
Citation: Cao, X.; Luo, Q.; Wu, P.

Filter-GAN: Imbalanced Malicious

Traffic Classification Based on

Generative Adversarial Networks

with Filter. Mathematics 2022, 10, 3482.

https://doi.org/10.3390/math10193482

Academic Editors: Wen Zhang,

Xiaofeng Xu, Jun Wu and Kaijian He

Received: 31 July 2022

Accepted: 19 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Filter-GAN: Imbalanced Malicious Traffic Classification Based
on Generative Adversarial Networks with Filter
Xin Cao 1 , Qin Luo 1,* and Peng Wu 2

1 School of Computer Science, Southwest Petroleum University, Chengdu 610100, China
2 School of Information and Engineering, Sichuan Tourism University, Chengdu 610100, China
* Correspondence: dorothy_lq@163.com

Abstract: In recent years, with the rapid development of Internet services in all walks of life, a large
number of malicious acts such as network attacks, data leakage, and information theft have become
major challenges for network security. Due to the difficulty of malicious traffic collection and labeling,
the distribution of various samples in the existing dataset is seriously imbalanced, resulting in low
accuracy of malicious traffic classification based on machine learning and deep learning, and poor
model generalization ability. In this paper, a feature image representation method and Adversarial
Generative Network with Filter (Filter-GAN) are proposed to solve these problems. First, the feature
image representation method divides the original session traffic into three parts. The Markov matrix
is extracted from each part to form a three-channel feature image. This method can transform the
original session traffic format into a uniform-length matrix and fully characterize the network traffic.
Then, Filter-GAN uses the feature images to generate few attack samples. Compared with general
methods, Filter-GAN can generate more efficient samples. Experiments were conducted on public
datasets. The results show that the feature image representation method can effectively characterize
the original session traffic. When the number of samples is sufficient, the classification accuracy
can reach 99%. Compared with unbalanced datasets, Filter-GAN has significantly improved the
recognition accuracy of small-sample datasets, with a maximum improvement of 6%.

Keywords: malicious network traffic; GAN; imbalanced classification

MSC: 68M25

1. Introduction

The rapid development of information technology not only brings great convenience
to network users but also brings many security threats. Network traffic is an important
carrier for network information exchange and transmission. Many network attacks and
threats also exist in network traffic, so malicious traffic classification is one of the research
focuses of cyberspace security. Due to the wide application of application-layer encryption
technology, traditional port matching [1], deep packet inspection (DPI) [2–4], and other
technologies cannot accurately identify malicious traffic. Therefore, researchers try to
classify malicious traffic using various machine learning algorithms such as SVM, decision
tree, naive Bayes, etc. However, machine learning-based methods involve two problems.
First, machine learning models always rely on the knowledge and experience of profes-
sional security personnel to extract and select traffic features. Second, machine learning
models have low accuracy and poor generalization ability in multi-classification tasks.
Compared with machine learning, deep learning is a more popular method. As an end-to-
end learning method, it can automatically extract data features without human intervention.
Although the deep learning network enhances the expressive power, the performance of
this classification algorithm decreases in the case of an imbalanced class distribution of the
dataset, especially for few samples.

Mathematics 2022, 10, 3482. https://doi.org/10.3390/math10193482 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193482
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5229-5803
https://doi.org/10.3390/math10193482
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193482?type=check_update&version=2

Mathematics 2022, 10, 3482 2 of 17

Therefore, overcoming imbalanced class distribution is of great significance for the
classification of malicious traffic. To solve the problem of poor generalization of the
classification model and the feature representation in the case of a class imbalance dataset,
a representation method based on the Markov transition matrix and Adversarial Generative
Networks with Filters (Filter-GAN) is proposed in this paper.

The original input to the feature representation method is the traffic session. The
method embeds the relevant features into the feature image through the feature image
extraction algorithm. The feature images are then used to train a Generative Adversarial
Network (GAN) model and data filter based on machine learning algorithms. Finally,
the GAN model generates enough new samples to filter out more effective samples through
the data filter. These more effective samples serve as a supplement to the original dataset
to address the problem of sample imbalance.

Compared with traditional malicious traffic characterization methods and data en-
hancement methods, this method has a better feature representation effect and stronger data
enhancement effect, which can make the classification model have a better generalization
and higher classification accuracy. There are two main contributions of this paper:

• A new traffic feature representation method is proposed. The method embeds the
header feature and payload feature of each data packet into a feature image, which re-
alizes a unified representation method for traffic files. The method avoids information
loss and redundancy during preprocessing because the traffic session file is not sliced
or populated. Compared with the traditional grayscale image method, the feature
image generated by this method is more friendly to the model.

• A generative adversarial network model with a sample filter is designed. The filter
is trained and tested with real samples to screen the generated samples so that the
generated samples that pass the screening are closer to the distribution of real samples.

The rest of the paper is organized as follows. The second part introduces the related
work of malicious traffic classification. The third part elaborates the whole model frame-
work and training process, including data preprocessing, feature image extraction, model
structure, and algorithm. Section 4 describes the experimental details and result evaluation.
Section 5 concludes and proposes future work.

2. Related Work
2.1. Classification of Malicious Traffic Based on Deep Learning

Deep learning has been widely used [5–10] in the field of traffic detection and clas-
sification. Wang et al. [11] combined deep learning with traffic analysis for the first time,
pointing out the similarities between images and TCP traffic. Jia et al. [12] further studied
the application of deep learning in traffic analysis, unifying the length of the data packets,
so that the length of each data packet reaches 784 bytes. The flow vector is converted into
a 28 × 28 byte matrix and fed into a convolutional neural network for malicious traffic
classification. Wang et al. [13] converts the data packets of the same five-tuple into fixed-
length byte vectors in sequence according to time and then forms feature vectors through
data compression. The feature vector is classified using the convolutional neural network
with the Gabor function to achieve the purpose of intrusion detection. The two methods
inevitably fill or intercept bytes, resulting in loss of information.

