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Abstract: Extra edge connectivity and diagnosability have been employed to investigate the fault
tolerance properties of network structures. The p-extra edge connectivity λp(Γ) of a graph Γ was
introduced by Fàbrega and Fiol in 1996. In this paper, we find the exact values of p-extra edge
connectivity of some special graphs. Moreover, we give some upper and lower bounds for λp(Γ),
and graphs with λp(Γ) = 1, 2,

⌈ n
2
⌉⌊ n

2
⌋
− 1,

⌈ n
2
⌉⌊ n

2
⌋

are characterized. Finally, we obtain the three
extremal results for the p-extra edge connectivity.

Keywords: connectivity; p-extra edge connectivity; diameter; education network

MSC: 05C40; 05C05; 05C76

1. Introduction

The concept of education networks was proposed by Vicki A. Davis during the
Economist debate on social networking technologies in education [1]. Networks with
a small-world topology are distinguished by the characteristics of their connections, allow-
ing two nodes, distant from each other, to be linked by a shorter path. Arcos-Argudo [2]
studied a small-world network in the area of education sciences in particular in the inte-
gration of teaching cloisters in the world system of higher education. Such an education
network plays a central role within a multi-processor systems, and many efforts have been
made to investigate various fault tolerance properties of these network structures; see [3].

Networks can be summarized as nodes and linkages. This means that they are com-
ponents of various kinds (people, schools, universities, and other kinds of organizations)
that are connected in some larger pattern, whether consciously or unconsciously, by one
or more types of connectedness, such as values, ideas, friends, and acquaintances, likes,
exchange, routes of transportation, and communications channels. An education network
is a process of developing and maintaining connections with people and information and
communicating in such a way so as to support one another’s learning. This definition’s key
concept is connections. It adopts a relational stance in which learning takes place both in
relation to others and in relation to learning resources. An education network is meant to
assist in developing relationships between learners and their interpersonal communities,
knowledge contexts, and digital tools in both theory and practice.

For any subset Y of V(Γ), let Γ[Y] denote the subgraph induced by Y, and E[Y] the
edge set of Γ[Y]. Similarly, for any subset Z of E(Γ), let Γ[Z] denote the subgraph induced
by Z. We use Γ− Y to denote the subgraph of Γ obtained by deleting all the vertices of
Y and the edges incident with them. Similarly, we use Γ− Z to denote the subgraph of
Γ obtained by deleting all the edges of Z. If Y = {v} and Z = {e}, the subgraphs Γ− Y
and Γ− Z will be written as Γ− v and Γ− e for short, respectively. To denote the path,
cycle, wheel, complete, and complete bipartite graphs of order n, we use Pn, Cn, Wn, Kn,
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and Ka,b (a + b = n, a ≥ b), respectively. The connectivity of a graph Γ, written κ(Γ), is
the order of a minimum vertex subset S ⊆ V(Γ) such that Γ− S is disconnected or has
only one vertex. The edge connectivity of Γ, written λ(Γ), is the minimum size of an edge
subset M ⊆ E(Γ) such that Γ−M is disconnected. The extremal graphs with respect to
various topological descriptors of graphs with given connectivity and edge connectivity
have been studied in [4,5] and the references therein. We skip the definitions of other
standard graph-theoretical notions, as these can be found in [6] and other textbooks.

The concept of p-extra connectivity was introduced by Fàbrega and Fiol [7]. A vertex
set S is said to be a cutset if Γ− S is disconnected. If every component of Γ− S has at least
p + 1 vertices (p is a non-negative integer), then the cutset S is called an Rp cutset. The
p-extra connectivity of a graph Γ, denoted by κp(Γ), is defined as the minimum cardinality
over all Rp cutsets of Γ when Γ has at least one Rp cutset.

As a natural counterpart of p-extra connectivity, Fàbrega and Fiol introduced the
concept of p-extra edge connectivity in [7]. Let X ⊆ E(Γ). If Γ− X is disconnected, then
the subset of edges X is said to be an edge cutset. If every component of Γ− X has at least
p + 1 vertices (p is a non-negative integer), then the edge cutset X is called an Rp-edge
cutset. The p-extra edge connectivity of Γ, denoted by λp(Γ), is then defined as the minimum
cardinality over all Rp-edge cutsets of Γ when Γ has at least one Rp-edge cutset. It is clear
that κ(Γ) = κ0(Γ) and λ(Γ) = λ0(Γ) for any connected non-complete graph Γ.

