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Abstract: This paper introduces a novel physical-inspired metaheuristic algorithm called “Light
Spectrum Optimizer (LSO)” for continuous optimization problems. The inspiration for the proposed
algorithm is the light dispersions with different angles while passing through rain droplets, causing
the meteorological phenomenon of the colorful rainbow spectrum. In order to validate the proposed
algorithm, three different experiments are conducted. First, LSO is tested on solving CEC 2005,
and the obtained results are compared with a wide range of well-regarded metaheuristics. In the
second experiment, LSO is used for solving four CEC competitions in single objective optimization
benchmarks (CEC2014, CEC2017, CEC2020, and CEC2022), and its results are compared with eleven
well-established and recently-published optimizers, named grey wolf optimizer (GWO), whale
optimization algorithm (WOA), and salp swarm algorithm (SSA), evolutionary algorithms like
differential evolution (DE), and recently-published optimizers including gradient-based optimizer
(GBO), artificial gorilla troops optimizer (GTO), Runge–Kutta method (RUN) beyond the metaphor,
African vultures optimization algorithm (AVOA), equilibrium optimizer (EO), grey wolf optimizer
(GWO), Reptile Search Algorithm (RSA), and slime mold algorithm (SMA). In addition, several
engineering design problems are solved, and the results are compared with many algorithms from
the literature. The experimental results with the statistical analysis demonstrate the merits and highly
superior performance of the proposed LSO algorithm.
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1. Introduction

The practical implications of metaheuristic algorithms have been widely spread, espe-
cially in the last few years. The reason behind this is the rapidity, high-quality solutions, and
problem-independent characteristics of metaheuristics [1–5]. Unfortunately, no metaheuris-
tics can efficiently solve all types of optimization problems. Consequently, a significant
number of metaheuristics have been proposed from time to time, aiming to find efficient
metaheuristics that are proper for various types of optimization problems. In particular,
metaheuristics depend on the progress or movement behavior of a specified phenomenon
or creature. By simulating such a progress or movement style, a metaheuristic can invade
the search space of a problem as the environment of the simulated phenomenon or creature.

Metaheuristics depend on two search mechanisms while trying to find the best so-
lution to the given problem. The first mechanism is exploration, which invades the un-
visited search area. The second mechanism is exploitation, which searches around the
found best solution [6]. The main factor of any metaheuristic success is balancing these
two mechanisms. In particular, using more exploration makes metaheuristics unable to
reach the global best solution. Alternatively, using more exploitation may lead to trapping
into the local optima. In general, metaheuristics’ searching mechanisms have stemmed
from natural phenomena or the behavior of creatures.
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Metaheuristics can be categorized based on their metaphors into seven main cate-
gories [7–11]: evolution-based, swarm-based, physics-based, human-based, chemistry-
based, math-based, and others (See Figure 1). Evolution-based metaheuristics mimic the
natural evolution process, which consists of select, crossover, and mutation processes such
as genetic algorithm (GA) [12], genetic programming (GP) [13], evolution strategy (ES) [14],
probability-based incremental learning (PBIL) [15], and differential evolution (DE) [16].
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The second category, referred to as swarm-based algorithms, imitates the social be-
havior of swarms, birds, insects, and animal groups [17]. Some of the well-established and
recently-published algorithms in this category are particle swarm optimization (PSO) [18],
cuckoo search (CS) algorithm [19], flower pollination algorithm (FPA) [20], marine preda-
tors algorithm (MPA) [21], Harris hawks optimization (HHO) [22], salp swarm algorithm
(SSA) [23], red fox optimizer (RFO) [24], duck swarm algorithm [25], chameleon swarm
algorithm [26], artificial gorilla troops optimizer [27], cat optimization algorithm [28], don-
key and smuggler optimization algorithm [29], krill herd algorithm [30], elephant herding
optimization [31], wolf pack search algorithm [32], hunting search [33], monkey search [34],
chicken swarm optimization [35], horse herd optimization algorithm (HOA) [36], moth
search (MS) algorithm [37], earthworm optimization algorithm (EWA) [38], monarch but-
terfly optimization (MBO) [39], slime mold algorithm (SMA) [40] and whale optimization
algorithm (WOA) [41]. In general, swarm-based metaheuristics have some advantages
over evolution-based ones. In particular, a swarm-based metaheuristics search in a cu-
mulative form preserves the information of subsequent search iterations. On the other
hand, evolution-based metaheuristics ignore previous search information once the new
population is generated. Additionally, evolution-based metaheuristics usually need more
parameters than swarm-based metaheuristics. This makes swarm-based metaheuristics
more applicable than evolution-based metaheuristics in most cases.

The third category of metaheuristics is human-based algorithms, which mimic human
behaviors and human interactions in societies. The most popular algorithms belonging
to this category are teaching–learning-based Optimization (TLBO) [42], harmony search
(HS) [43], past present future (PPF) [44], political optimizer (PO) [45], brain storm optimiza-
tion (BSO) [46], exchange market algorithm (EMA) [47], league championship algorithm
(LCA) [48], poor and rich optimization algorithm [49], driving training-based optimiza-
tion [50], gaining–sharing knowledge-based algorithm (GSK) [51], imperialist competitive
algorithm (ICA) [52], and soccer league competition (SLC) [53].
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The fourth category is physics-based algorithms, which are inspired by physical laws,
such as inertia, electromagnetic force, gravitational force, and so on. In this category, the
algorithms are based on physical principles to enable the search agents to interact and
navigate the optimization problems’ search space to reach the near-optimal solution. This
category includes several algorithms like simulated annealing (SA) [54], gravitational search
algorithm (GSA) [55], charged system search (CSS) [56], big-bang big-crunch (BBBC) [57],
artificial physics algorithm (APA) [58], galaxy-based search algorithm (GbSA) [59], black
hole (BH) algorithm [60], river formation dynamics (RFD) algorithm [61], henry gas solu-
bility optimization (HGSO) algorithm [62], curved space optimization (CSO) [63], central
force optimization (CFO) [64], water cycle algorithm (WCA) [65], water waves optimization
(WWO) [66], ray optimization (RO) algorithm [67], gravitational local search algorithm
(GLSA) [68], small-world optimization algorithm (SWOA) [69], multi-verse optimizer
(MVO) [70], intelligent water drops (IWD) algorithm [71], integrated radiation algorithm
(IRA) [72], space gravitational algorithm (SGA) [73], ion motion algorithm (IMA) [74],
electromagnetism-like algorithm (EMA) [75], equilibrium optimizer (EO) [76], light ray
optimization (LRO) [77], and Archimedes optimization algorithm (AOA) [78]. Both light
ray optimization (LRO) [77] and ray optimization (RO) [67] simulate the reflection and
refraction of the light rays, respectively, when transferred from a medium to a darker one,
which is completely different from the proposed algorithm, referred to as Light Spectrum
Optimizer (LSO), as illustrated later.

The chemistry-based metaheuristic algorithms in the fifth category are inspired by
mimicking certain chemical laws; some of those algorithms are gases Brownian motion op-
timization (GBMO) [79], artificial chemical reaction optimization algorithm (ACROA) [80],
and several others [81]. The sixth category, called math-based metaheuristics, is based
on presenting metaheuristic algorithms inspired by simulating certain mathematics func-
tions like the golden sine algorithm (GSA) [82], base optimization algorithm (BOA) [83],
and sine–cosine algorithm [84]. Table 1 presents the category and inspiration of some
of the recently-published metaheuristic algorithms—specifically published over the last
three years.

The last category (Others) includes all the metaheuristic algorithms, which has not
been inspired by the behaviors of creatures or natural phenomena, such as adaptive large
neighborhood search technique (ALNS) [85], large neighborhood search (LNS) [86,87], and
greedy randomized adaptive search procedure (GRASP) [88,89]. For example, the large
neighborhood search technique is a metaheuristic algorithm based on improving an initial
solution using destroy and repair operators.

Over the last few decades, several metaheuristic algorithms have been proposed, but
unfortunately, most of these algorithms are not able to adapt themselves when tackling
several optimization problems with various characteristics. Therefore, this paper proposes
a novel physical-based metaheuristic algorithm called Light Spectrum Optimizer (LSO) for
global optimization over a continuous search space. This novel metaheuristic is inspired
by the sunlight ray dispersion while passing through the rain droplets causing the sparkle
rainbow phenomenon. In particular, the mathematical formulation of the sunlight ray’s
reflection, refraction, and dispersion can be efficiently utilized for presenting a variety
in the updating process to preserve the population diversity, in addition to accelerating
the convergence speed when applied to different optimization problems. Experimen-
tally, LSO is extensively assessed using several mathematical benchmarks like CEC2005,
CEC2014, CEC2017, CEC2020, and CEC2022 to reveal its performance compared to several
well-established metaheuristic algorithms. In addition, LSO is employed to solve some
engineering design problems to further affirm its efficiency. The main advantages of the
proposed metaheuristic are:
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â Simple representation.
â Robustness.
â Balancing between exploration and exploitation.
â High-quality solutions.
â Swarm intelligence powerfulness.
â Low computational complexity.
â High scalability.

Table 1. Classification and inspiration of some recently-published metaheuristic algorithms.

Algorithm Inspiration Category Year

Starling murmuration optimizer (SMO) [90] Starlings’ behaviors Swarm-based 2022

Snake optimizer (SO) [91] Mating behavior of snakes Swarm-based 2022

Reptile Search Algorithm (RSA) [92] Hunting behavior of Crocodiles Swarm-based 2022

Archerfish hunting optimizer (AHO) [93] Jumping behaviors of the archerfish Swarm-based 2022

Water optimization algorithm (WAO) [94] Chemical and physical properties of
water molecules

Physics-based
Chemistry-based 2022

Ebola optimization search algorithm (EOSA) [95] Propagation mechanism of the Ebola
virus disease Others 2022

Beluga whale optimization (BWO) [96] Behaviors of beluga whales Swarm-based 2022

White Shark Optimizer (WSO) Behaviors of great white sharks Swarm-based 2022

Aphid–Ant Mutualism (AAM) [97] The relationship between aphids and ants
species is called Mutualism Swarm-based 2022

Circle Search Algorithm (CSA) [98] Geometrical features of circles Math-based 2022

Pelican optimization algorithm (POA) [99] The behavior of pelicans during hunting Swarm-based 2022

Sheep flock optimization algorithm (SFOA) [100] Shepherd and sheep behaviors in the pasture Swarm-based 2022

Gannet optimization algorithm (GOA) [101] Behaviors of gannets during foraging Swarm-based 2022

Prairie dog optimization (PDO) [102] The behavior of the prairie dogs Swarm-based 2022

Driving Training-Based Optimization
(DTBO) [50] The human activity of driving training Human-based 2022

Stock exchange trading optimization
(SETO) [103]

The behavior of traders and stock
price changes Human-based 2022

Archimedes optimization algorithm (AOA) [78] Archimedes law Physics-based 2021

Golden eagle optimizer (GEO) [104] Golden eagles’ hunting process Swarm-based 2021

Heap-based optimizer (HBO) [105] Corporate rank hierarchy Human-based 2021

African vultures optimization algorithm
(AVOA) [106] African vultures’ lifestyle Swarm-based 2021

Artificial gorilla troops optimizer (GTO) [27] Gorilla troops’ social intelligence Swarm-based 2021

Quantum-based avian navigation optimizer
algorithm (QANA) [107] Migratory birds’ navigation behaviors Evolution-based

(Based DE) 2021

Colony predation algorithm (CPA) [108] Corporate predation of animals Swarm-based 2021

Lévy flight distribution (LFD) [42] Lévy flight random walk Physics-based 2020

Political Optimizer (PO) [45] Multi-phased process of politics Human-based 2020

Marine predators algorithm (MPA) [21] Foraging strategy in the ocean between
predators and prey Swarm-based 2020

Equilibrium optimizer (EO) [76] Mass balance models Physics-based 2020

These advantages are proved with three different validating experiments that include
several optimization problems with various characteristics. Besides, LSO is compared with
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many other optimization algorithms, and the results are analyzed with the appropriate
statistical tests. The experimental findings affirm the superiority of LSO compared to all
the other rival algorithms. Finally, the main contributions of this study are listed as follows:

• Proposing a novel physical-based metaheuristic algorithm called Light Spectrum
Optimizer (LSO), inspired by the sparkle rainbow phenomenon caused by passing
sunlight rays through the rain droplets.

• Validating LSO using four challengeable mathematical benchmarks like CEC2014,
CEC2017, CEC2020, and CEC2022, as well as several engineering design problems.

• The experimental findings, along with the Wilcoxon rank-sum test as a statistical test,
illustrate the merits and highly superior performance of the proposed LSO algorithm

The remainder of this work is organized as follows. Section 2 gives the background
illustration of the inspiration and the mathematical modelling of the rainbow phenomenon.
Section 3 explains the mathematical formulation and the searching procedure of LSO. In
Section 4, various experiments are done on the CEC2005, CEC2014, CEC2017, CEC2020, and
CEC2022 benchmarks, and their experimental results are analyzed with the proper statisti-
cal analysis. Additionally, LSO sensitivity is presented. In Section 5, popular engineering
design problems are solved with LSO.

2. Background

Rainbow is one of the most fabulous metrological wonders. From the physical per-
spective, it is a half-circle of spectrum colors created by dispersion and internal reflection of
sunlight rays that hit spherical rain droplets [109]. When a white ray hits a water droplet, it
changes its direction by refracting and reflecting inside and outside the droplet (sometimes
more than once) [110]. In other words, the rainbow is formed by light rays’ refraction,
reflection, and dispersion through water droplets.

According to Descartes’s laws [111,112], refraction occurs when the light rays travel
from one material to another with a different refractive index. When light rays hit the
outer surface of a droplet, some light rays reflect away from the droplet while the others
are refracted. The refracted light rays hit the inner surface of a droplet, causing another
reflection and refracting away from the droplet with different angles, which causes the
white sunlight to be dispersed into its seven spectral colors: red, orange, yellow, green,
blue, indigo, and violet, as depicted in Figure 2. These spectral colors, differs according to
the angles of deviations, which range from 40◦ (violet) to 42◦ (red) [113,114] (See Figure 2).
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Mathematically, the refraction and reflection of the rainbow spectrum have been
illustrated by Snell’s laws. Snell’s law said that the ratio between the sines of the incident
and refracted angles is equal to the ratio between the refractive indices of air and water,
as [115]:

sin(θ1)

sin(θ2)
=

k2

k1
(1)

where θ1 is the incident angle, θ2 is the refracted angle, k2 is the refractive index of water,
and k1 is the refractive index of air.
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In this work, Snell’s law is used in its vector form. As shown in Figure 3, all nor-
mal, incidents, refracted, and reflected rays are converted to vectors. The mathematical
formulation of the refracted ray can be expressed as [116]:

L1 =
1
k
[L0 − nA(nA·L0)]− nA

[
1− 1

k2 +
1
k2 (nA·L0)

2
] 1

2
(2)

where L1 is the refracted light ray, k is the refractive index of the droplet, L0 is the incident
light ray, and nA is the normal line at the point of incidence. Meanwhile, the inner reflected
ray can be formulated as:

L2 = L1 − 2nB(nB·L1) (3)

where L2 is the inner reflected light ray and nB is the normal line at the point of inner
reflection. Finally, the outer refracted ray is expressed as:

L3 = k[L2 − nC(nC·L2)] + nC[1− k2 + k2(nC·L2)
2]

1
2 (4)

where L3 is the outer refracted light ray and nC is the normal line at the point of outer refraction.
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3. Light Spectrum Optimizer (LSO)

As discussed before, the rainbow spectrum rays are caused by colorful light disper-
sion. In this paper, the proposed algorithm takes its inspiration from this metrological
phenomenon. In particular, LSO is based on the following assumptions:

(1) Each colorful ray represents a candidate solution.
(2) The dispersion of light rays ranges from 40◦ to 42◦ or have a refractive index that

varies between kred = 1.331 and kviolet = 1.344.
(3) The population of light rays has a global best solution, which is the best dispersion

reached so far.
(4) The refraction and reflection (inner or outer) are randomly controlled.
(5) The current solution’s fitness value controls a colorful rainbow curve’s first and second

scattering phases compared to the best so-far solution’s fitness. Suppose the fitness
value between them is so close. In that case, the algorithm will apply the first scattering
phase to exploit the regions around the current solution because it might be so close
to the near-optimal solution. Otherwise, the second phase will be applied to help
the proposed algorithm avoid getting stuck in the regions of the best-so-far solution
because it might be local minima.

Next, the detailed mathematical formulation of LSO will be discussed.



Mathematics 2022, 10, 3466 7 of 63

3.1. Initialization Step

The search process of LSO begins with the random initialization of the initial popula-
tion of white lights as:

→
x0 = lb + RV1(ub− lb) (5)

where
→
x0 is the initial solution, RV1 is a vector of uniform random numbers generated

between [0, 1] with a length equal to the given problem dimension (d), and lb and ub are
the lower and upper bounds of the search space, respectively. After that, the generated
initial solutions are evaluated in order to determine the global and personal best solutions.