Jiarui Man et al. [14] directly used 196 statistical features of malicious traffic to form
images, and then used a residual network for intrusion detection. Although the use of a
residual network has good advantages in multi-classification, this method does not consider
that there is no spatial position information between statistical features. Simply converting
a one-dimensional vector into a two-dimensional matrix causes redundancy of information.
Huiwen Bai et al. [15] convert network traffic into text, in which the words in the text
consist of every byte of the payload. We use the n-gram semantic neural network model to
generate continuous domain vectors, and then use the gated recurrent unit (GRU) to obtain
feature vectors for final classification. However, with the use of more encryption protocols,
the packet payload is randomly encrypted and no longer has specific semantics. This makes

Mathematics 2022, 10, 3482 3 of 17

semantic-based malicious traffic detection difficult. Marín [16] takes the network traffic
byte stream directly as the input of the convolutional neural network and the recurrent
neural network, and evaluates the feature representation effect at the packet and flow
level. There are also many related works [17–20] that demonstrate the superiority of deep
learning (DL) methods for malicious traffic analysis. We conclude that the DL method
application technique consists of three steps: First, converting the data packet or pcap file
into the standard input format of DL, then selecting a deep learning model according to
the characteristics of the input data, and finally training the DL classifier to automatically
extract and classify the characteristics of the traffic.

2.2. Common Methods for Dealing with Sample Imbalances

In the field of network traffic classification, the class imbalance problem can be ex-
pressed as an order of magnitude difference in the number of samples of traffic data in
each application category, resulting in the classifier being overwhelmed by the majority
class and ignoring the minority class. Misidentifying small categories is often costly. For ex-
ample, in intrusion detection, the attack class is a small class relative to normal traffic,
and misclassifying the attack class may cause network paralysis. There are generally three
ways to deal with data imbalance: modify the objective cost function, change the sampling
strategy, and generate artificial data as shown in Table 1. The method of modifying the
loss function can alleviate the problem of quantity imbalance through different weighting
processes according to different sample sizes. This approach gives higher scores to small
classes and penalizes large classes for updating the parameters of the classification model.

Methods to address sample imbalance also include random undersampling (RUS)
and random oversampling (ROS) strategies [21–23]. Undersampling increases the number
of samples in the secondary class by discarding some sample data, thereby reducing the
sample size in the main class. Oversampling increases the amount of data for samples
with fewer classes by reusing data from classes with fewer classes. However, if the sample
size of the minority class is very small, then discarding a large number of samples from
the majority class will result in a loss of sample distribution information. While the
oversampling method repeats samples leading to severe overfitting problems, which has
been the main disadvantage of oversampling.

Table 1. A brief summary of methods for dealing with imbalanced datasets.

Author Method Reference

Wang Random Over-sampling (ROS) [21]
Vu Random Under-sampling (RUS) [22]

Cieslak RUS + ROS [23]
Chawla Synthetic Minority Over-sampling Technique (SMOTE) [24]

Chen Adaptive Synthetic Sampling (ADASYN) [25]
Nguyen SVM-SMOTE [26]
Last, F Kmeans-SMOTE [27]

As a method of oversampling, SMOTE (Adaptive Synthetic Sampling) [24] is also
widely used in the literature to solve the class imbalance problem. However, it relies on
interpolation for oversampling, resulting in poor representation of synthetic samples. SVM-
SMOTE method [26] use support vector machine (SVM) classifiers to train the support
vectors on the original training set. Based on the majority sample density of the nearest
neighbors, interpolation or extrapolation techniques are used to combine each minority
class support vector with its nearest neighbors to generate new samples. Chen et al. [25]
proposed the ADASYN (Adaptive Synthetic Sampling) method for data generation based
on the SMOTE method. However, the experimental results show that the distribution of
the generated data is quite different from the real data. Last et al. [27] applied the Kmeans
algorithm to the SMOTE method, taking inter- and intra-class relationships into account in
the generated data.

Mathematics 2022, 10, 3482 4 of 17

The classic approach to generating artificial data is based on Generative Adversarial
Networks (GAN), which are trained using a few samples as training data, rather than simply
replicating it. Related research [28] shows that GANs can efficiently generate high-quality
synthetic samples. Vu et al. [29] used the GAN model to generate data to supplement a
small number of categories. The SVM, decision tree, and random forest models were trained
on mixed data and achieved high classification accuracy. Wang et al. [30] generated multiple
minority class data simultaneously through a conditional GAN model. The generated data
are then supplemented by the minority class, which effectively improved the accuracy
compared to the original dataset. Wang et al. [31] used a GAN model for data generation on
an unbalanced encrypted traffic dataset in units of network flows. Although perceptrons
have been widely used to solve class imbalance problems, instability problems such as
vanishing gradients, mode collapse, etc. have always been shortcomings of multilayer
perceptrons. Furthermore, they do not evaluate the data distribution of the generated
samples versus the real samples. Therefore, in this paper, we propose to use filters trained
on real samples to filter the generated samples, directly avoiding crashes and instability
problems in the model. At the same time, the generated samples are evaluated using
mathematical statistical methods.

3. The Proposed Method

This section discusses the framework for malicious traffic classification based on the
Filter-GAN model, shown in Figure 1. It is divided into three stages: the data processing
stage, data enhancement stage, and classification stage. In particular, the difference between
the Filter-GAN model-based framework and the general method framework is the data
processing stage and the data augmentation stage.

…………

Feature ImagePcap filePcap fileNetworkNetwork

…………

Network session

……

Network session

Imbalance

 dataset

Imbalance

 dataset

Balance

dataset

Balance

dataset

Filter-GAN

GAN ModelFilter GAN ModelFilter

splitsplit extractextractextract

Result EvaluationResult EvaluationCNN model

Train Test

Figure 1. Architecture of Filter-GAN.

In the data processing stage, the original traffic file is divided into network session
files according to the network quintuple. The network session file is used as the input of the
feature image algorithm. The algorithm generates data matrices of uniform size without
filling or intercepting valid fields. Then, these data matrices are converted into feature
images to form feature image datasets.

