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1. Introduction

A positive random variable X is said to have a lognormal (LGN) distribution with
parameters µ ∈ R and σ > 0, written as X ∼ LN

(
µ, σ2), if it has the probability density

function given by

f (x; µ, σ) =

 1√
2πσx

exp
[
− (ln x−µ)2

2σ2

]
x > 0

0 x ≤ 0.
(1)

As pointed out by H. Crámer [1], the log-normal distribution usually appears in
certain classes of biological and economic statistics. In recent times, it has been applied in
telecommunications [2,3], image processing [4], hydrology [5], geochemical exploration [6],
and many other areas in both science and engineering [7].

In probability theory, it is a common procedure to use the characteristic function in the
determination of some parameters of a distribution. On the other hand, the characteristic
function provides us with a simple way to obtain the probability density function of the sum
of random variables. This implies that it is important to calculate their Laplace transforms
(LT) and/or Fourier transforms (FT). However, this is not an easy task to accomplish in the
LGN case, as demonstrated by some of the many failed attempts, which, at best, allowed
approximations to be obtained [8–11]. This seems unusual, since the distribution is a right
continuous bounded function; In addition, it is of exponential order, which ensures the
existence of the LT with a region of convergence that is the right-hand half complex plane.
Moreover, it includes the imaginary axis, since f (x; µ, σ) is absolutely integrable implying
it also has FT.

However, the characteristic function of the LGN is irregular at the origin, meaning
that it is useless for computing the moments of the distribution. We can obtain an insight
into the difficulties by examining (1). Considering that the function is defined on the
complex plane, it is a multivalued expression that requires the definition of a branchcut
line. The more suitable is the negative real axis. This implies that no MacLaurin expansion
exists for this function, which creates several problems illustrated in two new attempts for
the computation of the LT. For example, J. Miles in [11] devised a procedure that started
from a Mellin transform and then used the relation between this transform and the LT to
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obtain a Mellin–Barnes integral, which was then used to obtain approximations to the LT
of the LGN.

Here, we approach the problem’s solution, by proceeding in several steps. Firstly, a
representation for the distribution in terms of a power series of the bilinear function is
obtained. This series provides good approximations with not many terms. From this series,
another one is deduced that is similar to a Laurent series. This one allows us to obtain the
LT of the distribution that assumes the form of a difference of two parcels: one involves
the exponential integral and has the right half plane as the region of convergence, and the
other is a holomorphic function.

The paper proceeds as follows. In Section 2, the attempts referred to above are
described. The new procedure is presented in Section 3. Finally, in Section 4, we examine
the gains and losses of the proposed methodology and extract some conclusions.

Remark 1. 1. Let µ = ln v. It corresponds to a simple variable change x → ln(x/v). For
simplicity, we set v = 1↔ µ = 0, and f (x) = f (x; µ, σ);

2. We use the bilateral Laplace transform (BLT):

F(s) = L[ f (x)] =
∫
R

f (x)e−sxdx, (2)

where f (x) is any real or complex function defined on R, and F(s) is its transform, provided
it has a non void region of convergence (ROC). The BLT has several advantages [12], namely,
it does not introduce any initial conditions and has the FT as a particular case.

2. Attempts to compute the Laplace Transform
2.1. First Attempt

The main objective is the computation of the LT of the LGN distribution that can read

F(s) =
1√
2πσ

∫ ∞

0

1
x

exp
[
− (ln x)2

2σ2

]
e−sxdx Re(s) ≥ 0. (3)

With a simple variable change t = ln(x) so that dt = dx
x , we can write

F(s) =
1√
2πσ

∫ ∞

−∞
e−

t2

2σ2 e−set
dt, (4)

for Re(s) ≥ 0. As

e−set
=

∞

∑
n=0

(−s)n

n!
ent,

we can write

F(s) =
1√
2πσ

∞

∑
n=0

(−s)n

n!

∫ ∞

−∞
e−

t2

2σ2 entdt.