The maximum number of identifiable faulty vertices following a specific fault-tolerant
model is referred to as its associated diagnosability, which has attracted much attention
in the research community, and several results, including those of p-extra diagnosability
related to p-extra connectivity for various network structures, have been obtained. For
more details of the mathematical properties, we refer to [3,7–17].

Proposition 1. Let Γ be a connected graph with a non-negative integer p. Then,

λp(Γ) ≤ λp+1(Γ).

Proof. By deleting λp+1(Γ) edges from Γ, one can see that the resulting graph is discon-
nected and each connected component has at least p + 2 vertices. It is clear that each
connected component has at least p + 1 vertices. So, λp(Γ) ≤ λp+1(Γ).

Proposition 2. Let H be a spanning subgraph of connected graph Γ. Then, λ0(H) ≤ λ0(Γ).

The property in Proposition 2 is not true for p ≥ 1.

Remark 1. Let Γ1 be a graph obtained from two cliques Kn−p−1, Kp+1 by adding two edges
u1v1, u2v2, where 1 ≤ p ≤ b n−2

2 c, u1, u2 ∈ V(Kn−p−1), and v1, v2 ∈ V(Kp+1); see Figure 1a.
Let H1 be a graph obtained from a clique Kn−p−1 and two stars K1,r, K1,p−r−1 with centres of
v1, v2, respectively, by identifying one leaf u1 and a vertex of Kn−p−1 and another leaf u2 and
another vertex of Kn−p−1 (see Figure 1b). It is clear that H1 is a spanning subgraph of Γ1. Note
that λp(Γ1) ≥ λ(Γ1) = 2. By deleting two edges u1v1, u2v2, the remaining graph is the disjoint
union of Kn−p−1 and Kp+1, and hence λp(Γ1) ≤ 2. Therefore, λp(Γ1) = 2. For any two edges
e1, e2 ∈ E(H1), if neither e1 nor e2 are cut edges, then H1 − e1 − e2 is connected. Suppose that one
of them e1, e2 is a cut edge. Then, there is an isolated vertex in H1 − e1 − e2 or there is a component
of H1 − e1 − e2 having at most p vertices. Since p ≥ 1, it follows that there is a component of
H1 − e1 − e2 having at most p vertices. It is clear that λp(H1) ≥ 3 > 2 = λp(Γ1).

Proposition 3. Let Γ be a graph with p-extra edge connectivity. Then,

0 ≤ p ≤
⌊

n− 2
2

⌋
.
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Proof. From the definition of λp(Γ), we delete some edges, and the resulting graph has
exactly two components, and each component has at least p+ 1 vertices. Then, n ≥ 2(p+ 1),
and hence 0 ≤ p ≤ b n−2

2 c.

(a) Γ1 (b) H1

Kn−p−1

Kp+1

u1 u2u2u1

v2v1
v2v1

Kn−p−1

wr wp−1w1 wr+1

Figure 1. Graphs Γ1 and H1.

The solutions to the following problems will provide insights into designing intercon-
nection networks with respect to the number of edges and p-extra edge connectivity of
the networks.

Problem 1. Let Θ(n, k) be the set of all graphs of order n with p-extra edge connectivity k
(n and k are positive integers). Determine the minimum integer s(n, k) such that s(n, k) =
min{|E(Γ)| : Γ ∈ Θ(n, k)}.
Problem 2. Determine the minimum integer f (n, k) such that for every connected graph Γ
of order n (n and k are positive integers), so that if f (n, k) ≤ |E(Γ)|, then λp(Γ) ≥ k.
Problem 3. Determine the maximum integer g(n, k) such that for every graph Γ of order n
(n and k are positive integers), so that if g(n, k) ≥ |E(Γ)|, then λp(Γ) ≤ k.