The data augmentation stage is mainly used to generate data to supplement the
minority class. Due to the imbalanced distribution of categories in the original traffic dataset,

Mathematics 2022, 10, 3482 5 of 17

the feature image set still suffers from imbalanced problem. Therefore, firstly, through the
adversarial generative network (GAN), enough new feature images are generated and sent
to the filter to screen more effective samples as a supplement to the original feature image
set to enhance the diversity of the original feature images. It is worth mentioning that here,
the generator generates feature images instead of the original raw traffic files.

In the classification stage, a convolutional neural network model is used as the classifi-
cation model. The training set and the test set are the mixed feature image dataset and the
original feature image dataset, respectively. Finally, the classification effect is evaluated.

3.1. Feature Image Extraction Algorithm

Traffic sessions have statistical, timing, and payload-related features. To compress all
the features into one image as much as possible and improve the representation ability of
the feature image, the feature image extraction algorithm converts the header field, source
payload, and destination payload into three matrices, which are compressed into three
channels of a picture to form a complete feature image. The specific process is shown in
Figure 2.

Header Field

Source Payload

Destination Payload

Header Field

Source Payload

Destination Payload

Three channelsByte Stream Feature Image

Feature Image Extract Algorithm

A session file

Figure 2. Feature image extraction.

There are data packets in two directions in a network session and the header fields
of the information about the data packets themselves. The header field of each data
packet needs to remove noise and useless information, such as data link layer information
(mac address, frame type, etc.), and truncates the IP address. These data can usually be
regarded as a bit stream, and each bit string has different state transition probabilities.
This transmission process has the characteristics of a Markov chain. Therefore, the use of
Markov models can effectively characterize the spatiotemporal features of session payloads.

We read the header field and payload of each data packet in the session file in binary
mode, and then divide the payload into source payload and destination payload. Then ,
we take every four bits as a value. It can be expressed as:

bits = {b1, b2, . . . , bN×8}, bi ∈ (0, 1) (1)

v = {s1, s2, . . . , s N×8
4
}, si ∈ (0, 1, 2, ..., 15) (2)

where N is the byte length and the vector v is the encoded state vector. Consider v as a
Markov chain, calculate the probability that two adjacent states si+1 appear after si, denoted
by P(si+1|si):

Psi+1,si =
P(si+1, si)

p(si)
=

P(si+1, si)
i

∑
j=0

P(si|sj))

(3)

where si, si+1 ∈ (0, 1, 2, . . . , 15). All can form a Markov probability transition matrix:

Mathematics 2022, 10, 3482 6 of 17

M =

P0,0 P0,1 . . . P0,15
P1,0 P1,1 . . . P1,15

...
...

. . .
...

P15,0 P15,1 . . . P15,15

 (4)

Figure 3 is the process of converting binary data into a Markov matrix. Each value of
the Markov matrix of malicious traffic is the transmission probability of a fixed-length bit
string, not the actual value of the bit string. They represent the distribution characteristics
of network session fields. After converting the payload and the header fields into Markov
matrices, they are used as three channels of the feature image, respectively. Each value in
the matrix is used as a pixel point of the feature image to form a feature image as in feature
image extraction Algorithm 1.

P0,0P0,0 P0,1P0,1 P0,15P0,15P0,0 P0,1 ... P0,15

P1,0P1,0 P1,1P1,1 P1,15P1,15P1,0 P1,1 ... P1,15

......

P15,0P15,0 P15,1P15,1 P15,15P15,15P15,0 P15,1 ... P15,15

P0,0 P0,1 ... P0,15

P1,0 P1,1 ... P1,15

...

P15,0 P15,1 ... P15,15

Markov matrix

P0,0 P0,1 ... P0,15

P1,0 P1,1 ... P1,15

...

P15,0 P15,1 ... P15,15

Markov matrix

0101010101101

0101010100101

0101010101000

110110100……

Binary dataBinary data

0101010101101

0101010100101

0101010101000

110110100……

Binary data

0101010101101

0101010100101

0101010101000

110110100……

Binary data
0000

0001

0010

......

1111

0000

0001

0010

......

1111

0000

0001

0010

......

1111

0000

0001

0010

......

1111

Transition probability Pi,j

0000

0001

0010

......

1111

0000

0001

0010

......

1111

Transition probability Pi,j

0000

0001

0010

......

1111

0000

0001

0010

......

1111

Transition probability Pi,j

Figure 3. The process of converting binary data into Markov matrix.

Algorithm 1: Feature Image Extract
Input: Network traffic Session(Pcap)
Output: Feature Image
Data: SrcPayloadBits,DstPayloadBits,HeaderBits;

1 for Packets do
2 Extract header , source payload and destination payload
3 SrcPayloadBits = SrcPayloadBits + source payload
4 DstPayloadBits = DstPayloadBits + destination payload
5 HeaderBits = HeaderBits + header
6 end
7 M1,M2,M3 ← Convert Bits to Markov matrix // using the Markov algorithm
8 Encoding M1, M2, M3 matrices as Feature Images;

3.2. Filter-Gan Model Based on Gan with Machine Learning Filter

The structure of Filter-GAN is shown in Figure 4, including generator, discriminator,
and sample filter. The first step is GAN network training. Random noise is sent to the
generator to generate enough samples, then the generated samples and real samples are
sent to the discriminator for backward propagation of the loss function so that the entire
model can generate a generated sample that is closer to the real sample image. In the
second step, the filter consisting of a machine learning model uses real data for training
and testing. When the best classification effect is achieved, it is used to screen the samples
generated in the first step. In step 3, the samples generated by the GAN model are fed into
the filter to screen more effective samples.

Mathematics 2022, 10, 3482 7 of 17

Noise

Generator Discriminator

Loss

Function

Real Set
More Realistic

Samples

Random Forests

Decision Tree

Logistic Regression

Filter

Random Forests

Decision Tree

Logistic Regression

Filter

Figure 4. Architecture of Filter-GAN.

3.2.1. Gan Model and Loss Function

GAN [32] includes a generator (G) and a discriminator (D). The structure of the
GAN network model constructed in this paper is shown in Tables 2 and 3. In the original
imbalanced data, for the minority attack class, the real sample x is randomly selected as the
input of D. D(x) is the output of D, representing the probability that the data distribution
of x belongs to the real data distribution Pr. A noise vector z is randomly generated in
the normal distribution Pz as the input to G. G generates synthetic samples G(z). This
generated sample is then used as the input of the discriminator, which is used to predict
the probability D(G(z)) of G(z) in the generated data distribution Pg.