On the other hand, the LT of the Gaussian function is obtained from the following steps

1.

g(t) =
1√
2πσ

e−
t2

2σ2 ,

2.

g′(t) = − t
σ2 g(t),

3. that gives, by application of the LT,

sG(s) =
1
σ2 G′(s),
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4. and
G′(s) = σ2sG(s),

5. which leads to

G(s) = Ae
σ2
2 s2

, (5)

where A is a constant such that G(0) = 1.
6. Then,

L[g(t)] = 1√
2πσ

∫
R

e−
t2

2σ2 e−stdt = e
σ2
2 s2

, (6)

with the region of convergence as the whole complex plane.

Therefore, F(s) would be given by

F(s) =
∞

∑
n=0

(−s)n

n!
e

σ2
2 n2

;

however, the series is divergent.

2.2. Second Attempt

In looking for an alternative, let us return to (4) and consider the function g(t) = e−set

defined on R. As shown in [13,14], there is an interesting relation involving this function
that reads

∞

∑
k=0

Bk(x)
k!

tk = e(et−1)x, (7)

with

Bn(x) ≡ e−x
∞

∑
k=0

knxk

k!
(8)

being the Bell polynomials that can be written as

Bn(x) =
n

∑
k=0

S(n, k)xk, (9)

where S(n, k) is a Stirling number of the second kind. The first Bell polynomials are

B0(x) = 1
B1(x) = x
B2(x) = x2 + x
B3(x) = x3 + 3x2 + x
B4(x) = x4 + 6x3 + 7x2 + x
B5(x) = x5 + 10x4 + 25x3 + 15x2 + x
B6(x) = x6 + 15x5 + 65x4 + 90x3 + 31x2 + x.

.

We arrive to this formulation through the computation of the successive derivatives of
g(t) to obtain its MacLaurin expansion (7). We can write

exet
= ex

∞

∑
k=0

Bk(x)
k!

tk, (10)

where x = −s. Therefore,

F(s) =
1√
2πσ

e−s
∞

∑
k=0

Bk(−s)
k!

∫ ∞

−∞
e−

t2

2σ2 tkdt, (11)

for Re(s) ≥ 0. However, the integral,
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Mk =
∫ ∞

−∞
e−

t2

2σ2 tkdt, (12)

represents the kth moment of the Gaussian distribution. As is clear, the odd moments are
null. For the even moments, we can show by computing the successive derivatives relative
to α that they are given by [15]

∫ ∞

−∞
t2ne−αt2

dt =
1.3 · · · (2n− 1)

2n

√
π

α2n+1 . (13)

With α = 1
2σ2 , we obtain

M2n = 1.3 · · · (2n− 1)σ2n+1
√

2π. (14)

Then,

F(s) = e−s
∞

∑
k=0

B2k(−s)
2 · 4 · · · 2k

σ2k = e−s
∞

∑
k=0

B2k(−s)
2kk!

σ2k, (15)

for Re(s) ≥ 0. Again, the behavior of the solution is not the expected, since the summation
in (15) is divergent.

3. A Different Approach
3.1. A New Series Representation for the Gaussian of the Logarithm

The above failed attempts motivated us to look for a different alternative. We started
by looking for a new series representation for the function

g(t) = e−
ln2(t)
2σ2 , t ∈ R+. (16)

As noted above, attending to the characteristics of this function and the existence
conditions for the LT [12], we conclude that the LT, G(s), exists. As it is absolutely integrable,
the region of convergence (ROC) is defined by Re(s) ≥ 0. In the following, we will present
the appropriate steps for its calculation.

Theorem 1. Let t ∈ R+. Then,

ln(t) = 2
∞

∑
k=0

1
2k + 1

[
t− 1
t + 1

]2k+1
. (17)

Proof. The well known geometric series reads

1
1± x

=
∞

∑
n=0

(∓1)nxn, |x| < 1,

that provides by the anti-derivative computation

ln(1± x) = ±
∞

∑
n=1

(∓1)n xn

n
.