In Section 2, we first give the exact values of the p-extra edge connectivity of complete
graphs, complete bipartite graphs, complete multipartite graphs, paths, cycles, and wheels.
We prove that λp(Γ) ≤ d n

2 eb n
2 c − d

diam(Γ)+1
2 eb diam(Γ)+1

2 c + 1 for diam(Γ) ≥ 2p + 1; and

λp(Γ) ≤ d n
2 eb n

2 c − (d diam(Γ)+1
2 e − 3)(p + 1) for 5 ≤ diam(Γ) ≤ 2p. We also prove that

λp(Γ) ≤ (p + 1)(n− p− 1) for κ(Γ) ≥ p + 2; and λp(Γ) ≤
⌈ n

2
⌉⌊ n

2
⌋
− (n− p− 1)(p + 1−

κ(Γ)) for 1 ≤ κ(Γ) ≤ p + 1. For a connected graph Γ of order n, we prove that 1 ≤ λp(Γ) ≤⌈ n
2
⌉⌊ n

2
⌋

for 0 ≤ p ≤
⌊ n−3

2
⌋

in Section 3. Graphs with λp(Γ) = 1, 2,
⌈ n

2
⌉⌊ n

2
⌋
− 1,

⌈ n
2
⌉⌊ n

2
⌋

are
characterized in Section 4. Finally, we obtain the extremal results for the p-extra connectivity
in Section 5.

2. On p-Extra Edge Connectivity of Some Special Graphs

In this section, we obtain the exact values for λp(G) when G is a special graph.

Proposition 4. Let p be a non-negative integer with 0 ≤ p ≤
⌊ n−2

2
⌋
. Then,

λp(Kn) = (p + 1)(n− p− 1).

Proof. It is easy to see that λp(Kn) ≤ (p + 1)(n− p− 1). From the definition of λp(Kn),
there exists an edge set X of Kn such that Kn − X has two components, say C1, C2, such that
|V(Ci)| ≥ p + 1, where |X| = λp(Kn). Therefore, we have

λp(Kn) = |X| ≥ |V(C1)||V(C2)| ≥ (p + 1)(n− p− 1),

and hence λp(Kn) = (p + 1)(n− p− 1).
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Proposition 5. (1) Let Γ = Ka,b (a ≥ b ≥ 2). Then, p = 0 and λp(Γ) = b.
(2) Let Kn1,n2,...,nr (n1 ≤ n2 ≤ · · · ≤ nr) be a complete multipartite graph with integer

r ≥ 3. Then, p = 0 and

λp(Kn1,n2,...,nr ) =
r−1

∑
i=1

ni.

Proof. (1) By deleting any edge in Ka,b, the resulting graph is a connected bipartite graph.
If we require the resulting graph to not be connected, then we must delete all the edges
that are incident with one vertex. Then, p = 0 and hence λp(Ka,b) = b as a ≥ b ≥ 2.

(2) This part of the proof is very similar to the proof of (1).

Proposition 6. Let p be a non-negative integer.
(1) If Γ = Pn (n ≥ 3), then 0 ≤ p ≤ b n−2

2 c and λp(Γ) = 1.
(2) If Γ = Cn (n ≥ 3), then 0 ≤ p ≤ b n−2

2 c and λp(Γ) = 2.
(3) If Γ = Wn (n ≥ 5), then 0 ≤ p ≤ b n−3

2 c and λp(Γ) = p + 3.

Proof. (1) From the definition of λp(Pn), we have λp(Pn) ≥ λ(Pn) = 1. Now we have
to prove that λp(Pn) ≤ 1. For this, let Pn = u1u2 . . . un. Choose e = udn/2eubn/2c. Since
0 ≤ p ≤ b n−2

2 c, one can easily see that each component of Γ− e has p + 1 vertices, and
hence λp(Pn) ≤ 1. So, λp(Pn) = 1.

(2) From the definition of λp(Cn), we have λp(Cn) ≥ λ(Cn) = 2. It suffices to show
λp(Cn) ≤ 2. Let Cn = u1u2 . . . unu1. Choose e = unu1 and e′ = ubn/2cudn/2e. Since
0 ≤ p ≤ b n−2

2 c, one can easily see that each component of Γ− e− e′ has p + 1 vertices, and
hence λp(Cn) ≤ 2. So, λp(Cn) = 2.