3.2. Colorful Dispersion of Light Rays

In this subsection, we discuss the mathematical formulation of rainbow spectrum
directions, colorful rays scattering, and the exploration and exploitation mechanisms
of LSO.

3.2.1. The Direction of Rainbow Spectrums

After the initialization, the normal vector of inner refraction
→

xnA, inner reflection
→

xnB,
and outer refraction

→
xnC are calculated as:

→
xnA =

→
xr

t

norm
(→

xr
t

) (6)

→
xnB =

→
xp

t

norm (
→
xt)

(7)

→
xnC =

→
x∗

norm (
→
x∗)

(8)

where
→
xr

t is a randomly selected solution from the current population at iteration t,
→
xp

t is the

current solution at iteration t,
→
x∗ is the global best solution ever founded, and norm(.) indi-

cates the normalized value of a vector and computed according to the following formula:

norm(
→
x ) =

√√√√ d

∑
j=0

x2
j (9)

where d stands for the number of dimensions in an optimization problem.
→
x is the input

vector to the norm function to normalize it. xj is the jth dimension in the input vector
→
x .

For the incident light ray, it is calculated as follows:

Xmean =
∑N

i
→
xi

N
(10)

→
xL0 =

Xmean

norm (Xmean)
(11)

where
→

xL0 is the incident light ray, Xmean is the mean of the current population of solutions
→
xi(i = 1, . . . N), and N is the population size.

Then, the vectors of inner and outer refracted and reflected light rays are calculated as:



Mathematics 2022, 10, 3466 8 of 63

→
xL1 =

1
kr [
→

xL0 −
→

xnA(
→

xnA·
→

xL0)]−
→

xnA

∣∣∣∣∣1− 1

(kr)2 +
1

(kr)2 (
→

xnA·
→

xL0)
2
∣∣∣∣∣

1
2

(12)

→
xL2 =

→
xL1 − 2

→
xnB(

→
xL1·

→
xnB) (13)

→
xL3 = kr[

→
xL2 −

→
xnC(

→
xnC·

→
xL2)] +

→
xnC|1− (kr)2 + (kr)2(

→
xnC·

→
xL2)

2
|

1
2

(14)

where
→

xL1,
→

xL2, and
→

xL3 are the inner refracted, inner reflected, and outer refracted light
rays, respectively. kr stands for the refractive index, which is updated randomly between
kred and kviolet to define a random spectrum color as:

kr = kred + RV1

(
kviolet − kred

)
(15)

where RV1 is a uniform random number generated randomly between [0, 1].
Table 2 presents a numerical example to illustrate the vectors with six dimensions

generated by the previously described equations with noting that the vectors
→
xr

t ,
→
xp

t , and
→
x∗

presented at the same table are randomly generated between 100 and −100. The values of
the inner refracted and inner reflected are obvious from this table. Outer refracted vectors
could not be employed alone to update the individuals, which have to be ranged between
100 and −100 because the change rate in the updated solutions will be so low. Hence,
many function evaluations will be consumed to reach better solutions. Therefore, the
equations described in the next section are adapted to deal with this problem by extensively
encouraging the exploration operator of the newly-proposed algorithm.

Table 2. An illustrative numerical example to the results generated according to Equations (6)–(14).

x1 x2 x3 x4 x5 x6
→
xr

t
61.4064 −77.7085 −91.5639 −70.6667 −41.4573 −58.8625

→
xp

t
−33.8424 85.3758 −13.0301 −37.5489 62.1643 39.1392

→
x∗ −2.2651 25.3057 76.0485 45.3216 −75.5683 −80.4718

→
xnA 0.1006 −0.1273 −0.1500 −0.1157 −0.0679 −0.0964
→

xnB −0.0622 0.1569 −0.0239 −0.0690 0.1143 0.0719
→

xnC −0.0047 0.0529 0.1590 0.0947 −0.1580 −0.1682
→

xL0 −0.0090 0.0972 0.0282 −0.0217 −0.0122 −0.0749
→

xL1 −0.0989 0.1893 0.1586 0.0900 0.0532 0.0325
→

xL2 −0.0765 0.1327 0.1672 0.1149 0.0119 0.0066
→

xL3 −0.1054 0.2106 0.3229 0.2128 −0.0823 −0.0959

3.2.2. Generating New Colorful Ray: Exploration Mechanism

After the calculation of the rays’ directions, we calculate the candidate solutions
according to the value of a randomly generated probability between 0 and 1, referred to as
p. In particular, if the value of p is lower than a number generated randomly between 0
and 1, then the new candidate solution will be calculated as:

→
xt+1 =

→
xt + εRVn

1 GI(
→

xL1 −
→

xL3)× (
→
xr1 −

→
xr2) (16)

Otherwise, the new candidate solution will be calculated as:

→
xt+1 =

→
xt + εRVn

2 GI(
→

xL2 −
→

xL3)× (
→
xr3 −

→
xr4) (17)
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where
→

xt+1 is the newly generated candidate solution,
→
xt is the current candidate solution at

iteration t. r1, r2, r3, and r4 are indices of four solutions selected randomly from the current
population. RVn

1 and RVn
2 are vectors of uniform random numbers that are generated

between [0, 1]. ε is a scaling factor that is calculated using (18). GI is an adaptive control
factor based on the inverse incomplete gamma function and computed according to (19).

ε = a× RVn
3 (18)

where RVn
3 a vector of normally distributed random numbers with a mean equal to zero

and a standard deviation equal to one, and a is an adaptive parameter that can be calculated
using (20).

GI = a× r−1 × P−1(a, 1) (19)

GI is an adaptive control factor. r is a uniform random number between [0, 1] that is
inversed to promote the exploration operator throughout the optimization process because
inversing any random value will generate a new decimal number greater than 1, which
might take the current solution to far away regions within the search space for finding a
better solution. P−1 is the inverse incomplete gamma function for the corresponding value
of a.

A = RV2

(
1− (

t
Tmax

)

)
(20)

where t is the current iteration number, RV2 is a scalar numerical value of uniform ran-
dom numbers generated between [0, 1], and Tmax is the maximum number of function
evaluations.

When the input numbers are greater than 0.5, this inverse incomplete gamma function
generates high numerical values starting from almost 0.8 and ending at nearly 5.5, as
described in Figure 4; otherwise, it generates decimal values down to 0. When the input
numbers to this function are high, it will encourage the exploration operator. However, the
highly-generated value might take the updated solutions out of the search boundary, and
hence the algorithm might be converted into a randomization process because the boundary
checking method will move those infeasible solutions back again into the search space.
Therefore, the factor, a, described before in (20), is modeled with the inverse incomplete
gamma values to reduce their magnitude and avoid the randomization process when the
input values are high. Both the inverse function and factor a decrease gradually with
increasing the current iteration, and hence the optimization process will be gradually
converted from the exploration operator into the exploitation that might lead to falling into
local minima. Therefore, to support the exploration operator throughout the optimization
process, the inverse of a number generated randomly between 0 and 1 will be modeled
with both the inverse function and factor a as defined in (19).
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3.2.3. Colorful Rays Scattering: Exploitation Mechanism

This phase helps to scatter the rays in the direction of the best-so-far solution, the
current solution, and a solution selected randomly from the current population to improve
its exploitation operator. At the start, the algorithm will scatter the rays around the current
solution to exploit the region around it to reach better outcomes. However, this might
reduce the convergence speed of LSO, so an additional step size applied with a predefined
probability β is integrated to move the current solution in the direction of the best-so-far
solution to overcome this problem. The mathematical model of scattering around the
current solution is as follows:

→
xt+1 =

→
xt + RV3 × (

→
xr1 −

→
xr2) + RVn

4 × (R < β)× (
→
x∗ − →xt) (21)

where
→
x∗ is the best-so-far solution, and

→
xr1 and

→
xr2 are two solutions selected randomly

from the current population. RV3 includes a number selected randomly at the interval of 0
and 1. RVn

4 is a vector including numbers generated randomly between 0 and 1. The second
scattering phase is based on generating rays in a new position based on the best-so-far
solution and the current solution according to the following formula:

→
xt+1 = 2 cos (π × r1)(

→
x∗)(

→
xt) (22)

where r1 is a randomly generated numerical value at the interval of 0 and 1. π indicates
the ratio of the perimeter of a circle to its diameter. Exchanging between the first and
second scattering phases is achieved based on a predefined probability Pe as shown in the
following formula:

→
xt+1 =

{
Eq. (21) i f R < Pe
Eq. (22) Otherwise

(23)

where R is a number generated randomly between 0 and 1. The last scattering phase is
based on generating a new solution according to a solution selected randomly from the
population and the current solution according to the following formula:

→
xt+1 =

( →
xp

r1 + |RV5| × (
→
xr2 −

→
xr3)

)
×
→
U + (1−

→
U)× →xt (24)

where RV5 is a scalar value of normally distributed random numbers with a mean equal to

zero and a standard deviation equal to one, and
→
U is a vector including random values of 0

and 1. | . . . | is the absolute symbol, which converts the negative values into positive ones
and returns the positive numbers as passed. Exchanging between Equations (23) and (24)
is based on computing the difference between the fitness value of each solution and that of
the best-so-far solution and normalizing this difference between 0 and 1 according to (25).
If this difference is less than a threshold value R1 generated randomly between 0 and 1,
(23) will be applied; otherwise, (24) is applied. Our hypothesis is based herein computing
the probabilistic fitness value using (25) to determine how far the current light ray is close
to the best-so-far light ray. If the probabilistic fitness value for the ith light ray is smaller
than R1, it is preferable to scatter this light ray in the same direction as the best-so-far
solution. Our proposed algorithm suggests this hypothesis to maximize its performance
when dealing with any optimization problem that needs a high-exploitation operator to
accelerate the convergence speed and save computational costs.

F′ =
∣∣∣∣ F− Fb

Fb − Fw

∣∣∣∣ (25)

where F, Fb, and Fw indicate the fitness values of the current solution, best-so-far solution,
and worst solution, respectively. However, the probability of applying (23) when the value
of F′ is high is a little. For example, Figure 5 has tracked the values of F′ for an agent and
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the random number R1 during the optimization process of a test function; this figure shows
that the F′ values are nearly greater than R1 for most of the optimization process, as shown
by red points that are much greater than the blue points in the 9 subgraphs depicted in
Figure 5, and thus the chance of firing the first and second scattering stages is so low when
relying solely on factor F′. Therefore, exchanging between (23) and (24) is also applied
with a predefined probability Ps to further promote the first and second scattering stages
for accelerating convergence toward the best-so-far solution. Finally, exchanging between
these two equations is formulated in the following formula:

→
xt+1 =

{
Eq. (23) i f R< Ps | F′ < R1
Eq. (24) Otherwise

(26)

where R and R1 are numbers generated randomly between 0 and 1.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 60 
 

 

subgraphs depicted in Figure 5, and thus the chance of firing the first and second scatter-
ing stages is so low when relying solely on factor F’. Therefore, exchanging between (23) 
and (24) is also applied with a predefined probability Ps to further promote the first and 
second scattering stages for accelerating convergence toward the best-so-far solution. Fi-
nally, exchanging between these two equations is formulated in the following formula: 𝑥 ⃗ = 𝐸𝑞. (23)                        𝑖𝑓 𝑅 < 𝑃  | 𝐹 < 𝑅𝐸𝑞. (24)                                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (26)

where 𝑅 and 𝑅  are numbers generated randomly between 0 and 1. 

 
Figure 5. Tracing F’s values versus R1 for an individual over 9 independent runs: The red points 
indicate that 𝑅 < 𝐹 ; and the blue points indicate that 𝑅 > 𝐹 . 

3.3. LSO Pseudocode 
The pseudocode of the proposed algorithm is stated in Algorithm 1, and the same 

steps are depicted in Figure 6. Some solutions might go outside the problem’s search 
space. Thus, they have to be returned back into the search space to find feasible solutions 
to the problem. There are two common ways to convert the infeasible solutions, which go 
outside the search space to feasible ones; the first one is based on setting the lower bound 
to the dimensions, which are smaller, and setting the upper bound to these, which are 
higher; while the second one is based on generating new random values within the search 
boundaries of the dimensions, which go outside the search space of the problem. Within 
our proposed algorithm, we make hybridization between these two methods to improve 
the convergence rate by the first and the exploration by the second. This hybridization is 
achieved based on a predefined probability Ph, which is estimated within the experiments 
section. 

Figure 5. Tracing F’s values versus R1 for an individual over 9 independent runs: The red points
indicate that R1 < F′; and the blue points indicate that R1 > F′.

3.3. LSO Pseudocode

The pseudocode of the proposed algorithm is stated in Algorithm 1, and the same steps
are depicted in Figure 6. Some solutions might go outside the problem’s search space. Thus,
they have to be returned back into the search space to find feasible solutions to the problem.
There are two common ways to convert the infeasible solutions, which go outside the search
space to feasible ones; the first one is based on setting the lower bound to the dimensions,
which are smaller, and setting the upper bound to these, which are higher; while the
second one is based on generating new random values within the search boundaries of
the dimensions, which go outside the search space of the problem. Within our proposed
algorithm, we make hybridization between these two methods to improve the convergence
rate by the first and the exploration by the second. This hybridization is achieved based on
a predefined probability Ph, which is estimated within the experiments section.
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Algorithm 1: LSO Pseudo-Code

Input: Population size of light rays N, problem Number of Iterations Tmax
Output: The best light dispersion x∗ and its fitness
Generate initial random population of light rays xi (i = 1, 2, 3, . . . , N)
t = 0
1 While (t < Tmax)
2 for each light ray
3 evaluate the fitness value
4 t = t + 1
5 keep the current global best x∗

6 Update the current solution if the updated solution is better.
7 determine normal lines

→
xnA,

→
xnB, &

→
xnC

8 determine direction vectors
→

xL0,
→

xL1,
→

xL2, &
→

xL3
9 update the refractive index kr

10 update a, ε, and GI
11 Generate two random numbers: p, q between 0 and 1

%%%%Generating new ColorFul ray: Exploration phase
12 if p ≤ q
13 update the next light dispersion using Equation (16)
14 Else
15 update the next light dispersion using Equation (17)
16 end if
17 evaluate the fitness value
18 t = t + 1
19 keep the current global best x∗

20 Update the current solution if the updated solution is better.
%%%%Scattering phase: exploitation phase

21 Update the next light dispersion using Equation (26)
22 end for
23 end while
24 Return x∗

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 60 
 

 

 
Figure 6. Flowchart of LSO. 

3.4. Searching Behavior and Complexity of LSO 
In this section, we will discuss the searching schema of LSO and its computational 

complexity. 
A. Searching behavior of LSO 

As discussed before, LSO reciprocates the methods of finding the next solution 
through the use of 𝑥∗⃗, 𝑥 ⃗, and 𝑥 ⃗. In other words, 𝑥 ⃗ is calculated according to a ran-
domly selected solution, which ensures the exploration of the search space. Meanwhile, 
the calculation of 𝑥 ⃗ and 𝑥 ⃗ depends on the global and personal best solutions, respec-
tively. This preserves the exploitation of the search space. Another exploitation consoli-
dation is preserved by the usage of the inverse incomplete gamma function [117], which 
can be expressed as follows: 𝑗 = 𝑃 (𝑦, 𝑤) (27)

𝑦 = 𝑃(𝑗, 𝑤) = 1Γ(𝑤) 𝑡 𝑒 𝑑𝑡  (28)

where 𝑤 is a scaling factor that is greater than or equal 0. 
Figure 7 depicts the LSO’s exploration and exploitation operators to illustrate the be-

havior of LSO experimentally. This figure is plotted by displaying the search core of an 
individual during the exploration and exploitation phases for the first two dimensions 
(𝑋  𝑎𝑛𝑑 𝑋 ). From this figure, specifically Figure 7a, which depicts the LSO’s exploitation 
operator, it is obvious that this operator focuses its search toward a specific region, often 
the best-so-far region, to explore the solutions around and inside this region in the hope 
of reaching better solutions in a lower number of function evaluations. On the other side, 
Figure 7b pictures the exploration behavior of LSO to show how far LSO could reach; this 

Figure 6. Flowchart of LSO.



Mathematics 2022, 10, 3466 13 of 63

3.4. Searching Behavior and Complexity of LSO

In this section, we will discuss the searching schema of LSO and its computational
complexity.

