
Citation: Guo, S.; Jing, L.; Dai, Z.;

Yu, Y.; Dang, Z.; You, Z.; Su, A.;

Gao, H.; Guan, J.; Song, Y. Collision

Avoidance Problem of Ellipsoid

Motion. Mathematics 2022, 10, 3478.

https://doi.org/10.3390/

math10193478

Academic Editor: Sanda Florentina

Mihalache

Received: 22 August 2022

Accepted: 20 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Collision Avoidance Problem of Ellipsoid Motion
Shujun Guo 1, Lujing Jing 2, Zhaopeng Dai 2,*, Yang Yu 2,* , Zhiqing Dang 2, Zhihang You 2, Ang Su 2,
Hongwei Gao 2,3, Jinqiu Guan 3 and Yujun Song 3

1 School of Business, Qingdao University, Qingdao 266071, China
2 School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China
3 College of Science, Jiamusi University, Jiamusi 154007, China
* Correspondence: dzpeng@amss.ac.cn (Z.D.); yuyang1988@qdu.edu.cn (Y.Y.)

Abstract: This paper studies the problem of target control and how a virtual ellipsoid can avoid the
static obstacle. During the motion to the target set, the virtual ellipsoid can achieve a motion under
collision avoidance by keeping the distance between the ellipsoid and obstacle. We present solutions
to this problem in the class of closed-loop (feedback) controls based on Hamilton–Jacobi–Bellman
(HJB) equation. Simulation results verify the validity and effectiveness of our algorithm.
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1. Introduction

Control problems play an important role in modern scientific research. Data-driven
control and fuzzy control problems for both linear and nonlinear system remain a popular
task, and many theoretical researches have been carried out, such as Virtual Reference Feed-
back Tuning (VRFT) [1] and indirect adaptive iterative learning control (iAILC) scheme [2].
Formation control is one of the significant interest topics in the research of multi-agent
system (MAS). Formation control can be realized by using various types of vehicles, such
as unmanned aerial vehicles, mobile robots, underwater vehicles and so on. It has found a
wide range of applications including military, aerospace, industry, etc.

The research of formation control mainly includes the following aspects: formation
generation, formation maintenance, formation switching, formation avoidance and for-
mation adaptive problems. The approaches to formation control are roughly categorized
as leader-follower [3–6], behavioral [7,8], virtual structure [9,10] and artificial potential
field [11,12].

Generally speaking, the collision avoidance problem in formation control includes
two aspects. On the one hand, the members of MAS should avoid collision with each other
in the process of motion. On the other hand, MAS should avoid collision with obstacles.
A lot of research has been done in the field of obstacle avoidance algorithm. Many of
them are based on artificial potential field [13,14]. Sometimes the control is realized with
genetic algorithms (GA) [15], which is a powerful tool based on models of natural selection
and evolution and allow an exhaustive search over large spaces. In [16] a visibility graph
approach is used, while in [17] collision avoidance is achieved using A-Star algorithm.

In [18], Kurzhanski presents a theoretical framework of formation control approach
for MAS based on the virtual ellipsoidal motions. This motion is achieved by means of a
virtual ellipsoidal container inside which the members are assumed to be a sphere with
safety volume. Kurzhanski considers the motions of MAS within the container so that the
motions reach the target set together with the virtual container containing them. Therefore,
his work considers about moving to the target set while avoiding collisions. In light of
the above discussion, the motions of virtual ellipsoids can be fully portrayed by the linear
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differential equation satisfied with the coordinates of the center and the configuration
matrix. Kurzhanski proposes the motion trajectory of virtual ellipsoid and MAS based on
a suitable value function and dynamic programming method, thereby giving a solution
scheme for MAS. Kurzhanski’s related work can be found in the literature [19–26].

In fact, we can regard Kurzhanski’s approach to formation control of MAS based
on virtual ellipsoid as an improvement of virtual structure method. Traditional virtual
structure views the formation of MAS as virtual rigid structure, in which each intelligent
tracks a fixed virtual point motion on a rigid structure. This rigid structure limits on the
application range of the method. While the formation control approach based on virtual
ellipsoid motion not only inherits the advantage that it is easy to describe system behavior
as a whole and can obtain higher-cell control accuracy from traditional virtual structures,
but also fully compensates for the defects of rigid motion in traditional virtual structures.