(3) Let u be the center of Wn, and Wn − u = Cn−1, and V(Cn−1) = {v1, v2, . . . , vn−1}.
To show λp(Wn) ≥ p + 3, we need to show that for any Y ⊆ E(Γ) and |Y| ≤ p + 2, there
are two components of Wn −Y, say C1, C2. Clearly, u ∈ V(C1) or u ∈ V(C2). Without loss
of generality, we can assume that u ∈ V(C1). Then, the edges from u to C1 must belong
to C2, and we have at least p + 1 edges. Since there are at least two edges from C2 to
C1 − u, it follows that there are at least p + 3 edges in Y, a contradiction. Now, we have
to prove that λp(Wn) ≤ p + 3. Choose Y = {uvi | 1 ≤ i ≤ p + 1} ∪ {v1vn−1, vp+1vp+2}.
Since 0 ≤ p ≤ b n−3

2 c, one can see easily that each component has p + 1 vertices, and hence
λp(Wn) ≤ p + 3. So, λp(Wn) = p + 3.

3. Bounds on λp(Γ)

We now give some bounds on λp(Γ).

Proposition 7. Let Γ be a connected graph of order n with a non-negative integer p such that
0 ≤ p ≤

⌊ n−3
2
⌋
. Then,

λ(Γ) ≤ λp(Γ) ≤
⌈n

2

⌉⌊n
2

⌋
.

Moreover, the bounds are sharp.

Proof. From the definition of λp(Γ), we have λp(Γ) ≥ λ(Γ). From the definition, by
deleting λp(Γ) edges in Γ, there are exactly two components, say C1, C2, such that each of
them has at least p + 1 vertices. Then,

λp(Γ) ≤ |C1||C2| = |C1|(n− |C1|) ≤
⌈n

2

⌉⌊n
2

⌋
.
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Corollary 1. Let Γ be a connected graph of order n with a non-negative integers p such that
0 ≤ p ≤

⌊ n−3
2
⌋
. Then,

1 ≤ λp(Γ) ≤
⌈n

2

⌉⌊n
2

⌋
.

Moreover, the bounds are sharp.

We obtain some upper bounds on λp(Γ) in terms of n, p, and diam(Γ).

Theorem 1. Let Γ be a connected graph of order n with a non-negative integer p such that
0 ≤ p ≤

⌊
diam(Γ)

2

⌋
− 1.

(1) If diam(Γ) ≥ 2p + 1, then

λp(Γ) ≤
⌈n

2

⌉⌊n
2

⌋
−
⌈

diam(Γ) + 1
2

⌉⌊
diam(Γ) + 1

2

⌋
+ 1.

Moreover, the bound is sharp.
(2) If 5 ≤ diam(Γ) ≤ 2p, then

λp(Γ) ≤
⌈n

2

⌉⌊n
2

⌋
−
(⌈

diam(Γ) + 1
2

⌉
− 3
)
(p + 1).

Proof. (1) Let diam(Γ) = d and let Pd+1 = v1v2 . . . vd+1 be a diametral path in Γ. Choose the
edge cutset X ⊆ E(Γ) such that Γ− X has exactly two components C1, C2 such that C1 con-
tains that sub-path v1v2 . . . vb d+1

2 c
and C2 contains that sub-path vb d+1

2 c+1vb d+1
2 c+2 . . . vd+1.

Since d ≥ 2p + 1, one can easily see that Ci (i = 1, 2) has at least p + 1 vertices. It is
clear that

|X| ≤ |V(C1)||V(C2)| −
⌊

d + 1
2

⌋⌈
d + 1

2

⌉
+ 1

≤
⌈n

2

⌉⌊n
2

⌋
−
⌈

diam(Γ) + 1
2

⌉⌊
diam(Γ) + 1

2

⌋
+ 1.