A. Searching behavior of LSO

As discussed before, LSO reciprocates the methods of finding the next solution through

the use of
→
x∗,
→
xr

t , and
→
xp

t . In other words,
→

xnA is calculated according to a randomly selected
solution, which ensures the exploration of the search space. Meanwhile, the calculation of
→

xnB and
→

xnC depends on the global and personal best solutions, respectively. This preserves
the exploitation of the search space. Another exploitation consolidation is preserved by the
usage of the inverse incomplete gamma function [117], which can be expressed as follows:

j = P−1(y, w) (27)

y = P(j, w) =
1

Γ(w)

z∫
0

tw−1e−tdt (28)

where w is a scaling factor that is greater than or equal 0.
Figure 7 depicts the LSO’s exploration and exploitation operators to illustrate the

behavior of LSO experimentally. This figure is plotted by displaying the search core of
an individual during the exploration and exploitation phases for the first two dimensions
(X1 and X2). From this figure, specifically Figure 7a, which depicts the LSO’s exploitation
operator, it is obvious that this operator focuses its search toward a specific region, often
the best-so-far region, to explore the solutions around and inside this region in the hope
of reaching better solutions in a lower number of function evaluations. On the other side,
Figure 7b pictures the exploration behavior of LSO to show how far LSO could reach; this
figure shows that the individuals within the optimization process try to attack different
regions, far from the current, within the search space of the optimization process for
reaching the most promising region, which is attacked using the exploitation operator
discussed formerly.

B. Space and Time Complexity

(1) LSO Space Complexity The space complexity of any metaheuristic can be de-
fined as the maximum space required during the search process. The big O no-
tation of LSO space complexity can be stated as O(N × d), where N is the num-
ber of search agents, and d is the dimension of the given optimization problem.

(2) LSO Time Complexity The time complexity of LSO is analyzed in this study
using asymptotic analysis, which could analyze the performance of an algo-
rithm based on the input size. Other than the input, all the other operations,
like the exploration and exploitation operators, are considered constant. There
are three asymptotic notations: big-O, omega, and theta, which are commonly
used to analyze the running time complexity of an algorithm. The big-O nota-
tion is considered in this study to analyze the time complexity of LSO because
it expresses the upper bound of the running time required by LSO for reaching
the outcomes.

The time complexity of any metaheuristic depends on the required time for each step
of the algorithm, like generating the initial population, updating candidate solutions, etc.
Thus, the total time complexity is the sum of all such time measures. The time complexity
of LSO results from three main algorithm steps:

(1) Generation of the initial population.
(2) Calculation of candidate solutions.
(3) Evaluation of candidate solutions.
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The first initialization step has a time complexity equal to O(N × d). The candidate
solutions calculation has a time complexity O(Tmax × N × d), which includes the evaluation
of the generated solutions and updating the current best solution, Where Tmax is the
maximum number of search iterations. So, the total time complexity of LSO in big-O is
O(N × d× Tmax), which is confirmed in detail in Table 3.

Table 3. Execution time of each line in the proposed algorithm according to using the
asymptotic analysis.

Algorithm 1: LSO Pseudo-Code Execution Time for Each Line

Input: Population size of light rays N, problem Number of Iterations Tmax
One execution time for each input. This line
contains 3 inputs, and the total execution time
will be equal to 3

Output: The best light dispersion x* and its fitness
Generate an initial random population of light rays xi (i = 1, 2, 3, . . . , N)

- The output will be returned one time, so
the execution time of this line will be 1

- Regarding the initialization, this stage
will initialize d dimensions for N
solutions, so the time complexity will be
O(N× d)

1 While (t < Tmax ) This line will be executed Tmax times

2 for each light ray xi (i = 1, 2, 3, . . . , N) Executed N times multiplied by Tmax, which
O(N× Tmax)

3 evaluate the fitness value
O(N× d× Tmax) since the objective function
will observe each dimension in the
updated solution

4 t = t + 1 O(N× Tmax)

5 keep the current global best x∗ O(N× d× Tmax)

6 Update the current solution if the updated solution is
better. O(N× d× Tmax)

7 determine normal lines
→

xnA,
→

xnB, &
→

xnC

3×N× d× Tmax = O(N× d× Tmax)|3
here indicates the number of

generated vectors



Mathematics 2022, 10, 3466 15 of 63

Table 3. Cont.

Algorithm 1: LSO Pseudo-Code Execution Time for Each Line

8 determine direction vectors
→

xL0,
→

xL1 ,
→

xL2, &
→

xL3

3×N× d× Tmax = O(N× d× Tmax)|3
here indicates the number of generated

direction vectors

9 update the refractive index kr O(N× Tmax)

10 update a, ε, & GI O(N× Tmax)

11 Generate two random numbers: p, between 0 and 1 O(N× Tmax)

%%%%Generating new ColorFul ray: Exploration phase Comments not implemented

12 if p ≤ q O(N× Tmax)

13 update the next light dispersion using Equation (16) O(N× d× Tmax)

14 Else O(N× Tmax)

15 update the next light dispersion using Equation (17) O(N× d× Tmax)

16 end if O(N× Tmax)

17 evaluate the fitness value O(N× d× Tmax)

18 t = t + 1 O(N× Tmax)

19 keep the current global best x∗ O(N× d× Tmax)

20 Update the current solution if the updated solution is
better. O(N× d× Tmax)

%%%%Scattering phase: exploitation phase Comments not implemented

21 Update the next light dispersion using Equation (25) O(N× d× Tmax)

22 end for O(N× Tmax)

23 end while O(N× Tmax)

24 Return x∗ 1 time

By Summing the execution time of all lines, it is obvious that the highest growth rate is
O(N× d× Tmax). Hence, the time omplexity of LSO isO(N× d× Tmax) since it has the
highest growth rate

3.5. Difference between LSO, RO, and LRO

This section compares the proposed algorithm to two other metaheuristic algorithms
inspired by light reflection and refraction to demonstrate that LSO is completely different
from those algorithms in terms of inspiration, formulation of candidate solutions, and the
variation of the updating process, as illustrated in Table 4.

Table 4. Comparison between LSO, RO, and LRO.

Characteristics LSO RO LRO

Inspiration
Simulating the light movement and
orientation in the rainbow
metrological phenomenon.

Simulating Snell’s light refraction
law when light transfers from a
lighter medium to a darker
medium.

Simulating the light’s
reflection and refraction.

Formulation
LSO mainly depends on the vector
representation of the rainbow and
its intersperse in the sky.

The formulation of RO depends on
the general Snell’s law of light ray
transformation from a medium to a
darker one to ray tracing in
2-dimensional and 3-dimensional
spaces.

The updating of candidate
solutions depends on the
division of a search space into
grid cells and then
considering these cells as
reflection and refraction
points.
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Table 4. Cont.

Characteristics LSO RO LRO

Variation

- Variations in the updating
process enable it to overcome
several optimization problems
of varying difficulty.

- Having a strong exploration
operator due to employing
both the inverse incomplete
gamma function and the
inverse random number in an
effective way.

- Enjoying in strong
exploitation operator aiding
in exploiting the regions
around the current solution,
the best-so-far solution, and
solutions selected randomly
from the population.

- Having a weak exploration
operator due to its inability to
find the optimal solution for
most fixed-dimensional
multimodal optimization
problems with many local
minima necessitates using a
strong exploration operator.
On the contrary, our proposed
algorithm can solve all
fixed-dimensional
multimodal problems.

- Its performance for some
unimodal problems requiring
a strong exploitation operator
is subpar.

- Its updating process is
limited due to its
reliance solely on
refraction and reflection.

- Slower convergence
speed than LSO due to
the weakness of its
exploitation operator.

4. Experimental Results and Discussions

In this section, we investigate the efficiency of LSO by different benchmarks, including
CEC2005, CEC2014, CEC2017, CEC2020, and CEC2022. In addition, the sensitivity and
scalability analyses of the proposed algorithm are introduced in this section.

4.1. Benchmarks and Compared Optimizers

We first validate the efficiency of LSO by solving 20 classical benchmarks CEC2005
that were selected from [118–120]. The selected benchmarks consist of three classes: uni-
modal, multi-modal, and fixed-dimension multi-modal. Both unimodal and multimodal
functions of CEC2005 are solved in 100 dimensions. Appendix A Tables A1–A7 shows the
characteristics of these three classes, which are mathematical formulations of benchmarks,
dimension (D), boundaries of the search space (B), and the global optimal solution (OS).
Furthermore, the proposed algorithm is tested on solving challengeable benchmarks like
CEC2014, CEC2017, CEC2020, and CEC2020, which are described in Appendix A Tables A1–
A7. The dimensions of these challengeable benchmarks are set to 10. In addition, the
Wilcoxon test [121] is performed to analyze both algorithms’ performance during the
30 runs with a 5% significance level.

The experimental results of LSO are compared with highly-cited state-of-the-art opti-
mization algorithms like grey wolf optimizer (GWO) [122], whale optimization algorithm
(WOA) [123], and salp swarm algorithm (SSA) [23], evolutionary algorithms like differen-
tial evolution (DE), and recently-published optimizers including gradient-based optimizer
(GBO) [124], artificial gorilla troops optimizer (GTO) [27], Runge–Kutta method (RUN)
beyond the metaphor [125], African vultures optimization algorithm (AVOA) [106], equi-
librium optimizer (EO) [76], grey wolf optimizer (GWO) [122], reptile search algorithm
(RSA) [92], and slime mold algorithm (SMA) [40]. Both comparisons are based on standard
deviation (SD), an average of fitness values (Avr), and rank. All the algorithms are coded
in MATLAB© 2019. All experiments are performed on a 64-bit operating system with a
2.60 GHz CPU and 32 GB RAM. For a fair comparison, each algorithm runs for 25 inde-
pendent times, the maximum number of function evaluations and population size are of
50,000 and 20, respectively (These parameters are constant within our experiments for all
validated benchmarks). The other algorithms’ parameters are kept as standard. The used
parameters are given in Table 5.
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Table 5. Parameters of the compared algorithms.

Algorithms Parameters Value Algorithms Parameters Value

GWO (2014) Convergence constant a
N

Decreases Linearly from
2 to 0
20

SMA (2020) z
N

0.03
20

WOA (2017)
Convergence constant a
Spiral factor b
N

Decreases Linearly from
2 to 0
1
20

GTO (2021)

p
Beta
w
N

0.03
3
8
20

EO (2020)

a1
a2
V
GP
N

2
1
1
0.5
20

AVOA (2021)

Alpha (L1)
Beta (L2)
Gamma (w)
P1
P2
P3
N

0.8
0.2
2.5
0.6
0.4
0.6
20

RUN (2021)
a
b
N

20
12
20

RSA (2022)
Alpha
Beta
N

0.1
0.1
20

GBO(2020)

pr
βmin
βmax
N

0.5
0.2
1.2
20

DE Crossover rate
Scaling factor
N

0.5
0.5
20

SSA (2017) c1
N

Decreases from 2 to 0
20

4.2. Sensitivity Analysis of LSO

Extensive experiments have been done to perform a sensitivity analysis of four con-
trolling parameters found in LSO, which are Pe, Ps, Ph, and β. For each parameter of these,
extensive experiments have been done using different values for each one to solve two test
functions: F57 and F58, and the obtained outcomes, are depicted in Figure 8. This figure
shows that the most effective values of these four parameters: Pe, Ps, Ph, and β, for two
observed test functions are of 0.9, 0.05, 0.4, and 0.05, respectively.

The first investigated parameter is Ph (responsible for the tradeoff between two bound-
ary checking methods to improve the LSO’s searchability), which is analyzed in Figure 8a,b
using various randomly-picked values between 0 and 1.0. These figures show that LSO
could reach the optimal value for the test function: F58 when Ph = 0.4. Based on that, this
value is assigned to Ph within the experiments conducted in this study.

For the parameter β (responsible for improving the convergence speed of LSO), Fig-
ure 8c,d depicts the performance of LSO under various randomly-picked values between 0
and 0.6 for this parameter over two test problems: F57 and F58. According to this figure,
over F57, on one side, the performance of LSO is substantially improved with increasing
the value of this parameter even reaching 0.3, and then the performance again deteriorated.
On the other side, over F58, LSO has poor performance when increasing the value of
this parameter. Therefore, we found that the best value for the parameter β that will be
substantially suitable for most test functions is 0.05, since LSO under this value could reach
the optimal value for the test problem: F58. It is worth mentioning that this parameter
is responsible for accelerating the convergence speed of LSO to reach the near-optimal
solution in as low a number of function evaluations as possible. Therefore, an additional
experiment has been conducted in this section to depict the convergence speed of LSO
under various values for the parameter β over F58 (see Figure 8e). Figure 8e further affirms
that the best value for this parameter is 0.05.
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Figure 8. Sensitivity analysis of LSO. (a) Tuning the parameter Ph over F58. (b) Tuning the parameter
Ph over F57. (c) Tuning the parameter β over F58. (d) Tuning the parameter β over F57. (e) Tuning the
parameter β over F58 in terms of convergence speed. (f) Tuning the parameter Pe over F58. (g) Tuning
the parameter Pe over F57. (h) Adjusting the parameter Ps over F58. (i) Adjusting the parameter Ps

over F57.

The third parameter is Pe, employed in LSO to exchange between the first and second
scattering phases. Figure 8f,g compare the influence of various values for this parameter
over the test functions: F57 and F58. According to these figures, the best value for this
parameter is 0.9, since LSO under this value could reach 900 and 805.9 for F58 and F57, re-
spectively. Regarding the parameter Ps, which is employed to further promote the first and
second scattering stages for improving the exploitation operator of LSO, Figure 8h,i were
presented to report the influence of various values for this parameter; these values range
between 0 and 0.6. Inspecting these figures shows that LSO reaches the top performance
when Ps has a value of 0.05 over two investigated test functions: F57 and F58.

4.3. Evaluation of Exploitation and Exploration Operators

The class of Uni-modal benchmarks has only one global optimal solution. This feature
allows testing and validating a metaheuristic’s exploitation capabilities. Tables 6 and 7 show
that LSO is competitive with some other comparators for F1, F2, and F3. For F3 and F5, LSO
has inferior performance compared to some of the recently-published rival algorithms. In
general, LSO proves that it has a competitive exploitation operator. Multi-modal classes can
efficiently discover the exploration of metaheuristics, as they have many optimal solutions.
As observed in Table 6, LSO is able to reach the optimal solution for 13 benchmarks,
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especially fixed-dimension ones, including F11-F20. In addition, LSO is competitive with
the other comparators for F6-F8. To affirm the difference between the outcomes produced
by LSO and those of the rival algorithms, the Wilcoxon rank-sum test is employed to
compute the p-values, which determine that there is a difference when its value is less
than 5%; otherwise, there is no difference. Table 7 introduces the p-values on unimodal
and multimodal test functions between LSO and each rival algorithm. These values clarify
that there are differences between the outcomes of LSO and most rival algorithms on most
test functions. NaN in this table indicates that the independent outcomes of LSO and the
corresponding optimizer are the same. As a result, the results and discussion is given
herein assure the prosperity of LSO’s exploration and exploitation capabilities.

4.4. LSO for Challengeable CEC2014

Additional validation is carried out on the CEC-2014 test suite in order to ensure that
the proposed and other methods perform in accordance with expectations. With the help
of this collection of test functions, you can determine whether or not an algorithm has the
ability to explore, escape from local minima, and exploit. The test functions are divided
into four categories: unimodal, multimodal, hybrid, and composition. The test suite’s
characteristics are described in greater detail in Appendix A Tables A1–A7. The dimensions
taken into consideration within our experiments are all ten. Table 8 shows the average
and standard deviation values and the rank metric obtained by rival optimizers and others
on CEC2014. Inspecting this table demonstrates that LSO could rank first for 23 out of
30 test functions, while its performance for the other test functions is competitive with
some of the other optimizers. The average of rank values presented in Table 8 for each test
function to show the best-performance order of the algorithms is computed and displayed
in Figure 9. This figure shows the superior performance of LSO because it could come in
the first rank with a value of 1.7, followed by DE with a value of 4.4, while RSA is the worst
performing one.
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Table 6. Avr and SD of CEC2005 for 25 independent runs (The bolded value is the best overall).