Based on the work of Kurzhanski, this paper achieves the optimal target control
problem based on virtual ellipsoid. This means that we should obtain optimal controls
for the ellipsoid center and configuration matrix, which is significantly different from the
traditional virtual structure method. Then, taking the actual situation of obstacle avoidance
for formation control into account, we present the integration of virtual ellipsoid volume
constraint, ellipsoid center constraint and configuration constraint into value function.
Thereby we achieve optimal control to ellipsoid. Finally, we verify the effectiveness of our
method by numerical simulations.

2. Statement of the Problem

We start this section with the definition of an ellipsoid in Rn.

Definition 1 ([22]). A nondegenerate ellipsoid ε(q, Q) in Rn with center q ∈ Rn and configuration
matrix Q ∈ Rn×n is the set

ε(q, Q) = {p ∈ Rn : 〈p− q, Q−1(p− q)〉 ≤ 1},

where Q is positive definite. Here 〈·, ·〉 denotes inner product of two vector and Q−1 is the inverse
matrix of Q.

On the time interval [t0, θ], consider the virtual ellipsoidal motions of type

Ec[t] = ε(q(t), Q(t)),

with q(t) ∈ Rn and positive definite matrix function Q(t) ∈ Rn×n which are continuous at
time t. Ec[t](t ∈ [t0, θ]) is referred as an ellipsoidal tube.

Now consider an ellipsoidal tube Ec[t](t ∈ [t0, θ]) with the following systems [23]:

.
q(t) = Aq(t)q(t) + Bq(t)u(t, q), q(t0) = q0, (1)

.
Q(t) = T(t)Q(t) + Q(t)T′(t) + BQ(t)U(t, Q)B′Q(t), Q(t0) = Q0, (2)

where u(t, q) ∈ Rm1 controls the trajectory of q(t) and U(t, Q) ∈ Rm2×m2 controls the config-
uration matrix Q(t). The matrix parameters Aq(t) ∈ Rn×n, Bq(t) ∈ Rn×m1 , BQ(t) ∈ Rn×m2 ,
T(t) ∈ Rn×n are assumed to be continuously differentiable at time t, and T(t) is symmetric
matrix. Here the prime of a matrix stands for the transposition of the matrix. The solvable
conditions of system (1) and (2) have been discussed in [22] and Appendix B.

Next the used control constraint, geometric constraints, barrier constraint for the
systems (1) and (2) are stated and the main problem is explained.
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2.1. Control Constraint

Assume the admissible control sets to be u(t, q) ⊆ Rm1 and U(t, Q) ⊆ Rm2×m2 , where
u(t, q) and U(t, Q) are given compact convex sets. For any control u(t, q) ∈ u(t, q) and
U(t, Q) ∈ U(t, Q), we have

θ∫
t0

(〈u(t, q), u(t, q)〉) + [U(t, Q), U(t, Q)]dt ≤ µ2, (3)

where the constant µ > 0. Here [U, U] = tr(U′U) denotes the inner product of two matrices.

2.2. State Constraints

Systems (1) and (2) are also considered under the additional state constraints

[Q(t), Q(t)] ≤ δ2, (4)

σ2 ≤ [Q(t), Q(t)], (5)

where constants δ > σ > 0. Note that inequality (4) defines a convex constraint, and
inequality (5) defines a constraint complementary to a convex one. These inequalities
restrict the possible size of an ellipsoid with configuration matrix Q(t). Condition (4)
implies that Ec[t] is contained in a ball with a radius of δ/n and condition (5) implies that
Ec[t] contains a ball with a radius of σ/n.

2.3. Barrier Constraint

In this paper, obstacles are also regarded as virtual ellipsoids. Let the static ellipsoid
B∗ = ε(q∗, Q∗) be fixed obstacle on the path of the ellipsoid motion, where q∗ ∈ Rn is
the center and Q∗ ∈ Rn×n is the configuration matrix which is positive definite. Let the
eigenvalues of Q∗ be λ1, λ2, . . . , λn, where λi > 0, i = 1, 2, . . . , n. Denote

max{λi|i = 1, . . . , n} =
(

d
2

)2
,

where d/2 is the radius of the smallest n-dimensional ball that includes B∗. While moving,
Ec[t] has to avoid obstacle B∗. We realize a motion under collision avoidance by keeping
the distance between the Ec[t] and obstacle B∗. Actually, we only limit the distance between
q(t) and q∗ to be greater than δ/