(2) From the definition of λp(Γ), there exists an edge cutset X such that Γ− X has
two components C1, C2 and each component Ci has at least p + 1 vertices. Let diam(Γ) = d
and let Pd+1 = v1v2 . . . vd+1 be a diametral path in Γ. Then, there exists a component C1
containing at least d d+1

2 e vertices in V(Pd+1), say vi1 , vi2 , . . . , vit , where t ≥ d d+1
2 e. For

any vertex w ∈ V(C2), there exists at most three vertices in {vi1 , vi2 , . . . , vit} adjacent to
w, and hence there are at least t− 3 vertices in {vi1 , vi2 , . . . , vit} not adjacent to w. Since
|V(C2)| ≥ p + 1, it follows that there are at least (p + 1)(t− 3) edges from C1 to C2 in Γ.
Thus, we have

|X| ≤ |V(C1)||V(C2)| − (p + 1)(t− 3) ≤
⌈n

2

⌉⌊n
2

⌋
−
(⌈

diam(Γ) + 1
2

⌉
− 3
)
(p + 1).

Example 1. Let Γ = Pn. Then, diam(Γ) = n− 1 and

λp(Γ) = 1 =
⌈n

2

⌉⌊n
2

⌋
−
⌈

diam(Γ) + 1
2

⌉⌊
diam(Γ) + 1

2

⌋
+ 1,

which means that the upper bound in (1) of Theorem 1 is sharp.

Theorem 2. Let Γ be a connected graph of order n with a non-negative integer p such that
0 ≤ p ≤

⌊ n−2
2
⌋
.
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(1) If κ(Γ) ≥ p + 2, then

λp(Γ) ≤ (p + 1)(n− p− 1).

Moreover, the bound is sharp.
(2) If 1 ≤ κ(Γ) ≤ p + 1, then

λp(Γ) ≤
⌈n

2

⌉⌊n
2

⌋
− (n− p− 1)(p + 1− κ(Γ)).

Proof. (1) Choose S ⊆ V(Γ) and |S| = p + 1 such that Γ[S] is connected. Let X = EΓ[S, S̄],
where S̄ = V(Γ)− S. Clearly, Γ− X is not connected. Since κ(Γ) ≥ p + 2, it follows that
Γ[S̄] is also connected. It is clear that |S̄| = n − p − 1 and λp(Γ) ≤ |X| = |EΓ[S, S̄]| ≤
(p + 1)(n− p− 1).

(2) From the definition of λp(Γ), there exists an edge cutset X such that Γ− X has
two components C1, C2 and each component Ci has at least p + 1 vertices. Let κ(Γ) = r.
Then, there exists a vertex set S ⊆ V(Γ) with |S| = r such that Γ− S is not connected. Let
|S ∩V(C1)| = x. Then, |S ∩V(C2)| = r− x, and hence

λp(Γ) ≤ |V(C1)||V(C2)| − (|V(C1)| − x)(|V(C2)| − r + x)

≤
⌈n

2

⌉⌊n
2

⌋
− (n− p− 1)(p + 1− κ(Γ)).

Example 2. Let Γ = Kn. From Proposition 4, we have λp(Γ) = (p + 1)(n− p− 1), which means
that the upper bound in (1) of Theorem 2 is sharp.

4. Graphs with Given p-Extra Edge Connectivity

From Corollary 1, for 0 ≤ p ≤
⌊ n−3

2
⌋
, we have 1 ≤ λp(Γ) ≤

⌈ n
2
⌉⌊ n

2
⌋
. We first

characterize graphs with λp(Γ) =
⌈ n

2
⌉⌊ n

2
⌋
.

Theorem 3. Let Γ be a connected graph of order n (n ≥ 4) with a non-negative integer p such
that 0 ≤ p ≤

⌊ n−2
2
⌋
. Then, λp(Γ) =

⌈ n
2
⌉⌊ n

2
⌋

if and only if Γ is a complete graph of order n and
p =

⌊ n
2
⌋
− 1.

Proof. Suppose that Γ is a complete graph of order n and p =
⌊ n

2
⌋
− 1. From the definition

of λp(Γ), there exists an edge cutset Y such that each component has p + 1 =
⌊ n

2
⌋

vertices,
and hence there are exactly two components: one of them has

⌊ n
2
⌋

vertices, and the other
has

⌈ n
2
⌉

vertices. So, we have λp(Γ) =
⌈ n

2
⌉⌊ n

2
⌋
.