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F1
Avr 0.00 × 100 4.27 × 10−7 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.5 × 10−145 3.90 × 10−70 0.00 × 100 0.00 × 100 3.20 × 10−3

SD 0.00 × 100 7.68 × 10−8 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 7.4 × 10−145 7.34 × 10−70 0.00 × 100 0.00 × 100 1.75 × 10−2

Rank 1.00 × 100 1.10 × 101 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 9.00 × 100 1.00 × 101 1.00 × 100 1.00 × 100 1.20 × 101

F2
Avr 0.00 × 100 1.94 × 101 1.6 × 10−283 1.5 × 10−238 0.00 × 100 0.00 × 100 0.00 × 100 3.58 × 10−84 1.33 × 10−41 0.00 × 100 0.00 × 100 3.70 × 10−5

SD 0.00 × 100 1.20 × 101 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.02 × 10−83 1.04 × 10−41 0.00 × 100 0.00 × 100 1.57 × 10−5

Rank 1.00 × 100 1.30 × 101 7.00 × 100 8.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 9.00 × 100 1.00 × 101 1.00 × 100 1.00 × 100 1.10 × 101

F3
Avr 0.00 × 100 2.92 × 104 0.00 × 100 0.00 × 100 7.25 × 105 0.00 × 100 0.00 × 100 2.63 × 10−10 8.42 × 10−4 0.00 × 100 0.00 × 100 3.44 × 105

SD 0.00 × 100 1.24 × 104 0.00 × 100 0.00 × 100 1.42 × 105 0.00 × 100 0.00 × 100 1.01 × 10−9 3.97 × 10−3 0.00 × 100 0.00 × 100 3.81 × 104

Rank 1.00 × 100 1.00 × 101 1.00 × 100 1.00 × 100 1.30 × 101 1.00 × 100 1.00 × 100 7.00 × 100 8.00 × 100 1.00 × 100 1.00 × 100 1.20 × 101

F4
Avr 0.00 × 100 3.22 × 101 3.9 × 10−253 1.3 × 10−196 7.78 × 101 0.00 × 100 0.00 × 100 2.87 × 10−16 2.72 × 10−8 0.00 × 100 0.00 × 100 9.59 × 101

SD 0.00 × 100 2.81 × 100 0.00 × 100 0.00 × 100 2.30 × 101 0.00 × 100 0.00 × 100 1.57 × 10−15 1.26 × 10−7 0.00 × 100 0.00 × 100 1.17 × 100

Rank 1.00 × 100 1.00 × 101 6.00 × 100 7.00 × 100 1.10 × 101 1.00 × 100 1.00 × 100 8.00 × 100 9.00 × 100 1.00 × 100 1.00 × 100 1.30 × 101

F5
Avr 9.70 × 101 3.85 × 102 9.31 × 101 9.65 × 101 9.74 × 101 8.30 × 10−3 1.03 × 10−5 9.43 × 101 9.76 × 101 9.90 × 101 1.88 × 100 1.66 × 103

SD 6.18 × 10−1 4.25 × 102 2.49 × 100 1.12 × 100 6.96 × 10−1 1.14 × 10−2 1.35 × 10−5 9.49 × 10−1 6.38 × 10−1 0.00 × 100 1.87 × 100 5.76 × 103

Rank 7.00 × 100 1.10 × 101 4.00 × 100 6.00 × 100 8.00 × 100 2.00 × 100 1.00 × 100 5.00 × 100 9.00 × 100 1.00 × 101 3.00 × 100 1.20 × 101

High-dimensional multimodal

F6
Avr 0.00 × 100 2.33 × 102 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 7.57 × 102

SD 0.00 × 100 5.60 × 101 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 3.26 × 101

Rank 1.00 × 100 1.20 × 101 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 101 1.30 × 101

F7
Avr 8.88 × 10−16 5.71 × 100 8.88 × 10−16 8.88 × 10−16 3.14 × 10−15 8.88 × 10−16 8.88 × 10−16 5.63 × 10−15 2.61 × 10−14 8.88 × 10−16 8.88 × 10−16 2.23 × 10−4

SD 0.00 × 100 1.30 × 100 0.00 × 100 0.00 × 100 2.72 × 10−15 0.00 × 100 0.00 × 100 1.70 × 10−15 3.41 × 10−15 0.00 × 100 0.00 × 100 3.05 × 10−4

Rank 1.00 × 100 6.00 × 100 1.00 × 100 1.00 × 100 2.00 × 100 1.00 × 100 1.00 × 100 3.00 × 100 5.00 × 100 1.00 × 100 1.00 × 100 4.00 × 100

F8
Avr 0.00 × 100 9.68 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 6.37 × 10−4 0.00 × 100 0.00 × 100 3.31 × 10−4

SD 0.00 × 100 5.56 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 3.49 × 10−3 0.00 × 100 0.00 × 100 1.80 × 10−3

Rank 1.00 × 100 4.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 3.00 × 100 1.00 × 100 1.00 × 100 2.00 × 100

F9
Avr 4.67 × 10−3 1.52 × 101 1.25 × 10−6 1.95 × 10−6 9.70 × 10−3 8.72 × 10−7 5.07 × 10−9 1.85 × 10−3 2.91 × 10−1 1.33 × 100 6.83 × 10−4 1.59 × 103

SD 1.91 × 10−3 2.95 × 100 1.11 × 10−6 6.52 × 10−6 3.24 × 10−3 1.14 × 10−6 2.63 × 10−9 1.79 × 10−3 7.27 × 10−2 0.00 × 100 9.08 × 10−4 6.68 × 103

Rank 7.00 × 100 1.10 × 101 3.00 × 100 4.00 × 100 8.00 × 100 2.00 × 100 1.00 × 100 6.00 × 100 9.00 × 100 1.00 × 101 5.00 × 100 1.20 × 101

F10
Avr 8.42 × 100 1.66 × 102 1.87 × 100 1.11 × 10−1 1.50 × 100 3.95 × 10−4 3.05 × 10−9 3.70 × 100 6.55 × 100 9.72 × 100 5.29 × 10−3 2.54 × 104

SD 1.47 × 100 1.71 × 101 2.63 × 100 1.15 × 10−1 5.79 × 10−1 2.03 × 10−3 4.10 × 10−9 1.05 × 100 4.13 × 10−1 8.77 × 10−1 5.86 × 10−3 6.44 × 104

Rank 9.00 × 100 1.10 × 101 6.00 × 100 4.00 × 100 5.00 × 100 2.00 × 100 1.00 × 100 7.00 × 100 8.00 × 100 1.00 × 101 3.00 × 100 1.20 × 101

Fixed-dimensional multimodal

F11
Avr 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 4.63 × 100 2.24 × 100 9.98 × 10−1 1.06 × 100 1.06 × 100 5.76 × 100 4.47 × 100 9.98 × 10−1 1.23 × 100

SD 0.00 × 100 2.24 × 10−16 4.12 × 10−17 3.84 × 100 2.49 × 100 0.00 × 100 3.62 × 10−1 3.62 × 10−1 4.64 × 100 3.30 × 100 8.55 × 10−15 9.59 × 10−1

Rank 1.00 × 100 1.00 × 100 1.00 × 100 1.20 × 101 5.00 × 100 1.00 × 100 2.00 × 100 3.00 × 100 7.00 × 100 6.00 × 100 1.00 × 100 4.00 × 100
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Table 6. Cont.

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

F12
Avr 3.07 × 10−4 8.50 × 10−4 4.30 × 10−4 7.04 × 10−4 6.30 × 10−4 5.52 × 10−4 3.08 × 10−4 4.38 × 10−3 6.32 × 10−3 1.58 × 10−3 4.82 × 10−4 2.68 × 10−3

SD 2.01 × 10−19 2.64 × 10−4 3.17 × 10−4 4.62 × 10−4 3.47 × 10−4 4.12 × 10−4 4.17 × 10−8 8.13 × 10−3 9.35 × 10−3 1.03 × 10−3 2.95 × 10−4 6.01 × 10−3

Rank 1.00 × 100 9.00 × 100 3.00 × 100 7.00 × 100 6.00 × 100 5.00 × 100 1.00 × 100 1.20 × 101 1.30 × 101 2.00 × 101 4.00 × 100 1.10 × 101

F13
Avr −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

SD 6.78 × 10−16 3.72 × 10−15 6.78 × 10−16 2.05 × 10−13 5.36 × 10−12 6.52 × 10−16 5.13 × 10−16 6.39 × 10−16 8.86 × 10−10 1.59 × 10−3 1.72 × 10−11 6.78 × 10−16

Rank 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

F14
Avr 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 4.18 × 10−1 3.98 × 10−1 3.98 × 10−1

SD 0.00 × 100 2.70 × 10−15 0.00 × 100 1.17 × 10−11 3.58 × 10−7 0.00 × 100 0.00 × 100 0.00 × 100 5.93 × 10−8 4.66 × 10−2 3.82 × 10−9 0.00 × 100

Rank 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.30 × 101 1.00 × 100 1.00 × 100

F15
Avr 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

SD 1.31 × 10−15 2.94 × 10−14 1.40 × 10−15 1.43 × 10−13 1.63 × 10−5 1.33 ×
10−15 5.67 × 10−8 1.39 × 10−15 3.76 × 10−6 5.55 × 10−5 2.27 × 10−13 1.83 × 10−15

Rank 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

F16
Avr −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.80 × 100 −3.86 × 100 −3.86 × 100

SD 2.71 × 10−15 5.11 × 10−15 2.71 × 10−15 4.64 × 10−6 2.98 × 10−3 2.59 ×
10−15

2.20 ×
10−15 2.00 × 10−3 2.79 × 10−3 5.08 × 10−2 3.64 × 10−9 2.71 × 10−15

Rank 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.30 × 101 1.00 × 100 1.00 × 100

F17
Avr −3.32 × 100 −3.07 × 100 −3.27 × 100 −3.24 × 100 −2.71 × 100 −3.07 × 100 −3.07 × 100 −3.24 × 100 −3.19 × 100 −1.74 × 100 −3.03 × 100 −3.12 × 100

SD 1.32 × 10−15 1.57 × 10−1 6.62 × 10−2 7.38 × 10−2 4.14 × 10−1 2.49 × 10−1 3.31 × 10−1 8.05 × 10−2 1.19 × 10−1 5.78 × 10−1 3.05 × 10−1 1.01 × 10−1

Rank 1.00 × 100 9.00 × 100 2.00 × 100 4.00 × 100 1.10 × 101 7.00 × 100 8.00 × 100 3.00 × 100 5.00 × 100 1.30 × 101 1.00 × 101 6.00 × 100

F18
Avr −1.02 × 101 −5.12 × 100 −7.36 × 100 −6.31 × 100 −4.51 × 100 −7.44 × 100 −7.25 × 100 −7.18 × 100 −7.36 × 100 −4.79 × 100 −6.37 × 100 −3.64 × 100

SD 7.23 × 10−15 3.16 × 100 2.44 × 100 2.47 × 100 2.33 × 100 2.48 × 100 2.84 × 100 3.20 × 100 3.50 × 100 9.60 × 10−1 2.53 × 100 2.28 × 100

Rank 1.00 × 100 9.00 × 100 4.00 × 100 8.00 × 100 1.10 × 101 2.00 × 100 5.00 × 100 6.00 × 100 3.00 × 100 1.00 × 101 7.00 × 100 1.20 × 101

F19
Avr −1.04 × 101 −9.27 × 100 −8.63 × 100 −1.04 × 101 −9.38 × 100 −1.04 × 101 −1.04 × 101 −1.00 × 101 −1.00 × 101 −5.09 × 100 −1.04 × 101 −9.35 × 100

SD 1.48 × 10−15 2.35 × 100 2.55 × 100 6.54 × 10−10 2.36 × 100 7.38 × 10−16 1.14 × 10−15 1.34 × 100 1.35 × 100 8.85 × 10−7 1.91 × 10−5 2.42 × 100

Rank 1.00 × 100 6.00 × 100 7.00 × 100 1.00 × 100 4.00 × 100 1.00 × 100 1.00 × 100 2.00 × 100 3.00 × 100 8.00 × 100 1.00 × 100 5.00 × 100

F20
Avr −1.05 × 101 −9.74 × 100 −8.91 × 100 −1.04 × 101 −9.23 × 100 −1.05 × 101 −1.05 × 101 −1.00 × 101 −1.04 × 101 −5.13 × 100 −1.05 × 101 −9.16 × 100

SD 1.81 × 10−15 2.10 × 100 2.52 × 100 9.87 × 10−1 2.42 × 100 2.06 ×
10−15

3.32 ×
10−15 1.65 × 100 9.87 × 10−1 1.85 × 10−6 1.91 × 10−5 2.80 × 100

Rank 1.00 × 100 5.00 × 100 8.00 × 100 2.00 × 100 6.00 × 100 1.00 × 100 1.00 × 100 4.00 × 100 3.00 × 100 9.00 × 100 1.00 × 100 7.00 × 100
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Table 7. p-values of LSO with each rival optimizer on CEC2005 test suite (F1–F20).

Fun SCA SSA GBO RUN WOA GTO AVOA EO GWO RFO SMA

Unimodal

F1 1.21 × 10−12 NaN NaN NaN NaN NaN 1.21 × 10−12 1.21 × 10−12 NaN NaN 1.21 × 10−12

F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 1.21 × 10−12 NaN NaN 1.21 × 10−12

F3 3.75 × 10−11 5.37 × 10−6 5.37 × 10−6 2.26 × 10−11 5.37 × 10−6 5.37 × 10−6 6.61 × 10−1 6.61 × 10−1 5.37 × 10−6 5.37 × 10−6 2.26 × 10−11

F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN NaN 1.21 × 10−12 1.21 × 10−12 NaN NaN 1.21 × 10−12

F5 1.56 × 10−8 5.53 × 10−8 4.51 × 10−2 6.97 × 10−3 3.02 × 10−11 3.02 × 10−11 2.44 × 10−9 1.17 × 10−4 1.21 × 10−12 3.02 × 10−11 3.02 × 10−11

High-dimensional multimodal

F6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 5.69 × 10−1 3.02 × 10−11 3.02 × 10−11 3.47 × 10−10 3.02 × 10−11 1.21 × 10−12 3.02 × 10−11 5.57 × 10−10

F7 3.02 × 10−11 1.11 × 10−3 1.56 × 10−2 3.52 × 10−7 1.38 × 10−2 6.79 × 10−2 2.87 × 10−10 4.50 × 10−11 5.32 × 10−3 8.88 × 10−1 3.02 × 10−11

F8 4.64 × 10−3 6.74 × 10−6 1.89 × 10−4 8.99 × 10−11 3.02 × 10−11 3.69 × 10−11 6.05 × 10−7 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F9 1.21 × 10−12 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.21 × 10−12

F10 1.21 × 10−12 NaN NaN 2.75 × 10−5 NaN NaN 3.37 × 10−13 7.73 × 10−13 NaN NaN 1.21 × 10−12

Fixed-dimensional multimodal

F11 1.21 × 10−12 NaN NaN NaN NaN NaN NaN 3.34 × 10−1 NaN NaN 1.21 × 10−12

F12 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 5.00 × 10−9 3.02 × 10−11 3.02 × 10−11 8.20 × 10−7 3.02 × 10−11 1.21 × 10−12 1.46 × 10−10 1.21 × 10−10

F13 3.02 × 10−11 9.92 × 10−11 3.02 × 10−11 1.33 × 10−10 3.02 × 10−11 3.02 × 10−11 5.57 × 10−10 8.10 × 10−10 1.21 × 10−8 3.02 × 10−11 3.15 × 10−2

F14 3.00 × 10−13 3.34 × 10−1 1.20 × 10−12 1.21 × 10−12 NaN 2.52 × 10−7 4.19 × 10−2 1.21 × 10−12 1.21 × 10−12 1.20 × 10−12 1.61 × 10−1

F15 1.58 × 10−9 5.33 × 10−6 7.55 × 10−10 3.28 × 10−9 3.43 × 10−8 7.97 × 10−9 1.89 × 10−9 1.58 × 10−9 3.55 × 10−10 4.69 × 10−9 8.23 × 10−5

F16 1.19 × 10−12 NaN 4.57 × 10−12 1.21 × 10−12 4.18 × 10−2 1.47 × 10−9 1.09 × 10−2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN

F17 4.15 × 10−8 NaN 1.66 × 10−11 4.57 × 10−12 NaN NaN NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN

F18 6.43 × 10−12 1.70 × 10−1 6.46 × 10−12 6.46 × 10−12 3.11 × 10−1 6.46 × 10−12 8.24 × 10−2 6.46 × 10−12 6.46 × 10−12 6.46 × 10−12 4.30 × 10−1

F19 1.20 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12 5.54 × 10−3 3.67 × 10−10 8.15 × 10−2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN

F20 8.44 × 10−12 1.62 × 10−4 1.99 × 10−11 1.99 × 10−11 1.15 × 10−6 4.90 × 10−11 6.46 × 10−6 2.21 × 10−11 3.16 × 10−12 8.44 × 10−12 1.88 × 10−5
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In terms of the standard deviation, Figure 10 displays the average SD values of
25 independent runs for each CEC-2014 test function; this figure discloses that the outcomes
obtained by LSO within these independent runs are substantially similar since it could reach
less average SD of 23, while RSA has the worst average SD. Finally, the Wilcoxon rank-sum
statistical test is employed to show the difference between the outcomes of LSO and each
rival algorithm; this test relies on two hypotheses: the null hypothesis, indicating that
there is no difference, and the alternative one, indicating that there is difference between
the outcomes of each pair of algorithms. This test determines the accepted hypothesis
based on the confidence level and p-value returned after comparing the outcomes of each
pair of algorithms. Within our experiments, the confidence level is 0.05. The obtained
p-value between LSO and each rival algorithm is presented in Table 9. The majority of
p-values presented in this table is less than 5%, which notifies us that the alternative
hypothesis is accepted; hence, the outcome of LSO is different from those of the other
compared algorithms.
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Figure 10. Average SD of each optimizer on all CEC2014.