Table 2. The detailed network structure of the discriminator. The input data dimension is (3, 16, 16).

Layer (Type) Output

Input (3, 16, 16)
Flatten (768, 1)
Dense 1 (512, 1)
Dense 2 (256, 1)
Dense 3 (128, 1)
Dense 4 (64, 1)
Output (1,)

Table 3. The detailed network structure of the generator, the input data is a random latent vector of
length 100.

Layer (Type) Output

Latent dim (100, 1)
Dense 1 (128, 1)
Dense 2 (256, 1)
Dense 3 (512, 1)
Dense 4 (1024, 1)
Dense 5 (768, 1)

Reshape and output (3, 16, 16)

The objective function of GAN is given as follows:

min
G

max
D

Ex∼Pr(x)[log D(x)] +Ez∼Pz(z)[log(1− D(G(z)))] (5)

Mathematics 2022, 10, 3482 8 of 17

The purpose of GAN is to maximize the discriminator D and minimize the generator G.
Pr and Pz are the probability distributions of the real data and latent vectors, respectively.

Accordingly, the loss functions of D and G are:

LD = −Ex∼Pr(x)[log D(x)] +Ez∼Pz(z)[log(1− D(G(z)))] (6)

LG = Ez∼Pz(z)[log(1− D(G(z)))] (7)

3.2.2. Sample Filter Based on Machine Learning

GAN uses the maximum similarity to measure the loss of the entire model training.
When the data are distributed in high dimensions, the similarity of the data is difficult to
define, which can cause the generated samples to not be close to the real samples. However,
since GAN models can generate infinite samples, we use decision trees, random forests,
and logistic regression models to compose a sample filter to filter the generated samples.
The screening process is shown in Figure 5.

Sample，label

 Random

forest

 Decision

tree

Logistic

regression

Pre_Label==label

NO,S2=0

Start

Yes,S2=1

R=S1+S2+S3

Label Judgment

Label

Judgment

Label

Judgment

Add to Dataset

R==Threshold Abandon

Yes

No

Filter

S1 S3

S2

End

Figure 5. The process of filtering generated samples.

Each generated sample with a label is sent to three machine learning models to
obtain predicted labels. The value is 1 if the predicted label is the same as the label of the
generated sample, and 0 otherwise. Finally, we add the results of the three models to obtain
R, R ∈ (0, 1, 2, 3). For example, when a sample obtains R = 2 through the filter, meaning
that the sample is judged to be of this class by the two machine learning models in the filter.

To limit the filtering granularity of the filter, a Threshold is set. If R is greater than
or equal to the Threshold, the generated sample is added to the dataset, otherwise, it is
discarded. Algorithm 2 is the training process of Filter-GAN.

Mathematics 2022, 10, 3482 9 of 17

Algorithm 2: Filter-GAN Training process.
Input: Real feature images set
Output: Discriminator D, Genarator G of GAN and Filter F

1 for each feature image do
// Traning GAN

2 Feed the feature image into discriminator D to calculate loss
3 Randomly generate Gaussian noise z
4 Feed the z Genarator G to generate generated samples X f ake

5 Feed X f ake into discriminator D to Calculate loss
6 Compute the training error
7 Update weight and bias

// Training Filter
8 Convert feature images to a one-dimensional feature data Xdata
9 Feed Xdata to Random Forests, Decision Trees, Logistic Regression model for

training
10 end
11 Combining three machine learning models as a filter F

4. Experimental Evaluation
4.1. The Datasets and Evaluation Metrics
4.1.1. Malicious Traffic Dataset

The dataset in the experiments comes from the Malware Capture Facility project [33],
which collects malicious traffic over a long period. The datasets released by this project con-
tain malicious traffic generated by various malicious attack methods, such as ransomware,
DDoS attacks, and Trojan horse attacks. Many of these malicious programs cannot generate
enough network traffic during the attack or propagation process, resulting in an imbalanced
number of malicious traffic samples.

Twelve types of malicious traffic were selected. The SplitCap.exe tool [34] was used to
split the original traffic file PCAP into network sessions, which were converted to feature
images using the feature image extraction algorithm.

In Table 4, it can be seen that there is an extreme imbalance between the samples.
For example, MinerTrojan’s samples only accounted for 1.23% of the entire dataset, and PUA
only accounted for 0.69% of the entire dataset. Therefore, there was a distribution imbalance
problem between the categories of this dataset, which can be used to verify the method
and model proposed in this paper.

Table 4. Dataset distribution after segmentation and feature image transformation.

Class Name Size Session Number Rate

CoinMiner(CM) 54 M 10,385 7.11%
WebCompanion(WebC) 227 M 6442 4.41%

Trickbot(Tbot) 33 M 30,052 20.58%
Sathurbot(Sbot) 244 M 11,453 7.84%

Ursnif 150M 10,558 7.23%
Artemis Trojan(AT) 773 M 16,719 11.45%
HPEMOTET(HPE) 70 M 13,737 9.41%

Wannacry Ransomware(WR) 6.8 M 10,829 7.41%
Necurse 20 M 2633 1.81%

Magic Hound(M-H) 20 M 30,431 20.84%
MinerTrojan(MinerT) 309 M 1795 1.23%

PUA 54 M 1008 0.69%

Total 1.91G 146,042 100%

Mathematics 2022, 10, 3482 10 of 17

4.1.2. Evaluation Metrics

To evaluate the performance of our method on imbalanced datasets from multiple
perspectives, we used accuracy, precision, recall, and F1:

ACCURACY =
TP + TN

TP + TN + FP + FN
(8)

PRECISION =
TP

TP + FP
(9)

RECALL =
TP

TP + FN
(10)

F1 = 2 · Precision · Recall
Precision + Recall

(11)

4.1.3. Experimental Platform And Configuration

The training and testing of the model have been carried out under the Windows
10 operating system. The deep learning model was implemented using the Python language
based on the Torch framework. The parameters are listed in Table 5.