Suppose that λp(Γ) =
⌈ n

2
⌉⌊ n

2
⌋
. Then, there exists an edge set |Y| =

⌈ n
2
⌉⌊ n

2
⌋

such that
each component of Γ− Y has at least p + 1 vertices. We will then analyse the number of
components, the exact value of p, and the structure of each component.

Claim 1. There are exactly two components in Γ−Y.

Proof. Assume, to the contrary, that there are at least three components in Γ−Y. Choose
e ∈ Y. Then, Γ−Y + e has at least two components and each component has at least p + 1
vertices, and hence λp(Γ) ≤ |Y| − 1 =

⌈ n
2
⌉⌊ n

2
⌋
− 1, a contradiction.

From Claim 1, there are exactly two components, say C1, C2, in Γ− Y. Then we can
assume |V(C1)| =

⌈ n
2
⌉

and |V(C2)| =
⌊ n

2
⌋
. Then, Y = EΓ[V(C1), V(C2)].

Claim 2. p =
⌊ n

2
⌋
− 1.
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Proof. Assume, to the contrary, that p ≤
⌊ n

2
⌋
− 2. Then, we choose v ∈ V(C2) such that

C2 − v is connected. Let Y′ = EΓ[V(C1) ∪ {v}, V(C2)− v]. Then, |Y′| <
⌈ n

2
⌉⌊ n

2
⌋
= |Y| and

Γ−Y′ is disconnected and each component has p + 1 vertices, a contradiction.

From Claim 2, p =
⌊ n

2
⌋
− 1.

Claim 3. For each Ci (i = 1, 2), Ci is complete.

Proof. Assume, to the contrary, that Ci is not complete. Without loss of generality, we assume
that C1 is not complete. Then, there exist two vertices u, v ∈ V(C1) such that uv /∈ E(Γ).
Choose w ∈ V(C2). Let C′1 = C1 − v + w, C′2 = C2 − w + v, and Y′ = EΓ[V(C′1), V(C′2)]. It
is clear that Γ− Y′ has two components and each component has at least p + 1 vertices,
and hence λp(Γ) ≤ |Y′| ≤

⌈ n
2
⌉⌊ n

2
⌋
− 1, a contradiction.

From Claim 3, Γ is a complete graph of order n.

Next, we characterize graphs with λp(Γ) =
⌈ n

2
⌉⌊ n

2
⌋
− 1.

Theorem 4. Let Γ be a connected graph of order n (n ≥ 6) with a non-negative integer p such
that 0 ≤ p ≤

⌊ n−2
2
⌋
. Then, λp(Γ) =

⌈ n
2
⌉⌊ n

2
⌋
− 1 if and only if p =

⌊ n
2
⌋
− 1 and Γ = Kn − e,

where e ∈ E(Kn).

The proof for Theorem 4 is similar to the proof of Theorem 3, since we characterize the
graphs by deleting edges from the complete graph Kn.

We now characterize the graphs when λp(Γ) = 1.

Observation 1. Let Γ be a connected graph of order n with a non-negative integer p such that
0 ≤ p ≤

⌊ n−2
2
⌋
. Then, λp(Γ) = 1 if and only if there exists a cut edge e in Γ such that each

component of Γ− e has at least p + 1 vertices.

We characterize the graphs when λp(Γ) = 2 in the following theorem.

Theorem 5. Let Γ be a connected graph of order n with a non-negative integer p such that
0 ≤ p ≤

⌊ n−2
2
⌋
. Then, λp(Γ) = 2 if and only if Γ satisfies one of the following conditions:

(1) λ(Γ) = 2 and there exist cut edge set with e1, e2 in Γ such that each component of
Γ− e1 − e2 has at least p + 1 vertices.

(2) λ(Γ) = 1, and for each cut edge e, there exists a component of Γ− e such that it has at most
p vertices, and there exist two non-cut edges e1, e2 in Γ such that each component of Γ− e1 − e2
has at least p + 1 vertices.