4.5. LSO for Challengeable CEC2017

This section compares the performance of LSO and other optimizers using the CEC2017
test suite to further validate the performance of LSO against the comparators for more
challenging mathematical test functions [126]. CEC2017 is composed of four mathematical
function families: unimodal (F51–F52), multimodal (F53–F59), composition (F60–F69), and
hybrid (F70–F79). As previously described, unimodal test functions are preferable for eval-
uating the exploitation operator of optimization algorithms because they involve only one
global best solution, and multimodal test functions contain multiple local optimal solutions,
which makes them particularly well-suited for evaluating the exploration operator of newly
proposed optimizers; while composition and hybrid test functions have been designed to
evaluate the optimization algorithms’ ability to escape out of local optima. The dimension
of this benchmark is set to 10 within the conducted experiments in this section. Appendix A
Tables A1–A7 contains the characteristics of the CEC2017 benchmark.

Table 10 shows the Avr, SD, and Rank values of 25 independent findings obtained by
this suite’s proposed and rival optimizers. According to this table, LSO comes in the first
rank compared to all optimizers for unimodal, multimodal, composition and hybrid test
functions since it could reach better Avr and SD for all test functions. Figures 11 and 12
display the average of the rank and standard deviation values presented in Table 10 for
all test functions for each algorithm. According to these figures, LSO is the best since it
occupies the 1st rank with a value of 1 and has the lowest standard deviation of 32, while
RSA is the worst.
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Table 8. Avr and SD of CEC2014 for 25 independent runs (The bolded value is the best overall).

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F21
Avr 1.00 × 102 5.29 × 105 1.73 × 103 1.29 × 105 8.21 × 106 2.81 × 103 1.87 × 105 5.06 × 104 5.03 × 106 1.32 × 108 1.53 × 105 3.05 × 103

SD 7.09 × 10−11 5.03 × 105 2.04 × 103 1.11 × 105 6.51 × 106 3.88 × 103 1.12 × 105 6.63 × 104 3.43 × 106 8.55 × 107 4.14 × 104 7.78 × 103

Rank 1.00 9.00 2.00 6.00 12.00 3.00 8.00 5.00 10.00 13.00 7.00 4.00

F22
Avr 200.00 3802.99 272.45 4382.91 940,880.88 557.78 3404.48 1.30 × 103 5.69 × 107 7.09 × 109 5.94 × 103 7.20 × 102

SD 4.22 × 10−14 3.65 × 103 1.30 × 102 5.25 × 103 7.23 × 105 8.18 × 102 3.67 × 103 1.65 × 103 2.88 × 108 1.99 × 109 3.99 × 103 2.07 × 103

Rank 1.00 7.00 2.00 8.00 10.00 3.00 6.00 5.00 11.00 13.00 9.00 4.00

F23
Avr 300.00 3450.21 314.70 1401.82 43,769.75 315.07 1571.60 426.51 7388.05 8368.14 2407.10 301.79
SD 0.00 × 100 2845.55 21.18 566.37 28,043.51 50.45 1128.64 203.06 4648.72 2959.58 1895.90 9.80

Rank 1.00 9.00 3.00 6.00 13.00 4.00 7.00 5.00 11.00 12.00 8.00 2.00

Multimodal

F24
Avr 405.36 425.87 424.51 416.08 438.61 419.47 419.49 423.67 434.97 1735.39 424.29 425.97
SD 11.85 15.12 15.98 15.73 22.17 16.71 17.93 16.02 18.96 992.19 15.13 14.33

Rank 1.00 8.00 7.00 2.00 11.00 3.00 4.00 5.00 10.00 13.00 6.00 9.00

F25
Avr 520.03 520.04 520.07 520.09 520.14 520.11 520.06 520.11 520.42 520.43 519.43 520.21
SD 1.18 × 10−2 8.81 × 10−2 9.18 × 10−2 1.06 × 10−1 9.39 × 10−2 7.89 × 10−2 7.39 × 10−2 7.25 × 10−2 0.08 0.08 3.66 0.06

Rank 2.00 3.00 5.00 6.00 9.00 7.00 4.00 8.00 12.00 13.00 1.00 10.00

F26
Avr 600.32 603.66 604.32 605.49 607.99 605.26 605.99 601.51 6.02 × 102 609.69 604.19 600.84
SD 0.61 1.59 1.65 1.14 1.76 1.53 1.48 1.21 1.16 × 100 0.80 1.24 0.83

Rank 1.00 5.00 7.00 9.00 12.00 8.00 10.00 3.00 4.00 × 100 13.00 6.00 2.00

F27
Avr 700.02 700.26 700.17 700.35 701.09 700.29 700.41 700.05 701.20 795.27 700.24 700.08
SD 0.01 0.10 0.08 0.23 0.46 0.19 0.31 0.04 0.95 27.14 0.12 0.10

Rank 1.00 6.00 4.00 8.00 10.00 7.00 9.00 2.00 11.00 13.00 5.00 3.00

F28
Avr 800.50 821.33 821.40 821.03 844.05 823.18 813.43 807.33 812.15 876.28 801.79 800.66
SD 6.27 × 10−1 1.11 × 101 9.72 × 100 7.53 × 100 1.58 × 101 1.02 × 101 5.44 × 100 4.71 × 100 5.70 8.27 1.15 1.05

Rank 1.00 8.00 9.00 7.00 12.00 10.00 6.00 4.00 5.00 13.00 3.00 2.00

F29
Avr 907.18 920.93 925.22 937.34 950.57 931.37 931.48 914.54 914.91 960.42 915.39 914.65
SD 2.58 9.25 8.72 5.75 19.54 10.36 9.98 5.91 6.21 5.63 5.69 3.48

Rank 1.00 6.00 7.00 10.00 12.00 8.00 9.00 2.00 4.00 13.00 5.00 3.00

F30
Avr 1010.54 1571.44 1457.97 1186.07 1610.08 1580.21 1104.67 1169.31 1370.39 2107.30 1145.39 1068.08
SD 30.00 257.58 238.56 120.79 352.70 273.00 76.89 146.30 141.26 167.86 110.93 53.37

Rank 1.00 9.00 8.00 6.00 11.00 10.00 3.00 5.00 7.00 13.00 4.00 2.00

F31
Avr 1888.08 2.37 × 103 1.98 × 103 1.69 × 103 2.99 × 103 1.99 × 103 1.87 × 103 1.71 × 103 1823.92 2501.55 1950.17 2447.27
SD 202.29 3.49 × 102 3.28 × 102 2.35 × 102 5.38 × 102 3.30 × 102 3.50 × 102 3.17 × 102 405.02 203.72 258.79 193.51

Rank 5.00 9.00 7.00 1.00 13.00 8.00 4.00 2.00 3.00 11.00 6.00 10.00
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Table 8. Cont.

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

F32
Avr 1200.12 1200.24 1200.29 1200.26 1200.77 1200.39 1200.35 1200.32 1200.75 1201.28 1200.14 1200.64
SD 0.04 0.19 0.18 0.16 0.29 0.30 0.20 0.17 0.65 0.30 0.08 0.11

Rank 1.00 3.00 5.00 4.00 11.00 8.00 7.00 6.00 10.00 13.00 2.00 9.00

F33
Avr 1300.16 1300.25 1300.28 1300.46 1300.44 1300.36 1300.46 1300.08 1300.19 1303.57 1300.29 1300.16
SD 0.04 0.11 0.14 0.18 0.17 0.18 0.21 0.04 0.05 0.74 0.09 0.04

Rank 2.00 5.00 6.00 10.00 9.00 8.00 11.00 1.00 4.00 13.00 7.00 3.00

F34
Avr 1400.19 1400.23 1400.29 1400.42 1400.32 1400.29 1400.40 1400.20 1400.29 1414.11 1400.21 1400.19
SD 0.06 0.12 0.11 0.22 0.23 0.17 0.23 0.09 0.19 6.76 0.10 0.06

Rank 1.00 5.00 8.00 11.00 9.00 7.00 10.00 3.00 6.00 13.00 4.00 1.00

F35
Avr 1500.82 1501.59 1501.76 1503.14 1506.37 1503.11 1503.73 1501.13 1501.90 6731.90 1501.09 1501.76
SD 0.22 0.64 0.88 2.12 2.84 2.23 2.13 0.40 0.89 5786.78 0.41 0.29

Rank 1.00 4.00 5.00 9.00 11.00 8.00 10.00 3.00 7.00 13.00 2.00 6.00

F36
Avr 1602.35 1602.70 1603.03 1602.85 1603.36 1603.06 1602.98 1602.35 1602.64 1603.75 1602.76 1602.61
SD 0.38 0.59 0.42 0.41 0.35 0.30 0.42 0.52 0.50 0.13 0.32 0.30

Rank 1.00 5.00 9.00 7.00 12.00 10.00 8.00 1.00 4.00 13.00 6.00 3.00

Hybrid

F37
Avr 1717.64 5.92 × 103 2.27 × 103 7.35 × 103 1.62 × 105 2.58 × 103 1.07 × 104 5.48 × 103 63,042.13 477,784.19 7797.80 1873.12
SD 22.39 3.38 × 103 3.96 × 102 3.66 × 103 2.13 × 105 1.25 × 103 8.26 × 103 3.86 × 103 129,932.00 109,260.79 5659.29 434.71

Rank 1.00 6.00 3.00 7.00 12.00 4.00 9.00 5.00 11.00 13.00 8.00 2.00

F38
Avr 1800.85 14,446.41 2319.86 9682.72 9696.15 1885.23 10,609.80 9356.68 10,610.02 40,067.12 11,422.57 1803.87
SD 0.59 10,403.74 1076.15 3555.45 10,255.49 46.85 8071.84 5017.19 5783.75 46,220.31 10,865.40 10.84

Rank 1.00 11.00 4.00 6.00 7.00 3.00 8.00 5.00 9 13 10.00 2.00

F39
Avr 1900.46 1903.04 1902.59 1903.04 1906.12 1902.60 1903.54 1901.84 1902.94 1921.26 1901.82 1900.90
SD 0.27 0.98 1.41 0.87 1.40 1.26 1.28 0.96 0.92 16.06 0.65 0.69

Rank 1.00 9.00 5.00 8.00 12.00 6.00 10.00 4.00 7.00 13.00 3.00 2.00

F40
Avr 2000.58 3418.70 2108.10 5264.04 8152.17 2056.55 8010.60 2121.66 5439.36 12,224.03 7640.34 2000.40
SD 0.47 1781.61 82.85 2176.01 4028.66 41.84 4783.81 74.55 3862.97 6303.34 6685.14 0.44

Rank 2.00 6.00 4.00 8.00 12.00 3.00 11.00 5.00 9.00 13.00 10.00 1.00

F41
Avr 2100.53 5295.60 2406.77 4838.31 90,227.96 2505.53 9494.63 2388.96 14,867.98 1.27 × 106 4290.40 2117.89
SD 2.91 × 10−1 4294.39 239.42 3095.47 202,328.35 261.30 6275.18 209.28 35,581.10 2.94 × 106 3157.23 44.31

Rank 1.00 8.00 4.00 7.00 12.00 5.00 9.00 3.00 11.00 13.00 6.00 2.00

F42
Avr 2200.81 2252.82 2272.19 2307.98 2309.89 2238.24 2271.60 2250.98 2285.78 2409.37 2228.42 2213.01
SD 3.02 47.42 64.65 57.30 71.55 33.97 60.97 53.87 60.31 81.86 34.60 25.09

Rank 1.00 6.00 9.00 11.00 12.00 4.00 8.00 5.00 10.00 13.00 3.00 2.00

Composition
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Table 8. Cont.

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

F43
Avr 2581.99 2629.46 2500.00 2500.00 2616.13 2500.00 2500.00 2629.46 2634.66 2500.00 2500.00 2629.46
SD 63.45 0.00 0.00 0.00 46.43 0.00 0.00 0.00 4.52 0.00 0.00 0.00

Rank 7.00 10.00 1.00 2.00 8.00 3.00 4.00 9.00 12.00 5.00 6.00 11.00

F44
Avr 2515.12 2552.08 2532.18 2547.45 2574.63 2582.52 2582.07 2580.26 2543.12 2538.92 2599.43 2536.95
SD 3.96 8.58 9.38 25.72 30.06 23.13 28.47 27.82 36.12 29.87 1.78 29.67

Rank 1.00 8.00 3.00 7.00 9.00 12.00 11.00 10.00 6.00 5.00 13.00 4.00

F45
Avr 2633.50 2696.49 2678.16 2682.90 2696.47 2694.01 2696.55 2696.56 2690.04 2693.41 2699.88 2694.51
SD 10.38 1.17 × 101 3.10 × 101 2.32 × 101 1.05 × 101 1.29 × 101 1.36 × 101 8.76 × 100 21.16 18.89 0.65 17.36

Rank 1.00 1.00 × 101 2.00 × 100 4.00 × 100 9.00 × 100 7.00 × 100 1.10 × 101 1.20 × 101 5.00 6.00 13.00 8.00

F46
Avr 2700.14 2700.65 2700.18 2700.28 2700.17 2700.34 2700.24 2700.30 2703.40 2703.48 2709.86 2700.22
SD 0.04 0.12 0.08 0.17 0.08 0.17 0.12 0.15 18.25 18.23 19.72 0.08

Rank 1.00 10.00 3.00 7.00 2.00 9.00 6.00 8.00 11.00 12.00 13.00 5.00

F47
Avr 2823.87 3002.57 3010.43 2842.06 2874.38 3084.23 2854.69 2893.57 3027.04 3032.32 2900.00 2893.39
SD 154.31 171.71 158.02 90.03 66.44 135.58 83.53 35.20 116.70 98.70 0.00 36.19

Rank 1.00 9.00 10.00 2.00 4.00 13.00 3.00 6.00 11.00 12.00 7.00 5.00

F48
Avr 3155.87 3278.03 3209.81 3000.00 3000.00 3349.79 3000.00 3000.00 3255.21 3248.91 3000.00 3000.00
SD 67.80 53.44 58.10 0.00 0.00 159.11 0.00 0.00 79.92 78.45 0.00 0.00

Rank 7.00 12.00 9.00 1.00 2.00 13.00 3.00 4.00 11.00 10.00 5.00 6.00

F49
Avr 3076.80 9000.02 61,591.92 183,714.47 3824.55 244,952.31 74,649.01 3643.30 413,389.22 545,401.12 3100.00 36,135.91
SD 48.99 6617.79 314,631.79 551,709.97 588.88 625,545.37 390,869.63 622.98 836,534.22 1.02 × 106 0.00 179,113.96

Rank 1.00 5.00 7.00 10.00 4.00 11.00 8.00 3.00 12.00 1.30 × 101 2.00 6.00

Avr 3523.72 4608.66 4241.32 3990.04 4470.61 5031.79 3991.63 4425.03 3810.93 4322.67 3200.00 3608.58
F50 SD 52.44 608.68 508.03 545.97 451.97 982.39 332.96 523.84 304.68 692.91 0.00 307.80

Rank 3.00 12.00 8.00 6.00 11.00 13.00 7.00 10.00 5.00 9.00 1.00 4.00
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Table 9. p-values of LSO with each rival optimizer on CEC-2014 test suite (F21–F50).