Then,
ln(1− x)− ln(1 + x) =

∞

∑
n=1

[(−1)n − 1]
xn

n
,

that gives

ln
1− x
1 + x

= −2
∞

∑
k=0

x2k+1

2k + 1
,

convergent for |x| < 1. Letting t = 1−x
1+x , we are led immediately to (17).
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Corollary 1. Let ln(t) be given by (17). Then,

ln2(t)
2σ2 =

4
σ2

∞

∑
k=0

1
2k + 2

bk

[
t− 1
t + 1

]2k+2
, (18)

with

bk =
k

∑
n=0

1
2n + 1

, (19)

which is the odd harmonic number.

The proof is immediate by using the Cauchy product of series.
This result allows us to obtain another one that is very important to give a new form

to (16).

Theorem 2. The function g(t) has a convergent series representation,

g(t) =
∞

∑
k=0

ak

[
t− 1
t + 1

]2k
, t ∈ R+. (20)

with

an+1 =
−2

σ2(n + 1)

n

∑
m=0

1
2m + 1

n−m

∑
k=0

ak, n = 0, 1, · · · (21)

Proof. For simplicity, we substitute z for t−1
t+1 :

g(z) =
∞

∑
k=0

akz2k.

The logarithmic derivative of g(z) allows us to write(
∞

∑
k=0

akz2k

)′
= − 4

σ2

(
∞

∑
m=0

amz2m

)(
∞

∑
k=0

1
2k + 2

bkz2k+2

)′
.

Computing the derivatives, we obtain

∞

∑
k=1

2kakz2k−1 = − 4
σ2

(
∞

∑
m=0

amz2m

)
∞

∑
k=0

bkz2k+1,

and
∞

∑
k=1

2kakz2k−2 = − 4
σ2

∞

∑
m=0

∞

∑
k=0

ambkz2k.

The product of the right-hand series is

∞

∑
m=0

∞

∑
k=0

ambkz2(k+m) =
∞

∑
n=0

(
n

∑
k=0

akbn−k

)
z2n.

Therefore,
∞

∑
k=1

2kakz2k−2 = − 4
σ2

∞

∑
n=0

(
n

∑
k=0

akbn−k

)
z2n,

or
∞

∑
k=0

2(k + 1)ak+1z2k = − 4
σ2

∞

∑
n=0

(
n

∑
k=0

akbn−k

)
z2n,
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from where, we deduce

an+1 =
−2

σ2(n + 1)

n

∑
k=0

akbn−k, n = 0, 1, · · · , (22)

which is a discrete convolution. This relation leaves a0 indetermined. However, from (20),
a0 = g(1) = 1. With some manipulations, (22) can be rewritten as

an+1 =
−2

σ2(n + 1)

n

∑
k=0

ak

n−k

∑
m=0

1
2m + 1

=
−2

σ2(n + 1)

n

∑
m=0

1
2m + 1

n−m

∑
k=0

ak. (23)

This formula with σ = 1, gives

a1 = −2, a2 =
2
3

, a3 =
14
45

, a4 =
53

630
, · · ·

In the upper strip in the following picture (Figure 1), we depict this sequence. To see how
fast it decreases, we plot the sequence for n = 5, 6, 7, · · · . The value for n = 5 is ≈ 0.0013
and for n = 20 is ≈ 6× 10−5.

Figure 1. Numerical computation of an, n = 0, 1, 2, · · · (upper strip); in the (lower strip) a zoom of
the sequence, an, n = 5, 6, 7, · · · , is depicted.

As the sequence of coefficients decreases to zero, and |z| < 1, the series (20) converges
uniformly for every t > 0.

Corollary 2. Under the conditions of the previous theorem,
∞

∑
k=0

ak = 0. (24)

This very important result is a consequence of the fact that lim
t→0

g(t) = 0.

Therefore, we can write

f (t) =
1√

2πσt
exp

[
− ln2 t

2σ2

]
=

1√
2πσt

∞

∑
k=0

ak

[
t− 1
t + 1

]2k
, t ∈ R+. (25)
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3.2. The Laplace Transform of the Bilinear Function

To continue, we compute the LT of the bilinear function.

Theorem 3. The LT of

h1(t) =
(

t− 1
t + 1

)
u(t), t ∈ R, (26)

where u(t) is the Heaviside unit step, is given by

H1(s) =
1
s
− 2E1(s), Re(s) > 0, (27)

with
E1(s) =

∫ ∞

0

1
t + 1

e−stdt, Re(s) > 0, (28)

which can be easily expressed in terms of the exponential integral of order 1.