Proof. Suppose that (1) holds. It is clear that λp(Γ) ≥ λ(Γ) = 2. Since there exist two
edges e1, e2 in Γ such that each component of Γ− e1− e2 has at least p+ 1 vertices, it follows
that λp(Γ) ≤ 2, and so λp(Γ) = 2. Suppose that (2) holds. Since for each cut edge e, there
exists a component of Γ− e such that it has at most p vertices, it follows that λp(Γ) ≥ 2.
Since there exist two non-cut edges e1, e2 in Γ such that each component of Γ− e1 − e2 has
at least p + 1 vertices, it follows that λp(Γ) ≤ 2, and so λp(Γ) = 2.

Conversely, we suppose λp(Γ) = 2. Then λ(Γ) = 2 or λ(Γ) = 1. If λ(Γ) = 2, then it
follows from λp(Γ) = 2 that there exist two cut edges e1, e2 in Γ such that each component
of Γ− e1 − e2 has at least p + 1 vertices.

Suppose λ(Γ) = 1. Then, we have the following claim.

Claim 4. For each cut edge e, there exists a component of Γ− e such that it has at most p vertices.

Proof. Assume, to the contrary, that there exists a cut edge e′ such that each component of
Γ− e′ has p + 1 vertices, which contradicts the fact λp(Γ) = 2.
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From Claim 4, (1) holds. Since λp(Γ) = 2, it follows that there exist two edges e1, e2 in
Γ such that each component of Γ− e1 − e2 has at least p + 1 vertices.

Claim 5. Neither e1 nor e2 are cut edges.

Proof. Assume, to the contrary, that there is at least one cut edge, say e1. Then, there are
two components of Γ− e1, say C1, C2. From Claim 4, there exists a component of Γ− e1, say
C1, such that C1 has at most p vertices in Γ− e1. It is clear that C1 has at most p vertices
in Γ − e1 − e2 or there exists a component of C1 − e2 such that it has at most p vertices
in Γ− e1 − e2, which contradicts the fact there exist two edges e1, e2 in Γ such that each
component of Γ− e1 − e2 has at least p + 1 vertices.

From Claim 5, (2) holds.

Example 3. Let F be a graph of order n obtained from two complete graphs Kdn/2e and Kbn/2c by
adding two edges between them. One can easily check that λp(F) = 2.

5. On Problems 1, 2 and 3

We now discuss Problems 1, 2 and 3.
Let Fk

n be a graph obtained from two stars K1,p+k, K1,n−p−3 with centres u, v, respec-
tively, by identifying k − 1 leaves, say w1, w2, . . . , wk−1 and then adding a new edge uv
(Figure 2).

F k
n

vu

u1

u2

up+1

wk−1

w1

v1

v2

vn−k−p−2

Figure 2. Graph Fk
n .

Lemma 1. For three integers n, p, k with 1 ≤ p ≤
⌊ n−2

2
⌋

and 1 ≤ k ≤ n− p− 1, we have

λp(Fk
n) = k.

Proof. Choose Y = {uv} ∪ {uwi | 1 ≤ i ≤ k − 1}. Clearly, Fk
n − Y is disconnected, each

component of Fk
n −Y has at least p + 1 vertices, and hence λp(Fk

n) ≤ k. It suffices to show
that λp(Fk

n) ≥ k. We only need to prove that for any Y ⊆ E(Fk
n) with |Y| ≤ k− 1, if Fk

n −Y
is disconnected, then there is a component of Fk

n −Y having at most p vertices. Since p ≥ 1,
it follows that there is no pendent edge in Fk

n belonging to Y, that is, Y ∩ Z = ∅, where
Z = {uui | 1 ≤ i ≤ p + 1} ∪ {vvi | 1 ≤ i ≤ n − k − p − 2}. Furthermore, we have the
following fact.

Fact 1. For each i (1 ≤ i ≤ k− 1), at most one of uwi, vwi belongs to Y.

From Fact 1, Fk
n −Y is connected, a contradiction. So, we have λp(Fk

n) = k.

Proposition 8. For three integers n, p, k with 1 ≤ p ≤
⌊ n−2

2
⌋

and 1 ≤ k ≤ n− p− 1, we have

s(n, k) = n + k− 2.

