with the electrical relaxation
time τ, the relative electrical permittivity ε has a slightly greater effect because it is included
in the electric field strength. As Figure 6 shows, enhancing ε causes the maximum growth
rate ωmax to increase. In this sense, the relative electrical permittivity is an unstable factor
for a sheet.
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Figure 5. Effects of D on sheet instability for (a) sinuous mode and (b) varicose mode.
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Figure 6. Effects of ε on sheet instability for sinuous and varicose modes.

4.3. Rheological Properties

This section explores the effect of the sheet rheological properties, including the
elasticity and time constant ratio, on sheet instability.

Liquid elasticity is an important parameter in the stability of the sheet. Figure 7
displays curves of the temporal growth rate varies with the wavenumber. It can be seen
clearly that the temporal growth rate increases as the elasticity number increases. The
results suggest that the elasticity has a destabilizing effect on the viscoelastic sheet. The
effect of the elasticity number in the linear analysis can be explained by the equation in
Table 2: increasing El results in an increase in λ1, leading to a larger effective Reynolds
number. Figure 7 also shows that the temporal growth rate varies only slightly for different
elasticity numbers, so the destabilizing effect of viscoelasticity is weak according to linear
analysis. Further aspects of the mechanism of the elasticity number El on the linear
temporal growth rate ω are examined in Section 4.4.
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Figure 7. Effects of El on sheet instability for sinuous and varicose modes.
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In the present study, the time constant ratio is defined as the ratio of the deformation
retardation time λ2 to the stress relaxation time λ1. Figure 8 illustrates the effects of the time
constant ratio on sheet instability under the sinuous and varicose modes, respectively. It can
be seen obviously that the temporal growth rate decreases with an increasing time constant
ratio. It means that the viscoelastic planar liquid sheet behaves with greater stability as the
time constant ratio increases, i.e., decreasing the time constant ratio promotes the breakup
process of the liquid sheet. Figure 8 also shows that the time constant ratio has a relatively
large effect. As the stress tensor of a viscoelastic liquid sheet can be increased by enlarging
the deformation retardation time λ2, according to Equation (1), the liquid sheet will become
more unstable. The effects of other properties, such as viscosity, surface tension, and density,
are well-known [9,10,16], so a detailed description is omitted here.
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Figure 8. Effects of λ on sheet instability for sinuous and varicose modes.

4.4. Mechanism Analysis

In this section, an energy budget is derived to explain the mechanism of the onset of
instability. For the sinuous mode, the rates of change in the kinetic energy and various
forces are shown as a function of the wavenumber at the onset of instability (t = 0) in
Figure 9, according to Equation (39) in Section 3. Firstly,

.
wez,

.
wew,

.
wg,

.
wEl are positive,

so the electrical strength, ambient gas, and elasticity have a destabilizing effect, which
explains the trend in the temporal growth rate identified in Sections 4.2 and 4.3. In contrast,
.

wλ,
.

wσ,
.

wvis are negative, so deformation retardation, surface tension, and viscosity have
a stabilizing effect. This explains the phenomenon observed in Section 4.3, whereby an
increase in the time constant ratio λ reduces the temporal growth rate ω. Additionally,
.

wτyy is very small, but positive, so it slightly destabilizes the sheet. Secondly, the absolute
values of

.
wσ,

.
wez are much greater than those of the other forces, so the electric force and

aerodynamic force dominate the sheet instability. The magnitudes of
.

wλ,
.

wg,
.

wEl are also
considerable, so they are secondary factors in the instability of the viscoelastic sheet.
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Figure 9. Rates of change in kinetic energy and various forces for sinuous mode.
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The present study focuses on the influence of viscoelasticity and electric strength on
instability, so the effects of the elasticity number El, time constant ratio λ, and electrical
Euler number Eu are further examined in Figures 10–12. Generally, the rates of all forces
exhibit minor variations with respect to the elasticity number, as shown in Figure 10. As the
elasticity number increases,

.
wez,

.
wew,

.
wEl increase, whereas

.
wσ decreases slightly, but the

absolute value of the rate of change in kinetic energy increases, which means that the force
created by elasticity does more work to enhance the instability as the elasticity increases.
However, this provides a limited explanation for the effect of elasticity on the temporal
growth rate shown in Figure 6, whereby ω increases slightly as El increases.
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The effect of the time constant ratio λ is shown in Figure 11. The kinetic energy and
other forces vary considerably as λ changes. Firstly, as λ increases,

.
wEl ,

.
wσ increase while

.
wez,

.
wg,

.
wλ decrease. The other forces remain basically unchanged. Note the significant

change in the kinetic energy, which implies that the time constant ratio effectively enhances
the sheet instability, as shown in Figure 7. Secondly, increasing the time constant ratio
weakens the effect of the electric force. Finally, as λ increases,

.
wEl increases markedly,

whereas
.

wλ decreases rapidly. The elasticity enhances the instability, but is not sufficient to
compensate for most of the energy dissipated by deformation retardation. As a result, the
time constant ratio stabilizes the sheet.

Figure 12 displays the effect of the electrical Euler number Eu on the rate of change
in the kinetic energy and other forces. When Eu increases, the

.
wez,

.
wg increase, while

.
wEl ,

.
wσ decrease. Note that

.
wez grows rapidly as Eu changes, resulting in the kinetic energy

increasing dramatically. Thus, the electric force is a leading factor in the instability of the
sheet, as illustrated by Figure 4. It is worth noting that

.
wEl decreases markedly as Eu

increases, which reduces the destabilizing effect of the liquid elasticity on the sheet. In this
sense, the effect of surface tension has been enhanced.

5. Conclusions

The present study made two main contributions. Firstly, using temporal linear analysis,
the instability of a non-Newtonian liquid sheet moving through inviscid gas in a transverse
electrical field was studied with the leaky dielectric model. Secondly, an energy budget
was used to investigate the mechanism of sheet breakup. The results presented herein
explained the interaction between the electric field and the rheological properties.

The electric field strength and liquid elasticity caused the liquid sheet to be dramati-
cally unstable in both sinuous and varicose modes. Furthermore, the unstable range of the
wavenumber widened as the electric strength increased. A viscoelastic planar liquid sheet
behaved with greater stability as the time constant ratio increased.

According to the energy budget, the aerodynamic forces, electrical forces, and liquid
elasticity enhanced the sheet instability by doing positive work, whereas the surface tension,
viscous stresses, and deformation retardation performed negative work, indicating their
stabilizing effects. The electrical force was the most significant destabilizer of the sheet
under the leaky dielectric model. Additionally, increasing the time constant ratio weakened
the effect of the electric force, while the electric force could reduce the destabilizing effect
of liquid elasticity on the sheet.
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