Table 5. Generator structure parameters.

Category Version

GPU Nvidia GPU(GeForce GTX 2080TI)
Operating System Windows 10, 64 bit

Deep Learining Platform Torch
DeepLearning Backend Torch-gpu

Cuda version 11.6
CuDNN version 7.1.4

4.2. Experimental Results and Analysis

The experiment was carried out from two aspects, the first is to prove whether the
feature extraction algorithm can effectively characterize malicious traffic. The second is
to prove the data generation model and data filter proposed in this paper, which can
effectively supplement the samples with an unbalanced number of samples.

4.2.1. Feature Image Representation Ability Experiment

To verify that the feature extraction algorithm proposed in this paper can effectively
characterize malicious network traffic, the feature image sets obtained after data processing
are respectively sent to the machine learning model and the neural network model for
multi-classification experiments. Machine learning models include random forest (rf),
decision trees (dt), and logistic regression (lr) models.

In the machine learning model, each pixel of the three-dimensional feature image (di-
mension (3, 16, 16)) is regarded as a feature, converted into a one-dimensional vector with a
feature number of 768, and normalized as a machine input to the learning model. The neu-
ral network model includes the residual convolutional neural network (res, ResNet), which
directly uses the three-dimensional feature image as the input of the model. The training
parameters are shown in Table 6.

The results of Precision, Recall, and F1 for each category in the classification results
are shown in Figure 6. the classification effects of various categories are the ResNet model,
Random Forest, Decision Tree, and Logistic Regression. The ResNet model performs
significantly better than the machine learning model, because the feature images generated
by the feature image extraction algorithm are essentially three-channel images. Each pixel
on the image is the transition probability of a fixed-length bit string in the traffic field,

Mathematics 2022, 10, 3482 11 of 17

which represents the feature distribution of the field. In the field of image classification,
ResNet has a very large advantage, so the results of the ResNet model are better than the
classification results of the machine learning model. At the same time, it also shows that
the feature image extraction algorithm proposed can effectively extract malicious traffic
session features when there are enough samples in the dataset.

CM WebC Tbot Sbot Ursnif A T HPE WR Necurse M-H MinerT PUA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

dt
rf
lg
res

(a)

CM WebC Tbot Sbot Ursnif A T HPE WR Necurse M-H MinerT PUA

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
ec

al
l

dt
rf
lg
res

(b)

CM WebC Tbot Sbot Ursnif A T HPE WR Necurse M-H MinerT PUA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F-
1

dt
rf
lg
res

(c)

Figure 6. Experimental results of random forest (rf), decision trees (dt), logistic regression (lr), and
residual networks (res). (a) Precision. (b) Recall. (c) F1.

In an addition, Figure 6 shows the detection accuracy of each category using the ResNet
model, which shows results above 0.95 for most classes, except Necurse, MinerTrojan,
and PUA. In particular, the number of samples in these three categories accounts for less
than 2% of the total number of samples, and the number of training samples is less than
1000, which is very small as the amount of pre-training data for deep learning models.
Therefore, the reason for the low classification accuracy of these three categories is largely
due to the insufficient number of samples, resulting in the imbalance of sample classes.

Table 6. The training parameters in ResNet model.

Training Parameters Optimizer Learning Rate Loss Function Epochs Mini_Batch

Value SGD 0.001 crossentropy 100 128

Mathematics 2022, 10, 3482 12 of 17

To solve this problem, in the following experiments, according to the distribution of
the sample size of the original dataset, Filter-GAN was used to perform data enhancement
for the categories with less than 10,000 samples.

4.2.2. Data Generation and Dataset Balancing

The network session was transformed into feature images through feature extraction
algorithms to form feature image datasets. The number of various feature images in the
feature image set also inherits this shortcoming due to the unbalanced number of web
sessions per class. According to the results of the above experiments, it can be seen that the
imbalance in the amount of data between samples leads to poor classification results.

Therefore, for categories with less than 10,000 feature images in the dataset, including
WebCompanion, Necurse, MinerTrojan, and PUA, the Filter-GAN model was used for data
augmentation. These feature image datasets were trained as input to the GAN model in
Filter-GAN. The featured image was then converted into a 1D vector (one feature per pixel)
and fed to the filter for training. Finally, the trained GAN model was used for sample
generation, and the generated samples were screened by the filter. The samples generated
by screening were closer to the data distribution of the real samples.

Samples that can pass the filter were selected and those that did not pass were dis-
carded directly. Because a GAN model can use random noise as input, it can keep generating
samples until enough valid samples are generated. Figure 7 shows the comparison of the
amount of data before and after the four small sample balances in the dataset so that the
entire dataset achieves class balance.

To highlight the effect of the filter, we use the following statistical methods to compare
the effectiveness of generated samples and real data. Considering the real data samples
A = {ai}M

i=1 ∼ Pr, and the generated data samples B = {bj}N
j=1 ∼ Pg, where ai, bj ∈ RD.

The average of the real and generated data samples is computed as µA = 1
M ∑M

i=1 ai and
µB = 1

N ∑N
j=1 bj, respectively.

1. Euclidean distance: Euclidean distance (ED) is used to evaluate the distance of two
samples in Euclidean space. As shown in Equation (12), the lower ED indicates that
the real sample and the generated sample are more similar.

ED(A, B) = ‖µA − µB‖2 =
D

∑
d=1

(µA,d − µB,d)
2 (12)

2. Correlation Coefficient: The Pearson correlation coefficient (CC ∈ [−1, 1]) assesses
the correlation between two samples, as shown in Equation (13). The higher the
correlation between the two samples, the closer the CC is to 1.

CC(A, B) =
D ∑

d
µA,dµB,d −∑

d
µA,dµB,d

c1 × c2

c1 =
√

D ∑
d

µ2
A,d − (∑

d
µA,d)2

c2 =
√

D ∑
d

µ2
B,d − (∑

d
µB,d)2

(13)

3. Fréchet distance: The Fréchet distance (FD) is given by Equation (14). Evaluating
the distance of two samples in metric space is a robust measure relative to Euclidean
distance. A lower FD indicates that the two samples are more similar.