√
n + d/2. Letting r = δ/

√
n + d/2, we have

〈q(t)− q∗, q(t)− q∗〉 ≥ r2. (6)

2.4. Main Problem

With the ellipsoid EM = ε(m, M) being the target state, where m ∈ Rn is center,
M ∈ Rn×n is configuration matrix and positive definite. Let the target set

Mω = {(q, Q) ∈ Rn ×Rn×n|〈q−m, q−m〉+[Q−M, Q−M
]
≤ ω2, ω > 0} (7)

be given in the form of a neighborhood of the ellipsoid EM.
This paper deals with the control problem of ellipsoid motion. The control objective

in this paper is to drive the system to arrive at the target set, with the collision avoidance.
By summarizing the above descriptions, we formulate the solution for systems (1) and (2)
as follows.

Problem 1. Given equation systems (1) and (2) on an interval [t0, θ], let an initial state be
{t0, q(t0), Q(t0)}, therefore we get the initial ellipsoid Ec[t0] = ε(q(t0), Q(t0)). Find feedback
controls u(t, q) and U(t, Q) that transfer the ellipsoid Ec[t] from the state Ec[t0] into terminal set
Mω under the constraints (3)–(6).
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In order to find the optimal feedback controls u(t, q) and U(t, Q) of problem, we define
the objective function

Ψ(u(·), U(·)) =
θ∫

t0

(α1(〈u(t, q), u(t, q〉+ [U(t, Q), U(t, Q)]) + α2(δ
2 − [Q(t), Q(t)])

+α3([Q(t), Q(t)]− σ2)− β〈q(t)− q∗, q(t)− q∗〉)dt
+γ(〈q(θ)−m, q(θ)−m〉+ [Q(θ)−M, Q(θ)−M]),

(8)

where constants α1, α2, α3, β, γ are referred to as weight coefficients.
In this paper, we use the distance between the ellipsoid and the obstacle to con-

strain the objective function, in which the movement of the ellipsoid is restricted by term
〈q(t)− q∗, q(t)− q∗〉 to realize collision avoidance.

3. Solutions Developed

In this section, we use dynamic programming method to solve the above-mentioned
optimal control problem. The value function defined on the trajectories of systems (1) and
(2) is

VE(t, q, Q) = min
u,U
{Ψ(u(·), U(·))|q(t) = q, Q(t) = Q}.

For fixed α1, α2, α3, β, γ, we obtain ([24])

W[t] = {q(t), Q(t)|VE(t, q, Q) ≤ 1},

where W[t] is the backward reach set relative to Mω under the constraints (3)–(6), i.e., the
set of points {q(t), Q(t)} for which there exist controls u(t, q) and U(t, Q) that steers Ec[t]
to Eω under the constraints (3)–(6). The value function for this problem is

VE(t, q, Q) = max
α1,α2,α3,γ

min
β
{VE(t, q, Q)|α1, α2, α3, β, γ}

over all {α1, α2, α3, β, γ ≥ 0 : α1µ−2 + α2δ−2 + α3σ−2 + βr−2 + γω−2= 1}. The meanings
of the parameters have been listed in the Table 1 below.

Table 1. Details of all the parameters.

α1 Constraining controls of the ellipsoid

α2
Constraining the volume of the ellipsoid by constraining an upper bound

on the norm of the ellipsoid configuration matrix

α3
Constraining the volume of the ellipsoid by constraining a lower bound on

the norm of the ellipsoid configuration matrix

β Constraining the distance between the center of ellipsoid and the obstacle

γ Constraining the distance between the ellipsoid and the target

We can substitute the weight coefficients of this problem into value function to obtain
the corresponding control. The obtained solutions will depend on µ, δ, σ, r, ω.

Solving this problem is equivalent to minimizing this value function

VE(t, q, Q) = min
u,U

θ∫
t
(α1(〈u(τ, q), u(τ, q)〉+ [U(τ, Q), U(τ, Q)]) + α2(δ

2 − [Q(τ), Q(τ)])

+α3([Q(τ), Q(τ)]− σ2)− β〈q(τ)− q∗, q(τ)− q∗〉)dτ
+γ(〈q(θ)−m, q(θ)−m〉+ [Q(θ)−M, Q(θ)−M]).