Fun SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F21 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F22 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 5.20 × 10−12 7.85 × 10−1

F23 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 2.16 × 10−2

Multimodal

F24 4.34 × 10−11 4.49 × 10−8 9.41 × 10−8 1.41 × 10−9 1.52 × 10−7 1.20 × 10−7 2.61 × 10−8 3.42 × 10−10 1.93 × 10−11 3.86 × 10−9 2.36 × 10−8

F25 5.57 × 10−10 3.79 × 10−1 8.29 × 10−6 1.85 × 10−8 2.13 × 10−4 8.77 × 10−1 8.48 × 10−9 3.02 × 10−11 3.02 × 10−11 1.43 × 10−5 3.02 × 10−11

F26 3.02 × 10−11 6.07 × 10−11 3.02 × 10−11 3.02 × 10−11 3.69 × 10−11 3.34 × 10−11 1.19 × 10−6 1.41 × 10−9 3.02 × 10−11 4.50 × 10−11 1.90 × 10−1

F27 3.02 × 10−11 1.21 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.78 × 10−4 3.02 × 10−11 3.02 × 10−11 4.08 × 10−11 2.84 × 10−1

F28 1.55 × 10−11 1.54 × 10−11 1.55 × 10−11 1.55 × 10−11 1.54 × 10−11 1.54 × 10−11 5.78 × 10−11 1.55 × 10−11 1.55 × 10−11 4.68 × 10−9 7.08 × 10−1

F29 3.02 × 10−11 6.06 × 10−11 3.02 × 10−11 3.02 × 10−11 1.96 × 10−10 4.50 × 10−11 1.73 × 10−6 1.25 × 10−7 3.02 × 10−11 1.10 × 10−8 1.29 × 10−9

F30 2.99 × 10−11 2.35 × 10−10 4.45 × 10−11 5.43 × 10−11 4.45 × 10−11 2.42 × 10−9 3.78 × 10−10 3.65 × 10−11 2.99 × 10−11 2.35 × 10−10 2.42 × 10−9

F31 3.02 × 10−11 2.52 × 10−1 8.12 × 10−4 4.08 × 10−11 2.52 × 10−1 6.52 × 10−1 2.15 × 10−2 8.50 × 10−2 9.92 × 10−11 3.71 × 10−1 9.92 × 10−11

F32 3.02 × 10−11 4.44 × 10−7 5.61 × 10−5 3.02 × 10−11 6.01 × 10−8 8.48 × 10−9 1.07 × 10−7 1.25 × 10−4 3.02 × 10−11 8.65 × 10−1 3.02 × 10−11

F33 3.02 × 10−11 2.77 × 10−5 5.07 × 10−10 1.55 × 10−9 1.36 × 10−7 1.20 × 10−8 6.01 × 10−8 9.47 × 10−3 3.02 × 10−11 2.02 × 10−8 3.87 × 10−1

F34 3.02 × 10−11 2.60 × 10−5 2.83 × 10−8 7.29 × 10−3 3.03 × 10−3 9.83 × 10−8 7.17 × 10−1 1.30 × 10−1 3.02 × 10−11 4.38 × 10−1 8.53 × 10−1

F35 3.02 × 10−11 7.04 × 10−7 8.99 × 10−11 3.02 × 10−11 1.61 × 10−10 4.98 × 10−11 1.89 × 10−4 4.44 × 10−7 3.02 × 10−11 6.10 × 10−3 6.07 × 10−11

F36 3.34 × 10−11 4.69 × 10−8 1.09 × 10−5 3.16 × 10−10 9.26 × 10−9 2.78 × 10−7 9.71 × 10−1 5.19 × 10−2 3.02 × 10−11 1.32 × 10−4 2.24 × 10−2

Hybrid

F37 3.02 × 10−11 4.50 × 10−11 3.02 × 10−11 3.02 × 10−11 3.34 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.37 × 10−5

F38 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.20 × 10−5

F39 3.02 × 10−11 1.07 × 10−9 3.02 × 10−11 3.02 × 10−11 4.50 × 10−11 3.02 × 10−11 5.00 × 10−9 3.02 × 10−11 3.02 × 10−11 8.99 × 10−11 2.92 × 10−2

F40 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.68 × 10−2

F41 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.32 × 10−2

F42 3.02 × 10−11 5.49 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 9.92 × 10−11 3.02 × 10−11 3.02 × 10−11 2.15 × 10−10 3.51 × 10−2
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Table 9. Cont.

Fun SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Composition

F43 1.20 × 10−11 1.45 × 10−7 1.45 × 10−7 1.51 × 10−8 1.45 × 10−7 1.45 × 10−7 2.43 × 10−11 1.20 × 10−11 1.45 × 10−7 1.45 × 10−7 6.39 × 10−4

F44 1.86 × 10−9 2.09 × 10−10 3.34 × 10−11 3.02 × 10−11 1.79 × 10−11 3.16 × 10−12 2.38 × 10−7 3.16 × 10−10 3.16 × 10−12 1.78 × 10−10 2.23 × 10−9

F45 7.77 × 10−9 5.93 × 10−9 6.93 × 10−12 1.44 × 10−10 4.57 × 10−12 1.60 × 10−11 1.34 × 10−10 1.20 × 10−8 1.02 × 10−11 1.41 × 10−11 2.53 × 10−8

F46 5.97 × 10−5 5.60 × 10−7 3.67 × 10−3 5.07 × 10−10 1.29 × 10−6 5.53 × 10−8 1.49 × 10−6 5.01 × 10−1 3.02 × 10−11 8.29 × 10−6 2.13 × 10−5

F47 2.25 × 10−4 2.68 × 10−5 2.76 × 10−7 2.15 × 10−10 1.50 × 10−5 1.91 × 10−7 4.80 × 10−7 2.60 × 10−8 2.32 × 10−7 2.77 × 10−6 1.35 × 10−4

F48 3.56 × 10−4 4.57 × 10−12 4.57 × 10−12 7.76 × 10−9 4.57 × 10−12 4.57 × 10−12 3.82 × 10−9 7.69 × 10−8 4.57 × 10−12 4.57 × 10−12 6.51 × 10−9

F49 3.02 × 10−11 3.02 × 10−11 1.17 × 10−9 3.02 × 10−11 6.52 × 10−9 1.58 × 10−7 3.02 × 10−11 3.02 × 10−11 5.89 × 10−2 2.83 × 10−6 3.02 × 10−11

F50 3.02 × 10−11 2.20 × 10−7 1.47 × 10−7 3.02 × 10−11 3.82 × 10−10 5.97 × 10−9 5.60 × 10−7 2.61 × 10−10 1.21 × 10−12 1.56 × 10−2 8.50 × 10−2
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Figure 11. Average rank on all CEC2017 test functions.
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Figure 12. Average SD of each optimizer on all CEC2017.

The Wilcoxon rank-sum test is used to determine the difference between the outcomes
of LSO and these of each rival optimizer on CEC2017 test functions. Wilcoxon rank-sum
test demonstrates a significant difference between the outcomes of LSO with the rival
algorithms, as the p-values in Table 11 support the alternative hypothesis. Ultimately, LSO
is a strong optimizer, as demonstrated by its ability to defeat GBO, RUN, GTO, AVOA,
SMA, RSA, and EO, which are the most recently published optimizers, as well as four
highly-cited metaheuristic algorithms such as WOA, GWO, SSA, and DE.
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Table 10. Avr and SD of CEC2017 for 25 independent runs (The bolded value is the best overall).

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F51
Avr 1.00 × 102 3.02 × 103 1.75 × 103 3.41 × 103 4.66 × 106 3.13 × 103 4.12 × 103 1.79 × 103 4.87 × 107 1.14 × 1010 7.46 × 103 4.60 × 102

SD 3.56 × 10−14 3.59 × 103 1.71 × 103 1.77 × 103 6.92 × 106 3.24 × 103 4.04 × 103 1.93 × 103 1.26 × 108 3.64 × 109 4.48 × 103 1.19 × 103

Rank 1.00 5.00 3.00 7.00 10.00 6.00 8.00 4.00 11.00 13.00 9.00 2.00

F52
Avr 300.00 300.00 300.00 300.00 1617.08 300.00 300.00 300.00 2542.88 10,392.16 300.00 300.00

SD 0.00 × 100 7.30 ×
10−10

4.88 ×
10−13 1.17 × 10−3 1.73 × 103 4.70 ×

10−10 2.93 × 10−9 4.92 ×
10−10 2.02 × 103 3.07 × 103 1.62 × 10−3 1.06 ×

10−14

Rank 1.00 6.00 3.00 9.00 11.00 4.00 7.00 5.00 12.00 13.00 8.00 2.00

Multimodal

F53
Avr 400.00 405.28 401.36 403.35 428.61 402.75 408.82 403.49 418.77 1226.25 408.54 406.25
SD 6.83 × 10−7 10.06 0.49 2.18 36.66 1.38 17.51 1.28 20.57 579.17 13.53 1.24

Rank 1.00 6.00 2.00 4.00 11.00 3.00 9.00 5.00 10.00 13.00 8.00 7.00

F54
Avr 506.00 519.80 526.09 533.13 555.93 526.93 537.46 516.16 519.42 584.87 514.30 514.54
SD 2.22 9.38 12.38 8.51 26.06 12.75 14.36 5.66 8.78 15.78 6.18 3.31

Rank 1.00 6.00 7.00 9.00 12.00 8.00 10.00 4.00 5.00 13.00 2.00 3.00

F55
Avr 600.00 609.86 601.84 618.91 638.19 609.14 610.07 600.06 601.57 645.54 600.15 600.00
SD 0.00 7.52 × 100 3.06 × 100 8.59 × 100 1.37 × 101 7.16 × 100 6.92 × 100 3.17 × 10−1 2.14 × 100 6.58 × 100 4.35 × 10−1 2.08 × 10−6

Rank 1.00 8.00 6.00 10.00 12.00 7.00 9.00 3.00 5.00 13.00 4.00 2.00

F56
Avr 717.07 732.33 737.11 762.79 775.78 756.31 765.61 723.21 732.39 806.57 726.05 726.99
SD 2.58 9.87 11.64 12.14 23.43 17.12 20.50 5.84 8.53 12.89 7.54 3.86

Rank 1.00 5.00 7.00 9.00 12.00 8.00 10.00 2.00 6.00 13.00 3.00 4.00

F57
Avr 806.62 821.03 822.97 827.43 840.82 824.91 828.43 813.33 815.53 854.98 816.32 814.53
SD 3.42 10.61 8.06 6.00 16.83 9.14 10.25 4.85 5.62 7.67 7.52 3.69

Rank 1.00 6.00 7.00 9.00 12.00 8.00 10.00 2.00 4.00 13.00 5.00 3.00

F58
Avr 900.00 903.92 924.99 1056.95 1498.95 993.42 1090.74 900.20 927.36 1542.77 900.00 900.00
SD 0.00 7.74 × 100 4.43 × 101 1.01 × 102 4.48 × 102 8.62 × 101 1.80 × 102 5.29 × 10−1 5.44 × 101 1.67 × 102 1.64 × 10−2 0.00

Rank 1.00 5.00 6.00 10.00 12.00 8.00 11.00 4.00 7.00 13.00 3.00 1.00

F59
Avr 1350.60 1772.60 1835.55 1582.06 2158.15 2000.11 1852.32 1541.39 1639.92 2623.40 1601.13 1449.25
SD 143.76 259.50 342.45 241.56 392.70 311.11 312.11 222.43 314.70 171.28 224.02 262.92

Rank 1.00 7.00 8.00 4.00 11.00 10.00 9.00 3.00 6.00 13.00 5.00 2.00

Hybrid

F60
Avr 1101.17 2158.63 1120.62 1126.24 1378.55 1126.78 1138.46 1108.96 1141.03 19,833.64 1116.24 1102.18
SD 1.16 464.08 27.18 7.71 443.63 17.50 39.91 8.28 36.04 48,865.27 7.73 2.31

Rank 1.00 12.00 5.00 6.00 10.00 7.00 8.00 3.00 9.00 13.00 4.00 2.00
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Table 10. Cont.

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

F61
Avr 1233.50 1.20 × 106 1.06 × 104 2.18 × 105 4.62 × 106 1.40 × 104 3.87 × 105 1.01 × 104 6.84 × 105 2.75 × 108 4.51 × 104 3.83 × 103

SD 52.56 9.97 × 105 1.25 × 104 1.87 × 105 5.01 × 106 1.22 × 104 4.73 × 105 6.61 × 103 8.47 × 105 1.59 × 108 2.89 × 104 6.45 × 103

Rank 1.00 10.00 4.00 7.00 11.00 5.00 8.00 3.00 9.00 13.00 6.00 2.00

F62
Avr 1303.75 16,604.03 1815.02 10,568.95 16,564.10 1466.29 10,902.04 7359.12 11,669.47 49,487,747.88 15,922.68 1309.37
SD 2.55 11,742.29 304.94 5329.62 13,327.54 149.89 8235.90 6429.88 6780.52 77,696,384.86 13,216.90 7.75

Rank 1.00 11.00 4.00 6.00 10.00 3.00 7.00 5.00 8.00 13.00 9.00 2.00

F63
Avr 1400.60 1498.92 1480.73 2086.66 1803.91 1457.81 1790.54 1455.40 2955.58 10,856.69 1581.31 1402.50
SD 0.62 40.21 38.32 589.06 728.21 24.43 554.19 27.24 1781.83 18,963.95 642.53 5.99

Rank 1.00 6.00 5.00 11.00 10.00 4.00 9.00 3.00 12.00 13.00 7.00 2.00

F64
Avr 1500.29 2251.04 1593.26 2267.56 6197.31 1559.16 3328.43 1600.40 4020.66 11,243.41 2344.58 1500.66
SD 0.34 883.94 74.16 783.57 4167.90 52.61 1537.34 76.54 3824.80 5685.89 1528.88 0.61

Rank 1.00 7.00 4.00 8.00 12.00 3.00 10.00 5.00 11.00 13.00 9.00 2.00

F65
Avr 1600.46 1709.98 1740.23 1783.44 1899.10 1701.90 1797.66 1664.51 1725.36 2127.09 1691.78 1611.95
SD 0.26 117.63 107.09 108.96 116.03 85.88 123.84 66.64 107.02 117.70 78.57 25.13

Rank 1.00 6.00 9.00 10.00 12.00 5.00 11.00 3.00 8.00 13.00 4.00 2.00

F66
Avr 1702.47 1770.91 1761.37 1758.72 1793.83 1750.44 1780.81 1742.65 1749.74 1849.72 1756.58 1706.13
SD 4.52 41.62 43.18 21.79 44.20 21.82 46.96 17.18 20.45 50.83 38.02 8.25

Rank 1.00 9.00 8.00 7.00 12.00 5.00 11.00 3.00 4.00 13.00 6.00 2.00

F67
Avr 1800.18 1.63 × 104 4.67 × 103 1.68 × 104 1.76 × 104 3.13 × 103 1.40 × 104 1.42 × 104 2.64 × 104 1.55 × 108 2.80 × 104 1.81 × 103

SD 0.27 1.01 × 104 4.95 × 103 9.94 × 103 1.31 × 104 2.79 × 103 9.74 × 103 1.08 × 104 1.63 × 104 3.78 × 108 1.42 × 104 8.76 × 100

Rank 1.00 7.00 4.00 8.00 9.00 3.00 5.00 6.00 10.00 13.00 11.00 2.00

F68
Avr 1900.11 2551.75 1987.39 8849.78 52,403.86 1955.14 7572.26 1954.94 15,942.55 2,103,955.73 6030.92 1900.30
SD 0.27 886.53 77.78 6841.59 85,717.24 49.95 6392.57 34.09 47,387.19 3,083,821.04 6113.48 0.55

Rank 1.00 6.00 5.00 10.00 12.00 4.00 9.00 3.00 11.00 13.00 7.00 2.00

F69
Avr 2000.23 2088.91 2093.27 2125.33 2205.96 2082.82 2098.95 2055.37 2081.95 2300.60 2025.85 2002.40
SD 0.38 57.36 63.21 54.09 67.36 50.96 75.83 61.47 60.40 73.00 9.52 6.32

Rank 1.00 7.00 8.00 11.00 12.00 6.00 10.00 4.00 5.00 13.00 3.00 2.00

Composition

F70
Avr 2215.36 2276.54 2274.36 2233.44 2306.01 2222.91 2252.57 2312.71 2317.95 2337.09 2302.12 2308.46
SD 34.45 58.28 60.70 54.68 64.60 48.29 67.13 22.59 5.76 59.07 45.92 36.96

Rank 1.00 7.00 6.00 3.00 9.00 2.00 5.00 11.00 12.00 13.00 8.00 10.00

F71
Avr 2291.09 2350.02 2300.86 2305.55 2579.66 2302.98 2337.24 2316.37 2348.58 3123.29 2387.92 2300.47
SD 24.29 177.41 13.46 11.34 536.23 10.16 192.17 85.77 152.10 345.67 286.27 0.80

Rank 1.00 9.00 3.00 5.00 12.00 4.00 7.00 6.00 8.00 13.00 11.00 2.00
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Table 10. Cont.