Proof. To obtain (27) we only have to note that

h1(t) = u(t)− 2
t + 1

u(t), (29)

and apply the BLT.

The function E1(s) can assume the form [16]

E1(s) = es
∫ ∞

1

1
t + 1

e−stdt = −es

[
γ + ln s +

∞

∑
n=1

(−1)nsn

nn!

]
, Re(s) > 0, (30)

where γ = 0.5772156649 is the Euler’s constant.

Corollary 3. Let N > 0 be an integer number and

hN(t) =
(

t− 1
t + 1

)N
u(t). (31)

Its LT is given by

HN(s) =
1
s
+

N

∑
k=1

(−N)k
k!

2kEk(s), (32)

with (a)n = a(a + 1) · · · (a + n− 1), m = 0, 1, · · · , (a)0 = 1 being the Pochhammer symbol for
the raising factorial and

Ek(s) =
∫ ∞

0

1
(t + 1)k e−stdt, Re(s) > 0, (33)

related to the kth order exponential integral [16].

The proof is immediate; by using (29) and the binomial theorem, with (−1)k(N
k ) =

(−N)k
k! ,

k = 0, 1, · · · , N, we obtain
hN(t) =

N

∑
k=0

(−N)k
k!

2k

(t + 1)k , (34)

to which we apply the LT. It is possible to relate Ek(s) and E1(s) as we will see in the
following.

Theorem 4. Let Ek(s) be as in (33). It can be expressed as

Ek+1(s) = (−1)k sk

k!
E1(s)−

1
k!

k−1

∑
m=0

(−1)mm!sk−1−m, Re(s) > 0. (35)
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Proof. The repeated derivative computation of
1

t + 1
u(t) leads to

dk

dtk

[
1

t + 1
u(t)

]
= (−1)k k!

(t + 1)k+1 u(t) +
k−1

∑
m=0

(−1)m(k− 1−m)!δ(m)(t)

and
1

(t + 1)k+1 u(t) =
(−1)k

k!
dk

dtk

[
1

t + 1
u(t)

]
− 1

k!

k−1

∑
m=0

(−1)mm!δ(k−1−m)(t). (36)

Applying the LT and using the derivative property [12], we obtain (35).

With this result, we can give a new form to (32),

HN(s) =
1
s
+ E1(s)

N

∑
k=1

(−1)k (−N)k
k!

2k sk

k!
−

N

∑
k=1

1
k!
(−N)k

k!
2k

k−1

∑
m=0

(−1)mm!sk−1−m. (37)

This transform is not relevant to the following. Therefore, we will leave it.
It is important to remark that (34) is nothing else than a partial fraction decomposition

of hN(t) that can be used to obtain the decomposition of the function

qN(t) =
1
t

(
t− 1
t + 1

)N
u(t). (38)

However, we will follow a different procedure.

Theorem 5. Let N ∈ Z+
0 . Then, for t > 0,

qN(t) =
(−1)N

t
+

N

∑
k=1

Ak

(t + 1)k , (39)

where

AN−m = −(−1)N
m

∑
k=0

(−N)k
k!

2N−k. (40)

Proof. The formula (39) comes directly from the residue computation and the use of the
product deriative’s Leibniz rule. In fact, from the residue theorem, we can write [17]

AN−m =
1

m!
dm

dtm

[
(t− 1)N

t

]
t=−1

=
1

m!

m

∑
k=0

m!
(m− k)!k!

dk(t− 1)N

dtk
dm−kt−1

dtm−k

∣∣∣∣∣
t=−1

,

from where we obtain (40).

The second term in (39) is a polynomial in (t + 1)−1. The coefficients of the lower
order polynomials are

1 2
2 0 −4
3 2 −4 8
4 0 −8 16 −16
5 2 −8 32 −48 32
6 0 −12 48 −112 128 −64
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Letting ĀN−m = ∑m
k=0

(−N)k
k!