For the convenience of calculation, we rewrite the system (2) in vector form [25]. Let
A = (aij) ∈ Rn×n, introducing the notation

A = [a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , an1, an2, . . . , ann]
′.
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Let B = (bij) ∈ Rn×n, the Kronecker product of matrices is denoted as

A⊗ B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB

 ∈ Rn2×n2
.

Using the identity AXB = (A⊗ B′)X, then system (2) can be rewritten as

.
Q = (T(t)⊗ I)Q + (I ⊗ T(t))Q + (BQ(t)⊗ BQ(t))U(t, Q).

Denoting A(t) = T(t)⊗ I + I ⊗ T(t), B(t) = BQ(t)⊗ BQ(t), we obtain the relation

.
Q = A(t)Q + B(t)U(t, Q).

Then the value function can be replaced by the form

VE(t, q, Q) = min
u,U

θ∫
t
(α1(〈u(τ, q), u(τ, q)〉+ 〈U(τ, Q), U(τ, Q)〉) + α2(δ

2 − 〈Q(τ), Q(τ)〉)

+α3(〈Q(τ), Q(τ)〉 − σ2)− β〈q(τ)− q∗, q(τ)− q∗〉)dτ

+γ(〈q(θ)−m, q(θ)−m〉+ 〈Q(θ)−M, Q(θ)−M〉).

(9)

Then function (9) derives a solution to the HJB equation ([27])

∂VE
∂t +min

u,U
{〈 ∂VE

∂q , Aq(t)q + Bq(t)u(t, q)〉+ 〈 ∂VE
∂Q

, A(t)Q + B(t)U(t, Q)〉

+α1(〈u(t, q), u(t, q)〉+ U(t, Q), U(t, Q)) + α2(δ
2 − 〈Q, Q〉)

+α3(〈Q, Q〉 − σ2)− β〈q− q∗, q− q∗〉} = 0,

(10)

with the boundary condition

VE(θ, q(θ), Q(θ)) = γ(〈q(θ)−m, q(θ)−m〉+ 〈Q(θ)−M, Q(θ)−M〉). (11)

The solution to Equation (10) is given as Equation (9). Denoting

H(t, u(t), U(t)) = 〈 ∂VE
∂q , Aq(t)q + Bq(t)u(t, q)〉+ 〈 ∂VE

∂Q
, A(t)Q + B(t)U(t, Q)〉

+α1(〈u(t, q), u(t, q)〉+ U(t, Q), U(t, Q)) + α2(δ
2 − 〈Q, Q〉)

+α3(〈Q, Q〉 − σ2)− β〈q− q∗, q− q∗〉} = 0.

Then Equation (10) is equivalent to
∂VE
∂t + H(t, u, U) = 0,

∂H(t,u,U)
∂u = 0,

∂H(t,u,U)

∂U
= 0.

First, we have the partial derivative of H(t, u, U) with respect to u and U

u(t, q) = − 1
2α1

B′q(t)
∂VE
∂q

, (12)

U(t, Q) = − 1
2α1

B′(t)
∂VE

∂Q
. (13)
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Substituting (12), (13) into ∂VE
∂t + H(t, u, U) = 0, Equation (10) can be rewritten as

∂VE
∂t +〈 ∂VE

∂q , Aq(t)q〉 − 1
4α1
〈 ∂VE

∂q , Bq(t)Bq
′(t) ∂VE

∂q 〉+ 〈
∂VE
∂Q

, A(t)Q〉
− 1

4α1
〈 ∂VE

∂Q
, B(t)B′(t) ∂VE

∂Q
〉+ α2(δ

2 − 〈Q, Q〉) + α3(〈Q, Q〉 − σ2)

−β〈q− q∗, q− q∗〉 = 0.