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

F72
Avr 2597.61 2620.27 2624.73 2620.77 2646.73 2631.16 2640.09 2615.40 2618.59 2701.83 2620.81 2612.69
SD 56.22 8.88 12.93 6.95 21.63 17.77 17.08 5.37 7.67 22.14 8.01 4.21

Rank 1.00 5.00 8.00 6.00 11.00 9.00 10.00 3.00 4.00 13.00 7.00 2.00

F73
Avr 2650.08 2749.50 2698.60 2740.68 2765.21 2723.20 2735.38 2744.79 2748.32 2872.14 2755.56 2751.45
SD 112.94 9.32 112.23 46.31 62.33 89.82 94.83 7.51 10.93 44.62 10.18 5.29

Rank 1.00 8.00 2.00 5.00 11.00 3.00 4.00 6.00 7.00 13.00 10.00 9.00

F74
Avr 2902.82 2921.26 2934.68 2935.62 2938.57 2919.17 2927.29 2930.31 2938.18 3349.41 2945.50 2929.57
SD 13.79 24.61 29.09 20.38 63.39 66.92 24.71 22.34 28.39 117.10 33.08 22.53

Rank 1.00 3.00 7.00 8.00 10.00 2.00 4.00 6.00 9.00 13.00 11.00 5.00

F75
Avr 2845.98 2975.91 2980.81 2993.65 3345.53 2989.79 3250.79 2973.06 3263.92 4146.59 3176.37 3001.41
SD 103.36 249.95 114.69 213.33 446.62 129.74 529.36 253.79 442.08 290.19 427.89 231.12

Rank 1.00 3.00 4.00 6.00 12.00 5.00 10.00 2.00 11.00 13.00 9.00 7.00

F76
Avr 3090.28 3092.86 3097.64 3094.37 3141.37 3099.69 3101.52 3095.37 3099.26 3189.41 3091.13 3092.04
SD 1.78 3.08 4.37 2.27 37.19 18.88 8.87 8.41 12.72 84.08 1.51 3.12

Rank 1.00 4.00 7.00 5.00 12.00 9.00 10.00 6.00 8.00 13.00 2.00 3.00

F77
Avr 3111.62 3312.50 3315.61 3340.49 3433.65 3317.49 3324.96 3342.76 3335.87 3780.91 3367.88 3334.58
SD 150.21 185.24 138.98 108.50 181.80 188.84 128.45 122.45 112.63 145.33 164.48 108.44

Rank 1.00 3.00 4.00 9.00 12.00 5.00 6.00 10.00 8.00 13.00 11.00 7.00

F78
Avr 3157.42 3185.14 3246.87 3206.20 3327.95 3220.80 3278.28 3192.92 3213.86 3463.17 3198.95 3170.47
SD 9.57 43.95 73.76 36.66 74.48 48.13 79.14 48.33 48.58 140.12 67.35 16.12

Rank 1.00 3.00 10.00 6.00 12.00 8.00 11.00 4.00 7.00 13.00 5.00 2.00

F79
Avr 3.49 × 103 3.12 × 105 8.06 × 105 1.67 × 105 9.11 × 105 1.90 × 106 1.64 × 105 3.38 × 105 9.62 × 105 9.67 × 106 2.33 × 105 1.48 × 105

SD 2.20 × 102 4.94 × 105 1.16 × 106 2.06 × 105 8.87 × 105 2.98 × 106 2.50 × 105 4.89 × 105 1.74 × 106 1.32 × 107 4.27 × 105 3.07 × 105

Rank 1.00 6.00 9.00 4.00 10.00 12.00 3.00 7.00 11.00 13.00 5.00 2.00
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Table 11. p-values of LSO with each rival optimizer on CEC-2017 test suite (F51–F79).

Fun SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F51 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.40 × 10−11 2.92 × 10−1

F52 1.21 × 10−12 1.53 × 10−11 1.21 × 10−12 1.21 × 10−12 1.20 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 3.34 × 10−1

Multimodal

F53 3.33 × 10−11 3.33 × 10−11 4.96 × 10−11 3.01 × 10−11 3.68 × 10−11 4.49 × 10−11 3.01 × 10−11 3.01 × 10−11 3.01 × 10−11 3.01 × 10−11 3.01 × 10−11

F54 2.60 × 10−8 3.47 × 10−10 3.69 × 10−11 3.34 × 10−11 4.20 × 10−10 4.50 × 10−11 3.65 × 10−8 7.12 × 10−9 3.02 × 10−11 2.00 × 10−6 8.48 × 10−9

F55 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 4.48 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 4.02 × 10−1

F56 2.61 × 10−10 9.92 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 6.28 × 10−6 1.69 × 10−9 3.02 × 10−11 5.19 × 10−7 2.61 × 10−10

F57 1.25 × 10−7 1.96 × 10−10 3.02 × 10−11 3.02 × 10−11 4.62 × 10−10 4.97 × 10−11 5.17 × 10−7 1.20 × 10−8 3.02 × 10−11 2.19 × 10−8 4.57 × 10−9

F58 5.26 × 10−12 8.63 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 4.09 × 10−11 2.15 × 10−12 1.72 × 10−12 4.10 × 10−11 3.34 × 10−1

F59 2.19 × 10−8 2.19 × 10−8 8.66 × 10−5 1.96 × 10−10 2.15 × 10−10 6.52 × 10−9 9.03 × 10−4 1.78 × 10−4 3.02 × 10−11 9.51 × 10−6 2.40 × 10−1

Hybrid

F60 3.02 × 10−11 9.92 × 10−11 3.02 × 10−11 3.02 × 10−11 3.69 × 10−11 3.02 × 10−11 1.31 × 10−8 3.02 × 10−11 3.02 × 10−11 4.50 × 10−11 1.08 × 10−2

F61 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F62 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.60 × 10−7

F63 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.55 × 10−1

F64 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 6.35 × 10−2

F65 3.02 × 10−11 6.70 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.08 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.09 × 10−8

F66 3.02 × 10−11 4.08 × 10−11 3.69 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 5.49 × 10−11 3.69 × 10−11 3.02 × 10−11 4.50 × 10−11 2.43 × 10−1

F67 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.61 × 10−2

F68 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.76 × 10−2

F69 1.41 × 10−11 1.41 × 10−11 1.41 × 10−11 1.41 × 10−11 1.41 × 10−11 1.41 × 10−11 2.61 × 10−11 1.41 × 10−11 1.41 × 10−11 1.41 × 10−11 5.22 × 10−2

Composition

F70 1.32 × 10−4 1.32 × 10−4 4.46 × 10−1 4.44 × 10−7 9.94 × 10−1 4.86 × 10−3 1.70 × 10−8 1.96 × 10−10 4.44 × 10−7 9.26 × 10−9 3.08 × 10−8

F71 3.34 × 10−11 1.55 × 10−9 3.82 × 10−10 3.82 × 10−10 1.17 × 10−9 4.31 × 10−8 6.77 × 10−5 4.98 × 10−11 3.02 × 10−11 3.02 × 10−11 8.07 × 10−1
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Table 11. Cont.

Fun SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

F72 2.67 × 10−9 5.49 × 10−11 1.21 × 10−10 3.02 × 10−11 1.07 × 10−9 3.34 × 10−11 8.48 × 10−9 3.96 × 10−8 3.02 × 10−11 4.50 × 10−11 4.74 × 10−6

F73 2.60 × 10−8 1.76 × 10−3 2.38 × 10−7 2.23 × 10−9 3.32 × 10−6 8.20 × 10−7 2.32 × 10−6 7.04 × 10−7 3.02 × 10−11 1.61 × 10−10 2.87 × 10−10

F74 4.57 × 10−5 2.53 × 10−8 8.61 × 10−10 3.86 × 10−8 4.66 × 10−6 1.44 × 10−7 4.44 × 10−9 5.30 × 10−9 2.91 × 10−11 7.51 × 10−8 5.00 × 10−6

F75 1.77 × 10−9 8.48 × 10−8 2.88 × 10−2 1.80 × 10−10 6.34 × 10−7 4.13 × 10−6 2.12 × 10−6 3.55 × 10−10 1.44 × 10−11 3.64 × 10−11 7.62 × 10−7

F76 6.32 × 10−5 6.63 × 10−10 2.80 × 10−8 2.98 × 10−11 3.32 × 10−8 1.39 × 10−9 3.80 × 10−6 1.99 × 10−8 2.98 × 10−11 3.17 × 10−3 4.20 × 10−4

F77 3.78 × 10−8 7.35 × 10−6 2.09 × 10−9 1.73 × 10−9 1.24 × 10−6 2.28 × 10−8 2.49 × 10−7 2.09 × 10−8 2.50 × 10−11 3.60 × 10−9 2.40 × 10−8

F78 5.87 × 10−4 7.38 × 10−10 9.26 × 10−9 3.02 × 10−11 4.18 × 10−9 6.07 × 10−11 1.86 × 10−6 5.46 × 10−9 3.02 × 10−11 3.51 × 10−2 9.03 × 10−4

F79 3.02 × 10−11 5.07 × 10−10 3.02 × 10−11 3.02 × 10−11 5.46 × 10−11 3.02 × 10−11 3.69 × 10−11 3.02 × 10−11 3.01 × 10−11 3.02 × 10−11 2.87 × 10−10
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4.6. LSO for Challengeable CEC2020

During this section, additional testing is carried out on the CEC-2020 test suite to
determine whether the proposed has stable performance for more challenging test functions.
An algorithm’s ability to explore, exploit, and stay away from local minima can be evaluated
using this suite, which consists of ten test functions and is divided into four categories:
unimodal, multimodal, hybrid, and compositional. The characteristics of this suite are
shown in Appendix A Tables A1–A7. LSO has superior performance for all test functions
found in the CEC-2020 test suite except for F83, as evidenced by the Avr, rank, and SD
values presented in Table 12 and obtained after analyzing the results of 25 independent
runs. Figures 13 and 14 show the average of the rank values and SD on all test functions
of CEC2020. According to these figures, LSO is the best because it is ranked first with
a value of 1.7 and has the lowest standard deviation of 38, whereas RSA is the worst
because it is ranked last with a value of 12. Finally, the Wilcoxon rank-sum test is used
to determine the difference between the results of LSO and those of each rival optimizer
on this suite. The Wilcoxon rank-sum test results demonstrate a statistically significant
difference between the outcomes of LSO and the rival algorithms for most test functions,
as evidenced by the p-values in Table 13, which support the alternative hypothesis. As
an added bonus, in this section, we present additional experimental evidence that LSO
belongs to the strong optimizers.
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Figure 14. Average SD of each optimizer on all CEC2020.
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Table 12. Avr and SD of CEC2020 for 25 independent runs (The bolded value is the best overall).

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F80

Avr 1.00 × 102 3.04 × 103 1.82 × 103 3.94 × 103 1.69 × 106 2.85 × 103 3.76 × 103 3.89 × 103 7.74 × 107 1.27 × 10+10 7257.82 704.92

SD 2.64 × 10−13 3.47 × 103 2.05 × 103 2.04 × 103 2.04 × 106 2.19 × 103 2.52 × 103 3.64 × 103 1.60 × 108 4.15 × 109 4390.97 2059.48

Rank 1.00 5.00 3.00 8.00 10.00 4.00 6.00 7.00 11.00 13.00 9.00 2.00

Multimodal

F81

Avr 1347.02 1766.98 1839.45 1636.20 2059.68 1954.49 1902.30 1476.48 1682.49 2648.60 1665.28 1604.18

SD 1.52 × 102 2.87 × 102 3.42 × 102 1.98 × 102 3.46 × 102 2.39 × 102 3.00 × 102 1.92 × 102 2.48 × 102 2.37 × 102 158.68 251.92

Rank 1.00 7.00 8.00 4.00 11.00 10.00 9.00 2.00 6.00 13.00 5.00 3.00

Hybrid

F82

Avr 718.49 732.59 744.51 761.38 784.64 758.14 769.60 725.86 732.62 806.17 727.48 726.59

SD 3.37 9.83 15.30 17.00 21.87 18.01 19.84 7.84 10.45 10.00 9.09 3.31

Rank 1.00 5.00 7.00 9.00 12.00 8.00 10.00 2.00 6.00 13.00 4.00 3.00

F83

Avr 1900.02 1901.35 1900.00 1900.00 1900.11 1900.00 1900.00 1900.00 1900.11 1900.00 1900.00 1901.16

SD 0.09 0.56 0.00 0.00 0.46 0.00 0.00 0.00 0.26 0.00 0.00 0.17

Rank 8.00 13.00 1.00 2.00 9.00 3.00 4.00 5.00 10.00 6.00 7.00 12.00

F84

Avr 1712.49 6902.12 2245.58 6702.53 294,472.06 2278.87 7280.40 3432.45 39,529.67 414,990.21 9364.45 1834.94

SD 7.64 × 100 4.34 × 103 2.81 × 102 3.78 × 103 5.64 × 105 3.21 × 102 5.18 × 103 9.92 × 102 1.03 × 105 1.37 × 105 5902.78 239.86

Rank 1.00 7.00 3.00 6.00 12.00 4.00 8.00 5.00 11.00 13.00 9.00 2.00

F85

Avr 1604.58 1713.70 1746.69 1756.90 1824.55 1776.96 1788.64 1671.19 1747.52 2137.60 1722.52 1618.83

SD 21.66 87.85 97.05 77.33 115.43 101.48 106.80 94.61 87.98 213.01 52.60 47.72

Rank 1.00 4.00 6.00 8.00 12.00 9.00 11.00 3.00 7.00 13.00 5.00 2.00

F86
Avr 2100.92 5038.57 2561.38 5704.18 45,897.21 2546.39 8936.41 2417.44 9055.12 1,045,287.18 5349.38 2115.06

SD 3.01 3364.65 263.40 3932.69 38,048.22 354.82 6470.47 208.65 4287.62 1,690,081.52 4114.90 51.19

Rank 1.00 6.00 5.00 8.00 12.00 4.00 9.00 3.00 10.00 13.00 7.00 2.00
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Table 12. Cont.

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Composition

F87

Avr 2291.63 2298.76 2299.33 2305.76 2401.00 2305.77 2336.93 2294.71 2308.68 3188.89 2413.02 2300.39

SD 2.33 × 101 1.93 × 101 1.74 × 101 1.09 × 101 2.60 × 102 4.59 × 100 1.82 × 102 2.32 × 101 2.43 × 101 2.97 × 102 308.22 0.56

Rank 1.00 3.00 4.00 6.00 11.00 7.00 9.00 2.00 8.00 13.00 12.00 5.00

F88

Avr 2654.71 2748.83 2717.24 2740.74 2774.76 2707.03 2777.68 2742.18 2745.64 2860.81 2746.39 2749.71

SD 113.82 8.28 99.81 46.31 57.90 105.77 22.49 6.95 48.68 34.68 47.52 4.42

Rank 1.00 8.00 3.00 4.00 11.00 2.00 12.00 5.00 6.00 13.00 7.00 9.00

F89

Avr 2894.33 2922.20 2937.04 2929.85 2952.00 2926.60 2931.74 2932.25 2936.16 3372.91 2927.64 2936.00

SD 57.51 24.00 22.48 23.57 23.42 24.33 23.04 22.98 18.18 150.11 31.06 19.13

Rank 1.00 2.00 10.00 5.00 11.00 3.00 6.00 7.00 9.00 13.00 4.00 8.00
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Table 13. p-values of LSO with each rival optimizer on CEC-2020 test suite (F80–F89).

F SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F80 2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

2.61 ×
10−11

3.49 ×
10−1

Multimodal

F81 9.06 ×
10−8

9.83 ×
10−8

7.60 ×
10−7

2.61 ×
10−10

2.87 ×
10−10

2.67 ×
10−9

1.22 ×
10−2

5.60 ×
10−7

3.02 ×
10−11

3.65 ×
10−8

7.66 ×
10−5

Hybrid

F82 2.67 ×
10−9

8.15 ×
10−11

3.34 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

8.15 ×
10−5

6.53 ×
10−8

3.02 ×
10−11

1.34 ×
10−5

1.41 ×
10−9

F83 1.72 ×
10−12

3.34 ×
10−1

3.34 ×
10−1

5.44 ×
10−1

3.34 ×
10−1

3.34 ×
10−1

3.34 ×
10−1

2.12 ×
10−4

3.34 ×
10−1

3.34 ×
10−1

1.72 ×
10−12

F84 3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

5.46 ×
10−6

F85 1.09 ×
10−10

6.70 ×
10−11

4.50 ×
10−11

4.08 ×
10−11

4.98 ×
10−11

5.49 ×
10−11

6.72 ×
10−10

6.07 ×
10−11

3.02 ×
10−11

4.98 ×
10−11

1.70 ×
10−2

F86 3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.34 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

8.31 ×
10−3

Composition

F87 6.52 ×
10−9

3.35 ×
10−8

3.82 ×
10−10

3.02 ×
10−11

3.02 ×
10−11

4.18 ×
10−9

2.89 ×
10−3

5.07 ×
10−10

3.02 ×
10−11

6.52 ×
10−9

4.19 ×
10−1

F88 8.48 ×
10−9

2.28 ×
10−5

5.53 ×
10−8

2.61 ×
10−10

1.11 ×
10−4

3.02 ×
10−11

4.98 ×
10−4

2.60 ×
10−5

3.02 ×
10−11

2.92 ×
10−9

2.37 ×
10−10

F89 1.39 ×
10−5

2.49 ×
10−8

3.64 ×
10−9

4.37 ×
10−10

2.03 ×
10−7

8.84 ×
10−9

1.66 ×
10−7

1.77 ×
10−8

2.84 ×
10−11

2.24 ×
10−6

4.79 ×
10−8

4.7. LSO for Challengeable CEC2022

The proposed and other methods are tested again on the CEC2022 test suite. This test
suite contains 12 test functions divided into unimodal, multimodal, hybrid, and composi-
tional. The properties of this test suite are also listed in Appendix A (Tables A1–A7), and
their dimensions in the conducted experiments are 10. Table 14 shows the Avr, rank, and
SD for 25 independent runs, demonstrating LSO’s superior performance for 9 out of 12 test
functions of the CEC-2022 test suite. The average of the rank values and standard deviation
on all test functions of CEC2022 are depicted in Figures 15 and 16. These figures show that
LSO is the best because it is ranked first with a value of 1.6 and has the lowest standard
deviation of 12, whereas RSA is the worst because it is ranked last with a value of 12 and has
the highest standard deviation. In the end, the Wilcoxon rank-sum test is used to determine
whether there is a significant difference between the results of LSO and those of each rival
optimizer on this suite of problems. For most test functions, the Wilcoxon rank-sum test
results demonstrate a statistically significant difference between the outcomes of LSO and
the rival algorithms, as demonstrated by the p-values in Table 15. This section further
affirms that LSO belongs to the category of highly-performed optimizers.
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Table 14. Avr and SD of CEC2022 for 25 independent runs (The bolded value is the best overall).