Proof. Let Γ = Fk
n . From Lemma 1, we obtain λp(Fk

n) = k, and so s(n, k) ≤ n + k− 2.
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Let Γ be any connected graph of order n with λp(Γ) = k. Then, there exists an edge
set X ⊆ E(Γ) with |X| = k such that Γ− X has two components, say C1, C2. Therefore,
e(Γ) ≥ e(C1) + e(C2) + k ≥ (|V(C1)| − 1) + (|V(C2)| − 1) + k = n + k− 2, and so s(n, k) ≥
n + k− 2. Hence s(n, k) = n + k− 2.

From [14], g(n, k) = s(n, k + 1)− 1, and so the following result is immediate.

Corollary 2. For three integers n, p, k with 1 ≤ p ≤
⌊ n−2

2
⌋

and 1 ≤ k ≤ n− p− 1, we have

g(n, k) = n + k− 2.

Lemma 2. Let n, k, p be three integers with 1 ≤ p ≤
⌊

n−k−2
2

⌋
. Let Hk be a graph obtained from

two cliques Kn−p−1, Kp+1 by adding k− 1 edges between them. Then,

λp(Hk) = k− 1.

Proof. Since 1 ≤ p ≤
⌊

n−k−2
2

⌋
, there exists a subset Y = V(Kk−1) ⊆ V(Hk) such that Γ−Y

is not connected and each component has at least p + 1 vertices, and hence λp(Hk) ≤ k− 1.
Clearly, λp(Hk) ≥ κ(Hk) = k− 1. So, λp(Hk) = k− 1.

Theorem 6. Let n, p, k be three integers with 1 ≤ p ≤
⌊

n−k−2
2

⌋
and 1 ≤ k ≤ (n− p− 1)(p+ 1).

Then,

f (n, k) =
(

n
2

)
− (n− p− 1)(p + 1) + k.

Proof. We consider a graph Hk defined in Lemma 2. Then, λp(Hk) = k− 1. Since |E(Hk)| =
(n

2)− (n− p− 1)(p + 1) + k− 1, it follows that f (n, k) ≥ (n
2)− (n− p− 1)(p + 1) + k.

Let Γ be a graph with n vertices and |E(Γ)| ≥ (n
2)− (n− p− 1)(p + 1) + k. We have

to prove that λp(Γ) ≥ k. Assume, to the contrary, that λp(Γ) ≤ k− 1. Then, there exists
an edge set Y ⊆ E(Γ) and |Y| ≤ k − 1 such that each connected component of Γ − Y
has at least p + 1 vertices. Let C1, C2 be the connected components of Γ − Y. Clearly,
|V(Ci)| ≥ p + 1 for each i = 1, 2. Clearly, |E(Γ)| ≤ (n

2)− (n− p− 1)(p + 1) + k− 1, which
contradicts |E(Γ)| ≥ (n

2) − (n − p − 1)(p + 1) + k. So, λp(Γ) ≥ k, and hence f (n, k) ≤
(n

2)− (n− p− 1)(p + 1) + k.
From the above, we conclude that f (n, k) = (n

2)− (n− p− 1)(p + 1) + k.

6. Concluding Remark

In this research, we studied the connectivity parameter to measure the reliability of
education networks formed by education resources, including teachers, students, types of
equipment, etc. The extremal problem studied in this paper shows that education networks
keep their connections but use as few as links as possible to save education resources. This
work can be used to design minimal education networks under some conditions.

In this paper, we presented several results including the upper and lower bounds
on the p-extra edge connectivity of general graphs. We have proved that 1 ≤ λp(Γ) ≤⌈ n

2
⌉⌊ n

2
⌋

for 0 ≤ p ≤
⌊ n−2

2
⌋
. Graphs with λp(Γ) =

⌈ n
2
⌉⌊ n

2
⌋
,
⌈ n

2
⌉⌊ n

2
⌋
− 1, 2, 1 for general

p (0 ≤ p ≤
⌊ n−2

2
⌋
) are characterized in this paper. From Theorem 1, the classical diam(Γ) is

a natural upper bound of λp(Γ), but there is no lower bound of λp(Γ) in terms of diam(Γ).
From Theorem 1, the classical λ(Γ) is a natural lower bound of λp(Γ), but there is no upper
bound of λp(Γ) in terms of λ(Γ).
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