(14)

The resulting expression is a quadratic form in the state coordinates and the spatial
derivatives of the value function. The latter permits one to seek the value function in
quadratic form as well,

VE(t, q, Q) = 〈q, p(t)q〉+ [q, k(t)] + [Q, P(t)Q] + [Q, K(t)] + s(t),

the above equation is equivalent to (16)

VE(t, q, Q) = 〈q, p(t)q〉+ 〈q, k(t)〉+ 〈Q, P(t)Q〉+ 〈Q, K(t)〉+ s(t), (15)

where P(t) and p(t) are symmetric positive definite, P(t) = P(t)⊗ In×n, K(t) = K(t). We
have the partial derivative of function VE(t, q, Q) with respect to t, q and Q

∂VE
∂t = 〈q,

.
p(t)q〉+ 〈q,

.
k(t)〉+ 〈Q,

.
P(t)Q〉+ 〈Q,

.
K(t)〉+ .

s(t),
∂VE
∂q = 2p(t)q + k(t), ∂VE

∂Q
= 2P(t)Q + K(t).

Equations (12) and (13) can be rewritten as

u(t, q) = − 1
2α1

B′q(t)(2p(t)q + k(t)), (16)

U(t, Q) = − 1
2α1

B′(t)(2P(t)Q + K(t)). (17)

By substituting Equation (15) into Equations (11) and (14), we thereby obtain equa-
tions for the parameters of the form (15), such as

.
p(t) + 2p(t)Aq(t)− 1

α1
p(t)Bq(t)B′q(t)p(t)− βIn×n = 0, p(θ) = γIn×n,

.
k(t) + A′q(t)k(t)− 1

α1
p(t)Bq(t)B′q(t)k(t)+2βq∗ = 0, k(θ) = −2γm,

.
P(t) + 2P(t)A(t)− 1

α1
P(t)B(t)B′(t)P(t)− (α2 − α3)In2×n2 = 0, P(θ) = γIn2×n2 ,

.
K(t) + A′(t)K(t)− 1

α1
P(t)B(t)B′(t)K(t) = 0, K(θ) = −2γM,

.
s(t)− 1

4α1
〈k(t), k(t)〉 − 1

4α1
〈K(t), K(t)〉+ α2δ2 − α3σ2 − β〈q∗, q∗〉 = 0,

s(θ) = γ(〈m, m〉+ 〈M, M〉).

(18)

Under the condition of continuous differentiability of the matrix parameters of the
systems (1) and (2), the functions (10) and (11) have a unique classical solution. We have
thereby proved the following assertion.

Theorem 1. The value function (15) in which the parameters are determined by systems (18)
specifies a solution to Problem 1. In this case, the optimal controls u(t, q) and U

(
t, Q

)
are given by

(16) and (17).

Since the above formulas involve nonlinear terms, it is difficult for us to obtain
analytical expressions even for this relatively simple model, so we focus on numerical
solutions. In a similar way as [26], forward Explicit Euler method (in reverse time) is
introduced to perform numerical discretization, and the ellipsoid trajectory tube is obtained
by MATLAB software. The corresponding implemented algorithm has been attached in
Appendix A.
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4. Numerical Simulation

In order to verify the control method of collision avoidance proposed in this paper,
numerical simulation results are presented in this section. The simulation includes two
cases: the presence of obstacle constraint and the absence of obstacle constraint.

Consider the following parameters of the dynamics (1) and (2) of the center and the
configuration matrix for a solution that uses Equation (8).

q0 = [0, 0]′, Q0 =

[
0.005 0

0 0.005

]
, t0 = 0, θ = 1,

Aq =

[
9t − 6

20
− 6

20 9t

]
, Bq =

[ t
3

t
3

t
3

t
3

]
, T =

[
−t

√
2√

2 −t

]
, BQ =

[
cos(πt) − sin(πt)
sin(πt) cos(πt)

]
.

The center and the configuration matrix of the target ellipse are given as

m = [1, 1]′, M =

[
0.005 0

0 0.005

]
.

The center and the configuration matrix of the obstacle are described as

q∗ = [0.5, 0.5]′, Q∗ =
[

0.005 0
0 0.005

]
.

Now we choose the parameters of Equations (3)–(7) as follows

µ2 = ω2 = r2 = 0.2, δ2 = 0.28, σ2 = 0.1.

Omitting the presence of obstacle constraint, we consider Equation (8) with the
parameters specified as

α1 = 0.019, α2 = 0.075, α3= 0.035, β = 0, γ = 0.057.

Considering the presence of obstacle constraint, the parameters in Equation (8) are
defined as follows

α1 = 0.012, α2 = 0.057, α3= 0.029, β = 0.048, γ = 0.04.