2N−k, we obtain:

ĀN = 2N ,

ĀN−m = ĀN−m+1 +
(−N)m

m!
2N−m, m = 1, 2, · · ·

For m = N − 1, we obtain

Ā1 =
N−1

∑
k=0

(−N)k
k!

2N−k = 2N
N

∑
k=0

(−N)k
k!

2−k − (−N)N
N!

,

and

A1 = −(−1)N
(

2N(1− 1
2
)N − (−N)N

N!

)
= −(−1)N(1− (−1)N) =

(
1− (−1)N

)
, (41)

an interesting result that will be used later, because it has a deep influence on the final result.
Recursions in order can be found easily. As

1
t(t + 1)

=
1
t
− 1

t + 1
,

and

qN+1(t) = qN(t)
(

1− 2
t + 1

)
,

we are led to

−(−1)N

t
+

N+1

∑
k=1

AN+1
k

(t + 1)k =
(−1)N

t
+

N

∑
k=1

AN
k

(t + 1)k −
2

t + 1

(
(−1)N

t
+

N

∑
k=1

AN
k

(t + 1)k

)
,

where the superscript represents the order of the recursion. Then,

N+1

∑
k=1

AN+1
k

(t + 1)k = (−1)N 2
t + 1

+
N

∑
k=1

AN
k

(t + 1)k − 2
N

∑
k=1

AN
k

(t + 1)k+1 ,

which gives the recursive relation

AN+1
k = AN

k − 2AN
k−1, k = 2, 3, · · · , N, (42)

with
AN+1

N+1 = −2AN
N−1.

As a consequence,

AN+2
k = AN

k − 4AN
k−1 + AN

k−2, k = 3, 4, · · · , N (43)

with
AN+2

2 = AN
2 − 4,

AN+2
N+1 = −4AN

N + AN
N−1,

AN+2
N+2 = 4AN

N = 2N+2.

3.3. A New Series for the Lognormal Distribution

The above results show that, for an even order, 2N, the case we are interested in, we
obtain the decomposition

q2N(t) =
1
t
+

2N

∑
k=2

A2N
k

(t + 1)k , (44)
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since the terms in
1

t + 1
disappear, because the coefficients, AN

1 , N = 0, 2, 4, · · · , are always

null, from (41).

Theorem 6. The lognormal distribution is represented, for t > 0, by the series

f (t) =
1√
2πσ

∞

∑
n=1

an q̄2n(t), (45)

with the an, n = 1, 2, · · · given by (22) and

q̄2n(t) =
2n

∑
k=2

A2n
k

(t + 1)k . (46)

Proof. It is enough to attend to (24) to conclude that the partial fractions in
1
t

do
not appear.

Attending to (38) and to (44), we can write

q̄2n(t) =
2n

∑
k=2

A2n
k

(t + 1)k = 2
n−1

∑
k=0

(
2n

2k + 1

)
t2k

(t + 1)2n . (47)

The second expression on the right is better than the first from a numerical point
of view.

Remark 2. Given the form of the relation (45),

f (t) =
1√
2πσ

∞

∑
n=1

an

2n

∑
k=2

A2n
k

(t + 1)k ,

we would be tempted to invert the order of summation, to obtain a Laurent series

f (t) =
1√
2πσ

∞

∑
k=2

Bk
1

(t + 1)k , (48)

with Bk =
[
∑∞

n=k an A2n
k
]
. The problem is in the fact that sequence A2n

k , n = 1, 2, · · · increases
faster than an, n = 1, 2, · · · , and the series does not converge. It is also interesting to see that, if it
converged, then, it would be simple to show that the convolution of two LGN distributions is a LGN
distribution. This result is a consequence of the fact that∫ t

0

1
(τ + 1)k

1
(t− τ + 1)n dτ, k, n ≥ 2,

is a linear combination of fractions of the type
1

(t + 1)k , k ≥ 2. This result allows us to understand

why the lower summation limit in (48) is 2. If it was less than two, the convolution would not be of
the same type, and the corollary would not be valid. However, this reasoning remains valid if we
consider (45).

In Figure 2, we depict four approximations to the LGN function using (45). There is
no visible difference between the approximations for 50 and 100 terms. This is confirmed
by the square approximation errors that are around 5× 10−6.
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Figure 2. Numerical computation of f (t) (45) for 2, 5, 50, and 100 terms of the series.