Mathematics 2022, 10, 3482 13 of 17

FD(A, B) = ‖µA − µB‖2 + Tr(Σ′AB)

Σ′AB = ΣA + ΣB − 2
√

ΣAΣB

ΣA =
1

M− 1

M

∑
i=1

(ai − µA)(ai − µA)
T

ΣB =
1

N − 1

N

∑
i=1

(bi − µB)(bi − µB)
T

(14)

In order to evaluate the effect of the filter, we set different thresholds, including 1,
2, and 3, to generate sample screening. For example, a threshold of 2 indicates that the
generated samples pass both machine learning models in the filter. The generated samples
of each class are screened, and the similarity estimates are calculated with the real samples,
including ED, CC, and FD. The results are shown in Table 7.

For the result of each class of samples and each threhold, the result that generated
samples pass the three machine learning models in the filter is the best; that is, the ED
and FD are the smallest, and the CC value is the largest. This shows that the filter built
by machine learning is able to filter out generated samples that are more similar to the
real samples. In other words, compared with the general GAN model, the samples that
Filter-GAN generate are closer to the real samples.

Table 7. Statistical evaluation of data augmentation methods.

Class Filter Threshold ED CC FD

PUA
1 1.4233 0.7396 0.2764
2 1.5597 0.74910 0.2380
3 0.7429 0.8763 0.1475

WebCompanion
1 3.3419 0.2437 0.7057
2 1.4356 0.6712 0.34327
3 0.7512 0.8776 0.2236

Necure
1 1.8990 0.5266 0.3572
2 1.1253 0.7132 0.2105
3 1.0797 0.7808 0.1730

MinerTrojan
1 1.0582 0.7802 0.1510
2 0.8240 0.8421 0.1332
3 0.6757 0.8895 0.1061

Note: Bold represents best values.

WebCompanion Necurse MinerTrjan PUA
0

2,000

4,000

6,000

8,000

10,000

12,000

sa
m

pl
e

nu
m

be
r

original
generated

Figure 7. Data distribution after balancing subclasses.

Mathematics 2022, 10, 3482 14 of 17

4.2.3. Experimental Results on Balanced Datasets

To compare the filtering effect of Filter on the generated samples. Experiments are
carried out on imbalanced datasets and balanced datasets with different filter thresholds.
As can be seen in Section 3.2.2, when the threshold = 1 is set, the sample passes only one
machine learning model in the filter. As can be seen from Table 8, when only the imbalance
feature image set is used as the training set for classification, the accuracy of the small
sample categories such as Necurse, MinerTrojan, and PUA is very low.

Table 8. Comparative experimental results based on balanced and unbalanced datasets.

Traffic Class Name Imbalance Dataset Threshold = 1 Threshold = 2 Threshold = 3

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

CoinMiner 0.9656 0.955 0.9603 0.9671 0.9523 0.9596 0.9654 0.9574 0.9614 0.9753 0.9599 0.9675
WebCompanion 0.9676 0.9676 0.9676 0.9627 0.962 0.9623 0.9697 0.9711 0.9704 0.9607 0.9699 0.9653

Trickbot1 0.9995 0.9974 0.9984 0.9968 0.9967 0.9967 0.9975 0.9988 0.9981 0.9983 0.997 0.9976
Sathurbot 0.9944 0.9979 0.9961 0.9916 0.9947 0.9931 0.9948 0.9965 0.9956 0.9907 0.996 0.9933

Ursnif 1.0 1.0 1.0 0.9977 0.9986 0.9981 0.9995 0.999 0.9992 0.9995 0.9981 0.9988
Artemis Trojan 0.9994 0.9997 0.9995 0.9982 0.9994 0.9988 0.9997 0.9994 0.9995 0.9994 1.0 0.9997
HPEMOTET 0.9993 0.9971 0.9982 0.9982 0.9994 0.9988 0.9971 0.9971 0.9971 0.9993 0.9946 0.9969
Wannacry-R 0.9956 0.9937 0.9946 0.9977 0.9926 0.9951 0.9937 0.9914 0.9925 0.9981 0.9963 0.9972

Necurse 0.9412 0.99 0.965 0.9452 0.9848 0.9646 0.955 0.9903 0.9723 0.9303 0.9848 0.9568
Magic Hound 0.9984 0.9992 0.9988 0.9987 0.9998 0.9992 0.9987 0.9992 0.9989 0.9984 0.9995 0.9989
MinerTrojan 0.757 0.8087 0.782 0.7303 0.767 0.7482 0.7872 0.7521 0.7692 0.8187 0.821 0.8198

PUA 0.8767 0.8067 0.8402 0.8497 0.8283 0.8389 0.8394 0.8592 0.8492 0.8535 0.8622 0.8578

Avarage 0.9578 0.9594 0.9584 0.9528 0.9563 0.9545 0.9581 0.9593 0.9586 0.9602 0.9649 0.9625

Note: Bold represents best values.

When using a balanced dataset with the filter, Threshold = 1. We use generated feature
image samples as a complement to the few-shot class training set. Compared with using
only the imbalanced dataset, the classification accuracy of this case is not significantly
improved, which is large because the data distribution of the samples generated by the
GAN network is not close to the real samples. That is to say, the sample size of these
four types of samples used to train the GAN network model is too small so that the GAN
network model cannot fully learn the data distribution of the small sample category so
that the generated samples of effective data distribution cannot be accurately generated.
Therefore, it is necessary to use filters to screen the generated samples.

When the Threshold = 2 or 3, the generated samples as supplementary four-type small
samples pass the classification of at least one machine learning model in the filter. The re-
sults show that the classification results of MinerTrojan, WebCompanion, and Necurse
are improved. The F-1 indicators all rose above 0.97. Necurse’s Precision and F-1 metrics
improved by 1%. In particular, the MinerTrojan category achieved an accuracy of 0.8187,
an improvement of 6%. This shows that through the filtering of the filter, the data dis-
tribution of the generated samples is closer to the real samples, which effectively solves
the problem of class imbalance in the real dataset. Filter-GAN considers the diversity
and accuracy of the generated samples, making the classification effect of the samples
more significant.