The elliptical tubes of trajectories without regard of the obstacle constraints are shown
in Figure 1, and the elliptical tubes of trajectories with regard of the obstacle constraints
are shown in Figure 2, where the vertical trajectories tube is the obstacle, and the curved
trajectories tube is Ec[t]. It can be seen from the simulation results in Figures 1 and 2
that when obstacle constraint is not considered, Ec[t] cannot avoid the obstacle. When
considering obstacle constraint, Ec[t] can avoid the obstacle.

Figure 1. Elliptical tubes of trajectories for the Ec[t] with no regard for the obstacle constraint.



Mathematics 2022, 10, 3478 8 of 12

Figure 2. Elliptical tubes of trajectories for the Ec[t] with regard for the obstacle constraint.

The comparison diagram of the terminal ellipse and the target ellipse without obstacle
constraint and with obstacle constraint are given. The simulation results are provided in
Supplementary Materials and shown in Figures 3–5. In Figure 3, the center of Ec[t] reaches
the target set without obstacle constraint. In Figure 4, the center of Ec[t] reaches the target
set with obstacle constraint. In Figure 5, the configuration matrix Ec[t] reaches the target
set with or without obstacle constraint.

Figure 3. The comparison diagram of the center of the terminal ellipse and the target ellipse without
obstacle constraint.

Figure 4. The comparison diagram of the center of the terminal ellipse and the target ellipse with
obstacle constraint.
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Figure 5. The comparison diagram of the configuration matrix of the terminal ellipse and the
target ellipse.

5. Conclusions

This paper studies the collision avoidance problem in formation control and presents
a solution to realize collision avoidance based on dynamic programming. By introducing
a barrier constraint into the value function, we obtain the optimal controls on the virtual
ellipsoid to pass through the obstacle. For the three-dimensional case of a virtual ellipsoid,
the method using this article can obtain similar results.

Our work focuses on a situation with static obstacles. This framework is flexible and
extensible, and the results of collision avoidance are stable. Meanwhile, several limitations
remain to be studied in the future. For example, the current algorithm has not yet achieved
parallel computing and still needs to be improved. Additionally, when the obstacle is
movable or when actively interfering movement towards the virtual ellipsoid is considered,
the target control problem will be converted to a kind of complex game problem which
will be studied in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10193478/s1, Txt S1: Value of center q on time interval [0, 1]
step 0.01.txt, Txt S2: Value of configuration matrix Q on time interval [0, 1] step 0.01.txt, Txt S3: Value
of control u on time interval [0, 1] step 0.01.txt, Txt S4: Value of control bar{U} on time interval [0, 1]
step 0.01.txt.

Author Contributions: Conceptualization, S.G.; Methodology, S.G., L.J., Z.D. (Zhaopeng Dai) and
Y.Y.; Software, A.S. and Z.D. (Zhiqing Dang); Formal analysis, Z.Y., J.G. and Y.S.; Validation, S.G.
and H.G.; Writing—original draft preparation, S.G.; Writing—review and editing, S.G., L.J., Z.D.
(Zhaopeng Dai) and Y.Y.; Supervision, H.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (No.
72171126, 11872220).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
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https://www.mdpi.com/article/10.3390/math10193478/s1
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Appendix A

Algorithm A1. Numerical Solutions for Theorem 1.

Require: The total time interval [t0, θ], the number of time step nt, the initial center q0 and
configuration matrix Q0, the target center q∗ and configuration matrix Q∗, and the obstacle center
m and configuration matrix M for the ellipsoid. The coefficients of dynamic formulae
Aq, Bq, T, BQ, µ, δ, σ, r, ω depending on the system, and Practitioner designed coefficients
α1, α2, α3, β, γ.

Ensure: The optimal controls u(t, q) for the center and U(t, Q) for the configuration matrix of the
ellipsoid ε(q, Q) which allow ε(q, Q) to move to the target ε(q∗, Q∗) without collision with
ε(m, M), and the center q(t), configuration matrix Q(t) of ε(q, Q). The above solution was given
at the following time node: t0, t0 + ∆t, t0 + 2∆t, . . . , t0 + nt∆t = θ, where ∆t = θ−t0

nt
.

%Solving p(t), k(t), P(t), K(t), s(t) in Equation (18) using forward Explicit Euler Method in
reverse time.