To make another fair comparison, we computed the FT of the resulting functions. In
Figure 3, we present the corresponding absolute values on a logarithmic scale. A sampling
interval equal to 0.0001 was used to obtain the sampled signal that was transformed using
the fast Fourier transform with length 215. The red line represents the spectrum of the
sampled signal obtained from (1).

Figure 3. Numerical computation of the FT, F = F [ f (t)] for the approximate functions depicted in
Figure 2.

3.4. The LT of the Lognormal Distribution

Let us return to (46) and use (36) to obtain

q̄2n(t) =
2n−1

∑
k=1

A2n
k+1

[
(−1)k

k!
dk

dtk

[
1

t + 1
u(t)

]
− 1

k!

k−1

∑
m=0

(−1)mm!δ(k−1−m)(t)

]
,
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whose LT is

Q̄2n(s) =
2n−1

∑
k=1

A2n
k+1

[
E1(s)

(−1)ksk

k!
− 1

k!

k−1

∑
m=0

(−1)mm!sk−1−m

]
,

which can be written as

Q̄2n(s) = E1(s)
2n−1

∑
k=1

A2n
k+1

(−1)ksk

k!
−

2n−1

∑
k=1

A2n
k+1

k−1

∑
m=0

(−1)m m!
k!

sk−1−m. (49)

As E1(s) tends to infinity logarithmically when s → 0, the other terms term tend to
zero, which implies, by the final value theorem, that q̄2n(∞) = 0. This is coherent with our
knowledge of the function. The initial value theorem is not easy to apply.

Theorem 7. The LT of the lognormal distribution (45) is given by

F(s) =
1√
2πσ

[
E1(s)

∞

∑
n=2

anPn
1 (s)−

∞

∑
n=2

anPn
2 (s)

]
, (50)

where Pn
1 (s) and Pn

2 (s) are polynomials given respectively by

Pn
1 (s) =

2n−1

∑
k=1

A2n
k+1

[
(−1)k sk

k!

]
,

and

Pn
2 (s) =

2n−1

∑
k=1

A2n
k+1

1
k!

k−1

∑
m=0

(−1)m(k− 1−m)!sm.

Proof. This result comes directly from (48) and (35) .

We must note that the first term on the right-hand side in (50) is the product of
two functions with very different analytic behavior: the first, E1(s), has the region of
convergence defined by Re(s) > 0, while the second is holomorphic and assumes the form
of a Taylor polynomial. Therefore, the main important behavior of the LGN distribution is
imposed by E1(s). Since this function is not regular at the origin, the characteristic function
cannot be used to define the moments of the distribution.

4. Conclusions

In this paper, we aimed to find the Laplace transform of the lognormal distribution.
We proceeded in steps, starting from a first series representation in terms of the bilinear
function, from where we obtained a simplified version, from where we obtained the
transform. Let us balance the gains and losses by moving from representation (1) to (25):

1. f (x) is represented in (1) by a composition involving two transcendental functions,
while in (25), it is defined through a series with only algebraic terms.

2. With (25) we can approximate f (x) with a finite number of terms.

Passing from (25) to (45) provided us with the following:

1. The series in (45) has simpler terms that have LT. Thus, the series can be transformed
term by term.

2. The convolution of two LGN functions is a difficult task when using representation
(1), but it is simple using (45), since the convolution of two functions of the type

1
(t+1)k u(t), k = 2, 3, 4, · · · is a linear combination of functions of the same type.

From the final result stated in (50), we can say that

1. It is very curious, since it expresses the LT of the LGN as the difference of two functions:
one is analytic in the right half complex plane, while the other is holomorphic.
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2. The LT initial value theorem tells us that the two terms must tend mutually asymp-
totically on the real axis, since they have polynomial behavior and the initial value
is zero.

3. Although interesting from a theoretical point of view, it is not very useful for nu-
merical implementations due to the presence of the factorial function that causes the
appearance of numerical overflows.

It may be that the two terms have particular meaning relative to probability theory.
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