4.2.4. Comparative Experiment

We implement the commonly used methods for dealing with data imbalance as a com-
parative experiment for Filter-GAN. The first method is the Random Oversampling (ROS) [22],
which aims to improve the sampling rate of small classes. ROS generates some copies
of the secondary class examples. The method is simple to implement and requires little
computation. The second way is the synthetic minority over-sampling technique (SMOTE) [24].
The SMOTE method generates samples by evaluating the feature space of the sample and its
k-nearest neighbors, where k is determined by the number of minority samples. Specifically,

Mathematics 2022, 10, 3482 15 of 17

first let the di vector be different from the feature vector of the minority sample xi, that is,
the k nearest neighbors, let d

′
i = di × r where r ∈ [0, 1]. Then, the new sample x

′
i = xi + d

′
i.

Further, some derivatives of SMOTE are also implemented, such as SVM-SMOTE [26],
ADASYN [25].

Table 9 shows the results of the comparison experiments. The table shows the overall
accuracy for the classification task and the classification accuracy for the four minority
classes. The overall accuracy of our method is higher than other methods. Secondly, the ac-
curacy rates of CM, WebC, MinerT, and PUA are also higher than other research methods.
Therefore, the Filter-GAN method outperforms other compared methods, which shows that
our method has advantages in malicious traffic characterization and data augmentation.

Table 9. The result of comparative experiment.

Method Overall Accuracy CM WebC Necurse MinerT PUA

ROS 0.9867 0.9623 0.9599 0.9392 0.7058 0.8462
RUS 0.9691 0.8907 0.8586 0.8734 0.7808 0.7972
SMOTE 0.9841 0.9578 0.9465 0.9392 0.7519 0.7168
SVM-SMOTE 0.9856 0.951 0.9502 0.9516 0.7365 0.8112
ADASYN 0.987 0.9639 0.9647 0.9417 0.7038 0.8112
GAN without Filter 0.9852 0.9603 0.9627 0.9452 0.7303 0.8497

Filter-GAN 0.9907 0.9753 0.9607 0.9303 0.8187 0.8535

5. Conclusions

The class imbalance of malicious traffic datasets leads to the low classification accuracy
of deep learning and weak generalization ability. It is solved by two aspects in this paper:
on the one hand, the features of the network session are mapped to the feature image,
which makes the low-rank feature space of the image represent the diversity of the original
traffic session. This method can generate images of uniform size and realize the uniform
expression of features in different sessions. On the other hand, to balance the original traffic
session dataset, the Filter-GAN model continuously generates new feature images through
the GAN model and uses filter to filter the generated samples, so that the generated samples
are closer to the distribution of real data. Experimental results show that the feature image
representation method can effectively classify malicious traffic families. When there are
enough class samples, the detection accuracy of the samples can reach 99%. In the case
of unbalanced samples of malicious traffic families, after using the Filter-GAN model to
enhance the small sample data, the detection and classification accuracy is also significantly
improved up to 6%.

Author Contributions: Conceptualization, X.C. and Q.L.; methodology, X.C.; software, P.W.; re-
sources, X.C.; data curation, X.C.; writing—original draft preparation, X.C.; writing—review and
editing, X.C.; visualization, P.W.; supervision, Q.L.; project administration, P.W.; funding acquisition,
Q.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 61902328 and Key R&D projects of Sichuan Science and technology plan (2022YFG0323).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to lab privacy.

Acknowledgments: The authors wish to thank the editor and the anonymous reviewers for their
valuable suggestions on improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 3482 16 of 17

References
1. Cotton, M.; Eggert, L.; Touch, D.J.D.; Westerlund, M.; Cheshire, S. Internet Assigned Numbers Authority (IANA) Procedures

for the Management of the Service Name and Transport Protocol Port Number Registry. RFC 6335, 2011. Available online:
https://www.rfc-editor.org/info/rfc6335 (accessed on 24 October 2020).

2. Khalife, J.; Hajjar, A.; Diaz-Verdejo, J. A multilevel taxonomy and requirements for an optimal traffic-classification model. Int. J.
Netw. Manag. 2014, 24, 101–120. [CrossRef]

3. Park, B.C.; Won, Y.J.; Kim, M.S.; Hong, J.W. Towards automated application signature generation for traffic identification.
In Proceedings of the NOMS 2008—2008 IEEE Network Operations and Management Symposium, Bahia, Brazil, 7–11 April 2008;
pp. 160–167.

4. Sherry, J.; Lan, C.; Popa, R.A.; Ratnasamy, S. Blindbox: Deep packet inspection over encrypted traffic. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, London, UK, 17–21 August 2015; pp. 213–226.

5. Zhang, K.; Wang, Z.; Chen, G.; Zhang, L.; Yang, Y.; Yao, C.; Wang, J.; Yao, J. Training effective deep reinforcement learning agents
for real-time life-cycle production optimization. J. Pet. Sci. Eng. 2022, 208, 109766. [CrossRef]

6. Yin, F.; Xue, X.; Zhang, C.; Zhang, K.; Han, J.; Liu, B.; Wang, J.; Yao, J. Multifidelity genetic transfer: An efficient framework for
production optimization. SPE J. 2021, 26, 1614–1635. [CrossRef]

7. Zhang, K.; Zhang, J.; Ma, X.; Yao, C.; Zhang, L.; Yang, Y.; Wang, J.; Yao, J.; Zhao, H. History matching of naturally fractured
reservoirs using a deep sparse autoencoder. SPE J. 2021, 26, 1700–1721. [CrossRef]

8. Ma, X.; Zhang, K.; Zhang, L.; Yao, C.; Yao, J.; Wang, H.; Jian, W.; Yan, Y. Data-driven niching differential evolution with adaptive
parameters control for history matching and uncertainty quantification. SPE J. 2021, 26, 993–1010. [CrossRef]

9. Xu, X.; Wang, C.; Zhou, P. GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective. Int.
J. Prod. Econ. 2021, 235, 108078. [CrossRef]

10. Xu, X.; Hao, J.; Zheng, Y. Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing
logistics network. Comput. Ind. Eng. 2020, 142, 106338. [CrossRef]

11. Wang, Z. The applications of deep learning on traffic identification. BlackHat USA 2015, 24, 1–10.
12. Jia, W.; Liu, Y.; Liu, Y.; Wang, J. Detection Mechanism Against DDoS Attacks based on Convolutional Neural Network in

SINET. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 1144–1148.