1: p(θ) = γIn×n, k(θ) = −2γm, P(θ) = γIn2×n2 ,

K(θ) = −2γ
¯
M, s(θ) = γ

(
〈m, m〉+ 〈

¯
M,

¯
M〉
)

;

A(t) = T(t)⊗ In×n, B(t) = BQ ⊗ BQ;

2: for (t = θ; t ≥ t0; t− = ∆t){

p(t− ∆t) = p(t)− 1
∆t

[
−2A′q(t)p(t) +

1
α p(t)Bq(t)B′q(t)p(t) + βIn×n

]
;

P(t− ∆t) = P(t)− 1
∆t

[
−2A′(t)P(t) + 1

α P(t)B(t)B′(t)P(t) + (α2 − α3)In2×n2

]
;

k(t− ∆t) = k(t)− 1
∆t

[
−A′q(t)k(t) +

1
α p(t)Bq(t)B′q(t)k(t)− 2βm

]
;

K(t− ∆t) = K(t)− 1
∆t

[
−A′(t)K(t) + 1

α P(t)B(t)B′(t)P(t) + (α2 − α3)In2×n2

]
;

}

%Solving u(t, q), U(t, q) using equation (16) and (17), and solving q(t), Q(t) using Equations (1)
and (2) in the same loop.

3: u(t0) = 0, U(t) = Zero Matrix with size n× n, q(t0) = q0, Q(t0) = Q0;

4: for (t = t0; t ≤ θ; t+ = ∆t){

u(t + ∆t) = − 1
2α B′q(t) ∗ [2p′(t)q(t) + k(t)];

U(t + ∆t) = − 1
2α B′(t) ∗ [2P′(t)Q(t) + K(t)];

q(t + ∆t) = q(t) +
[
Aq(t)q(t) + Bq(t)u(t)

]
∆t;

Q(t + ∆t) = Q(t) + [A(t)Q(t) + B(t)U(t)]∆t;

}

Appendix B. Solvability Analysis

Discussion about the solvability of system provided by Equations (1) and (2) are
provided in this appendix. In the view of formation control, Equations (1) and (2) form a
coupled system that should not be analyzed separately. Thus, we introduce the concept
of Ellipsoidal Dynamics with notations in reference [22] that make our demonstration
theoretical and concise. Several definitions below have already been given in [22] and
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without special notation we omit the name of this book and only mark the corresponding
content with page number.

First, we rewrite Equations (1) and (2) into an Attainable Domain (Definition 1.2.1
Page 9 in [22]) Equation:

X[t] = ε(q0, Q0) +

t∫
t0

ε(0, P(t))dt, t ∈ [t0, θ], (A1)

where X[t] = {x(t)|∃control u(t, q), U(t, q), s.t. x(t) ∈ ε(q(t), Q(t)) with u, U}, ε(0, P(t))
denotes the ellipsoid constructed by an eligible control, and by Equation (3) it forms an
ellipsoid (actually it is a sphere with isotropy) with the center as origin. The + and integral
sign in Equation (A1) denotes Ellipsoid Sum and Integral, defined on Pages (128) and (161)
in [22], respectively.

Next, by carrying out the similar procedure from Section 3.1 (on Page 178) to 3.4 (on
Page 194) in [22], Corresponding Theorem 3.4.1 (on Page 195) in [22] holds for our system,
which implies a condition for solvability. We transform this conclusion with our notation
as below.

Theorem A1. ε−(q(t), Q_(t)) ⊂ W[t] ⊂ ε+(q(t), Q+(t)) must hold for every t, where
ε−(q(t), Q−(t)) and ε+(q(t), Q+(t)) denotes the ellipsoid evolution (Definition 3.3.1 on Page 191
and Definition 3.3.2 on Page 193) carried out by internal or external calculation, respectively, and
W[t] denotes the Solvable Domain (Definition 1.4.2 on Page 19 in [22]), which is

W[t] = ε(q∗, Q∗)−
θ∫

t

ε(0, P(t))dt, t ∈ [t0, θ], (A2)

where the “− ” denotes Ellipsoid difference as defined on Page (128) in [22].

From Theorem A1, we could check whether Equations (1) and (2) is solvable by
checking whether

ε(q0, Q0) ∈ ε(q∗, Q∗)−
θ∫

t

ε(0, P(t))dt (A3)

holds for the given dynamic system with corresponding coefficients.
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