13. Wang, Y.; Jiang, Y.; Lan, J. Fcnn: An efficient intrusion detection method based on raw network traffic. Secur. Commun. Netw.
2021, 2021, 5533269. [CrossRef]

14. Man, J.; Sun, G. A residual learning-based network intrusion detection system. Secur. Commun. Netw. 2021, 2021, 5593435 .
[CrossRef]

15. Bai, H.; Liu, G.; Liu, W.; Quan, Y.; Huang, S. N-gram, semantic-based neural network for mobile malware network traffic
detection. Secur. Commun. Netw. 2021, 2021, 5599556. [CrossRef]

16. Marín, G.; Caasas, P.; Capdehourat, G. Deepmal-deep learning models for malware traffic detection and classification. In Data
Science–Analytics and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 105–112.

17. Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An unsupervised deep learning model for early network traffic
anomaly detection. IEEE Access 2020, 8, 30387–30399. [CrossRef]

18. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing,
China, 22–24 July 2017; pp. 43–48.

19. Zhang, W.; Wang, J.; Chen, S.; Qi, H.; Li, K. A framework for resource-aware online traffic classification using cnn. In Proceedings
of the 14th International Conference on Future Internet Technologies, Phuket, Thailand, 7–9 August 2019; pp. 1–6.

20. Lotfollahi, M.; Jafari Siavoshani, M.; Shirali Hossein Zade, R.; Saberian, M. Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Comput. 2020, 24, 1999–2012. [CrossRef]

21. Wang, P.; Chen, X. SAE-based encrypted traffic identification method. Comput. Eng. 2018, 44, 140–147.
22. Vu, L.; Van Tra, D.; Nguyen, Q.U. Learning from imbalanced data for encrypted traffic identification problem. In Proceedings

of the Seventh Symposium on Information and Communication Technology, Ho Chi Minh, Vietnam, 8–9 December 2016;
pp. 147–152.

23. Cieslak, D.A.; Chawla, N.V.; Striegel, A. Combating imbalance in network intrusion datasets. In Proceedings of the GrC, Citeseer,
Atlanta, GA, USA, 10–12 May 2006; pp. 732–737.

24. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

25. Chen, Z.; Zhou, L.; Yu, W. ADASYN- Random Forest Based Intrusion Detection Model. In Proceedings of the 2021 4th
International Conference on Signal Processing and Machine Learning, Beijing, China, 18–20 August 2021; pp. 152–159.

26. Nguyen, H.M.; Cooper, E.W.; Kamei, K. Borderline over-sampling for imbalanced data classification. In Proceedings of
the Proceedings: Fifth International Workshop on Computational Intelligence & Applications, IEEE SMC Hiroshima Chapter,
Hiroshima City, Japan, 10–12 November 2009; Volume 2009, pp. 24–29.

27. Last, F.; Douzas, G.; Bacao, F. Oversampling for imbalanced learning based on k-means and smote. arXiv 2017, arXiv:1711.00837.
28. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. arXiv 2017, arXiv:1702.05983.

https://www.rfc-editor.org/info/rfc6335
http://doi.org/10.1002/nem.1855
http://dx.doi.org/10.1016/j.petrol.2021.109766
http://dx.doi.org/10.2118/205013-PA
http://dx.doi.org/10.2118/205340-PA
http://dx.doi.org/10.2118/205014-PA
http://dx.doi.org/10.1016/j.ijpe.2021.108078
http://dx.doi.org/10.1016/j.cie.2020.106338
http://dx.doi.org/10.1155/2021/5533269
http://dx.doi.org/10.1155/2021/5593435
http://dx.doi.org/10.1155/2021/5599556
http://dx.doi.org/10.1109/ACCESS.2020.2973023
http://dx.doi.org/10.1007/s00500-019-04030-2
http://dx.doi.org/10.1613/jair.953

Mathematics 2022, 10, 3482 17 of 17

29. Vu, L.; Bui, C.T.; Nguyen, Q.U. A deep learning based method for handling imbalanced problem in network traffic classification.
In Proceedings of the Eighth International Symposium on Information and Communication Technology, Nha Trang, Vietnam, 7–8
December 2017; pp. 333–339.

30. Wang, P.; Li, S.; Ye, F.; Wang, Z.; Zhang, M. PacketCGAN: Exploratory study of class imbalance for encrypted traffic classification
using CGAN. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–7.

31. Wang, Z.; Wang, P.; Zhou, X.; Li, S.; Zhang, M. FLOWGAN: Unbalanced network encrypted traffic identification method based on
GAN. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Com-
puting, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),
Xiamen, China, 16–18 December 2019; pp. 975–983.

32. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Commun. ACM 2014, 27, 139–144.

33. The CTU Dataset from Malware Capture Facility Project. Available online: https://www.stratosphereips.org/datasets-malware
(accessed on 15 March 2021).

34. SplitCap.exe Tool. Available online: https://www.netresec.com/?page=SplitCap (accessed on 24 October 2020).

https://www.stratosphereips.org/datasets-malware
https://www.netresec.com/?page=SplitCap

	Introduction
	Related Work
	Classification of Malicious Traffic Based on Deep Learning
	Common Methods for Dealing with Sample Imbalances

	The Proposed Method
	Feature Image Extraction Algorithm
	Filter-Gan Model Based on Gan with Machine Learning Filter
	Gan Model and Loss Function
	Sample Filter Based on Machine Learning

	Experimental Evaluation
	The Datasets and Evaluation Metrics
	Malicious Traffic Dataset
	Evaluation Metrics
	Experimental Platform And Configuration

	Experimental Results and Analysis
	Feature Image Representation Ability Experiment
	Data Generation and Dataset Balancing
	Experimental Results on Balanced Datasets
	Comparative Experiment

	Conclusions
	References