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F90

Avr 300.00 3.00 × 102 3.00 × 102 3.00 × 102 1.55 × 104 3.00 × 102 3.00 × 102 3.00 × 102 2.44 × 103 10,731.57 300.00 300.00

SD 0.00 5.61 × 10−10 1.37 × 10−10 2.20 × 10−1 6.57 × 103 6.31 × 10−9 2.00 × 10−8 6.18 × 10−10 2.20 × 103 3788.59 0.00 0.00

Rank 1.00 5.00 3.00 9.00 13.00 6.00 7.00 4.00 11.00 12.00 1.00 1.00

Multimodal

F91

Avr 400.96 410.29 405.42 405.90 428.03 410.25 413.99 409.75 434.34 1066.53 409.80 407.52

SD 2.13 × 100 1.96 × 101 3.66 × 100 1.30 × 101 4.56 × 101 1.74 × 101 2.22 × 101 1.71 × 101 2.63 × 101 814.53 12.35 2.32

Rank 1.00 8.00 2.00 3.00 10.00 7.00 9.00 5.00 11.00 13.00 6.00 4.00

F92

Avr 600.00 606.09 601.30 617.36 632.26 609.38 611.84 600.15 601.21 645.65 600.08 600.00

SD 0.00 4.62 1.85 7.40 13.11 7.56 6.30 0.62 1.86 6.13 0.05 2.07 × 10−6

Rank 1.00 7.00 6.00 10.00 12.00 8.00 9.00 4.00 5.00 13.00 3.00 2.00

F93

Avr 810.72 821.06 821.13 823.32 836.29 824.64 831.03 812.11 814.64 848.55 825.60 824.02

SD 2.96 10.98 9.21 6.31 16.19 6.72 8.71 5.90 8.58 6.58 8.37 3.22

Rank 1.00 4.00 5.00 6.00 11.00 8.00 10.00 2.00 3.00 13.00 9.00 7.00

F94

Avr 900.02 908.19 921.08 1021.89 1447.74 1019.31 1210.33 900.38 917.15 1432.77 902.70 900.00

SD 8.29 × 10−2 2.65 × 101 2.66 × 101 7.76 × 101 4.10 × 102 1.10 × 102 1.75 × 102 4.17 × 10−1 2.84 × 101 104.11 8.25 1.60 × 10−6

Rank 2.00 5.00 7.00 10.00 13.00 9.00 11.00 3.00 6.00 12.00 4.00 1.00

Hybrid

F95

Avr 1800.36 3566.29 2258.98 3181.78 3989.73 1874.01 3629.15 3691.90 5032.02 2.66 × 108 5411.36 1826.60

SD 0.34 1735.60 1245.49 1115.74 1954.69 50.56 1615.83 1945.92 2475.45 2.41 × 108 2210.90 117.17

Rank 1.00 6.00 4.00 5.00 9.00 3.00 7.00 8.00 10.00 1.30 × 101 11.00 2.00

F96

Avr 2000.35 2033.78 2027.67 2042.25 2066.69 2032.20 2033.24 2032.42 2033.04 2139.27 2020.43 2002.21

SD 0.54 13.08 9.40 11.42 28.19 16.41 11.51 38.20 15.80 41.11 3.76 6.18

Rank 1.00 9.00 4.00 10.00 12.00 5.00 8.00 6.00 7.00 13.00 3.00 2.00
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Table 14. Cont.

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

F97
Avr 2201.57 2223.04 2221.27 2224.21 2232.31 2221.58 2224.61 2222.82 2224.73 2263.95 2220.57 2204.54

SD 3.83 × 100 7.12 × 100 1.01 × 100 1.34 × 100 5.42 × 100 2.81 × 100 2.93 × 100 2.33 × 101 3.53 × 100 29.43 3.76 8.49

Rank 1.00 7.00 4.00 8.00 12.00 5.00 9.00 6.00 10.00 13.00 3.00 2.00

Composition

F98
Avr 2529.28 2529.43 2534.18 2529.29 2564.67 2529.55 2534.18 2529.28 2580.54 2771.04 2529.28 2529.28

SD 0.00 0.19 26.83 0.00 39.90 0.87 26.83 0.00 39.65 61.34 0.00 6.79 × 10−10

Rank 1.00 6.00 8.00 5.00 11.00 7.00 9.00 2.00 12.00 13.00 4.00 3.00

F99
Avr 2500.36 2508.72 2516.28 2553.99 2616.35 2532.77 2558.84 2553.16 2573.33 2690.10 2523.74 2527.05

SD 0.06 32.01 40.44 57.97 214.36 54.42 63.67 60.40 63.44 195.95 53.37 49.31

Rank 1.00 3.00 4.00 9.00 12.00 7.00 10.00 8.00 11.00 13.00 5.00 6.00

F100
Avr 2825.01 2.82 × 103 2.78 × 103 2.70 × 103 2.92 × 103 2.68 × 103 2.78 × 103 2.85 × 103 3.00 × 103 4092.28 2750.51 2895.74

SD 129.15 2.24 × 102 1.76 × 102 1.38 × 102 5.55 × 101 1.27 × 102 1.48 × 102 1.15 × 102 1.74 × 102 331.37 175.84 27.73

Rank 7.00 6.00 5.00 2.00 11.00 1.00 4.00 8.00 12.00 13.00 3.00 9.00

F101
Avr 2862.69 2863.95 2865.40 2864.29 2894.24 2864.79 2866.37 2863.94 2866.00 2971.50 2862.46 2863.56

SD 1.72 1.49 1.80 1.78 35.17 1.76 3.73 1.78 5.67 114.51 1.67 1.45

Rank 2.00 5.00 8.00 6.00 12.00 7.00 10.00 4.00 9.00 13.00 1.00 3.00
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Figure 16. Average SD of each optimizer on all CEC2022.

Table 15. p-values of LSO with each rival optimizer on CEC-2022 test suite (F90–F101).

F SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Unimodal

F90 1.21 ×
10−12

1.20 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12 NaN

Multimodal

F91 3.36 ×
10−8

4.03 ×
10−9

2.42 ×
10−7

2.07 ×
10−10

8.53 ×
10−10

2.44 ×
10−9

8.08 ×
10−9

5.76 ×
10−11

2.10 ×
10−11

1.40 ×
10−10

2.68 ×
10−10

F92 1.72 ×
10−12

1.72 ×
10−12

1.72 ×
10−12

1.72 ×
10−12

1.72 ×
10−12

1.72 ×
10−12

3.37 ×
10−12

1.72 ×
10−12

1.72 ×
10−12

1.72 ×
10−12

1.00 ×
100

F93 3.32 ×
10−6

7.59 ×
10−7

3.16 ×
10−10

3.82 ×
10−10

8.86 ×
10−10

5.49 ×
10−11

6.63 ×
10−1

9.05 ×
10−2

3.02 ×
10−11

1.41 ×
10−9

3.69 ×
10−11

F94 3.44 ×
10−10

7.88 ×
10−12

7.88 ×
10−12

7.88 ×
10−12

7.88 ×
10−12

7.88 ×
10−12

1.20 ×
10−9

1.08 ×
10−11

7.88 ×
10−12

2.50 ×
10−11

4.22 ×
10−5



Mathematics 2022, 10, 3466 43 of 63

Table 15. Cont.

F SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

Hybrid

F95 3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

8.99 ×
10−11

F96 2.99 ×
10−11

2.99 ×
10−11

2.99 ×
10−11

2.99 ×
10−11

2.99 ×
10−11

2.99 ×
10−11

4.03 ×
10−11

2.99 ×
10−11

2.99 ×
10−11

3.65 ×
10−11

1.15 ×
10−2

F97 4.50 ×
10−11

1.96 ×
10−10

3.34 ×
10−11

3.34 ×
10−11

8.15 ×
10−11

3.34 ×
10−11

2.87 ×
10−10

4.50 ×
10−11

3.02 ×
10−11

2.61 ×
10−10

1.30 ×
10−1

Composition

F98 1.21 ×
10−12

1.61 ×
10−1

1.21 ×
10−12

1.21 ×
10−12

2.16 ×
10−2

4.65 ×
10−8

2.15 ×
10−2

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

3.34 ×
10−1

F99 1.08 ×
10−2

8.15 ×
10−11

4.62 ×
10−10

3.02 ×
10−11

5.97 ×
10−9

4.62 ×
10−10

5.69 ×
10−1

5.46 ×
10−6

3.02 ×
10−11

2.64 ×
10−1

6.95 ×
10−1

F100 1.85 ×
10−1

2.36 ×
10−1

6.44 ×
10−1

9.41 ×
10−10

1.37 ×
10−2

5.00 ×
10−1

2.51 ×
10−6

7.91 ×
10−9

9.31 ×
10−12

8.02 ×
10−1

6.47 ×
10−3

F101 1.59 ×
10−3

3.62 ×
10−6

4.19 ×
10−4

5.38 ×
10−11

4.59 ×
10−5

6.66 ×
10−7

2.86 ×
10−3

3.80 ×
10−5

2.95 ×
10−11

4.29 ×
10−1

4.41 ×
10−2

4.8. The Overall Effectiveness of the Proposed Algorithm

In the previous sections, LSO has been separately assessed using five mathematical
benchmarks: CEC2005, CEC2014, CEC2017, CEC2020, and CEC2022, and compared with
twenty-two well-established metaheuristic algorithms, but the overall performance of LSO
over all benchmarks has to be elaborated. Therefore, this section is presented to compare
the overall performance of LSO and the other algorithms over all the test functions of each
benchmark and all benchmarks. The average rank values and SD values of each benchmark
are computed and reported in Table 16. This table also indicates the overall effectiveness of
the proposed algorithm and other rival algorithms using an additional metric known as
overall effectiveness (OE) and computed according to the following formula [127]:

OE (%) =
N′ − Li

N′
(29)

where N′ denotes the total number of test functions, and Li denotes the number of test
functions in which the i-th algorithm is a loser. Inspecting this table reveals that the
proposed algorithm could be superior in terms of SD, rank, and OE for four challengeable
benchmarks, and competitive regarding rank and superior regarding SD and OE for the
remaining benchmark. The average of the rank values, OE values, and SD values of each
algorithm across all benchmarks are computed and reported in the last rows of Table 16,
respectively, to measure the overall effectiveness of each algorithm across all benchmarks.
According to those rows, LSO ranks first for all indicators, with a significant difference from
the nearest well-performed algorithm. The LSO’s strong performance due to the variation
of the search process enables the algorithm to have a strong exploration and exploitation
operator during the optimization process to help aid in preserving the population diversity,
avoiding being stuck in local optima, accelerating the convergence towards the best-so-far
solution. It is worth noting that both the inverse incomplete gamma function and the
inverse random number are capable of preserving population diversity as well as avoiding
becoming stuck in local minima due to their ability to generate significant numbers that
aid in jumping the current solution to far away regions within the search space throughout
the optimization process. On the other hand, three different scattering stages provide a
variation in the exploitation operator to the LSO for rapidly reaching the near-optimal
solution for various optimization problems of varying difficulty.
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Table 16. Overall effectiveness over five investigated benchmarks (The bolded and red value is the
best overall).

F Index LSO SSA GBO RUN WOA GTO AVOA EO GWO RSA SMA DE

CEC2005

Rank 2.00 7.10 3.00 3.60 4.90 1.70 1.60 4.50 5.50 6.55 2.75 7.60

SD 0.10 646.25 0.63 0.43 7101.71 0.14 0.18 0.43 0.59 0.29 0.24 5749.12

O × 10
(%) 85.00 25.00 50.00 50.00 40.00 70.00 85.00 30.00 25.00 45.00 65.00 20.00

CEC2014

Rank 1.66 7.28 5.45 6.55 9.72 7.07 7.48 4.79 8.41 11.93 6.21 4.45

SD 22.57 17,917.37 10,668.42 22,738.20 256,429.26 21,129.59 17,868.18 2636.00 9.75 × 106 6.93 × 107 2470.27 6338.28

O × 10
(%) 79.31 0.00 3.45 6.90 0.00 0.00 0.00 6.90 0.00 0.00 6.90 6.90

CEC2017

Rank 1.11 6.43 5.57 7.39 11.21 5.46 8.50 4.43 8.11 13.00 6.68 3.32

SD 32.47 52,413.76 40,719.95 14,459.54 446,168.54 103,439.53 26,051.38 17,788.92 4.44 × 106 1.47 × 108 17,155.85 10,876.18

O × 10
(%) 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.45

CEC2020

Rank 1.78 6.44 4.44 6.11 11.11 5.67 8.67 3.78 8.33 12.22 7.22 4.44

SD 38.24 1161.15 318.84 1012.58 264,287.33 335.90 1482.46 518.82 1.60 × 107 4.15 × 108 1501.58 267.78

O × 10
(%) 90.00 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CEC2022

Rank 1.64 6.00 4.73 7.00 11.45 6.00 8.45 5.09 8.91 12.82 5.36 3.64

SD 11.73 172.93 128.52 119.23 782.34 32.96 173.73 184.05 420.22 2.01 × 107 206.53 17.99

O × 10
(%) 75.00 0.00 0.00 0.00 0.00 8.33 0.00 0.00 0.00 0.00 16.67 16.67

Avg. Rank: 1.64 6.65 4.64 6.13 9.68 5.18 6.94 4.52 7.85 11.30 5.64 4.69

Avg. SD: 21.02 14,462.29 10,367.27 7666.00 194,953.84 24,987.62 9115.19 4225.64 6.04 × 106 1.30 × 108 4266.89 4649.87

Avg.OE (%): 85.86 5.00 12.69 11.38 8.00 15.67 17.00 7.38 5.00 9.00 17.71 9.40

4.9. Convergence Curve

Figure 17 compares the convergence rates of LSO and competing algorithms to show
how they differ in terms of reaching the near-optimal solution in less number function
evaluations. This figure illustrates that all LSO convergence curves exhibit an accelerated
reducing pattern within the various stages of the optimization process for four families of
test functions (unimodal, multimodal, composition, and hybrid). The LSO optimizer is sig-
nificantly faster than any of the other competing algorithms, as shown by the convergence
curves in Figure 17. Exploration and exploitation operators of LSO can work together in
harmony, which prevents stagnation in local minima and speeds up convergence in the
right direction to the most promising regions.
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4.10. Qualitative Analysis

The following metrics are used to evaluate the LSO performance during optimization:
diversity, convergence curve, average fitness value, trajectory in the first dimension, and
search history. The diversity metric shows how far apart an individual is on average
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from other individuals in the population; the convergence curve depicts the best-fitting
value that was obtained within each iteration; the average fitness value represents the
average of all individuals’ fitness values throughout each iteration; the trajectory curve
shows how a solution’s first dimension changes over time as it progresses through the
optimization process; and search history shows how a solution’s position changed during
the optimization process.

The diversity metric shown in the second column of Figure 18 is computed by sum-
ming the difference mean between the positions of each two solutions in the population
according to the following formula:

ℵ =
N

∑
i=1

N−1

∑
j=i+1

(∑d
k=0

∣∣∣xi,k − xj,k

∣∣∣)
d

(30)

where d indicates the number of dimensions, N stands for the population size, xi,k indicate
the kth dimension in the ith and jth solutions such that j > i. Observing Figure 18 shows
that the diversity metric of LSO is decreasing over time, indicating that LSO’s optimization
process is gradually shifting from exploration to exploitation. LSO’s performance initially
started to explore most regions in the search space to avoid stagnation into local minima
and then shifted gradually to the exploitation operator to reduce diversity quickly during
the second half of the optimization process to accelerate the convergence toward the most
promising region discovered thus far.

The LSO convergence curves show an accelerated reducing pattern on a variety of
test functions during the latter half of the optimization process when population diversity
is reduced. The exploratory phase is largely transformed into the exploitative phase, as
illustrated in the third column of Figure 18. At the beginning of the optimization process,
LSO convergence is slow to avoid becoming stuck in local minima. Then, it is highly
improved in the second half of the optimization process.

The depiction of average fitness history in Figure 18 shows that LSO’s competitiveness
has decreased over time due to all solutions focusing on exploiting the regions around the
best-so-far solution, and as a result, the fitness values of all solutions are nearly moved
towards the same region which involves the best-so-far solution. Figure 18 also depicts the
trajectory of LSO’s search for the optimal position of the first dimension as it gradually
explores all aspects of the search space, as depicted in Figure 18. Because of the need to find
a better solution in a short period of time, the exploratory approach is being replaced by an
exploitative approach that restricts the scope of the search to a single aspect of it. As can be
seen from the LSO’s trajectory curve, the optimization process begins with an exploratory
trend before moving to an exploitation trend in search of better outcomes before coming to
an end.

In the final column of Figure 18, the history of LSO positions is depicted. The search
history is investigated by depicting the search core followed by LSO’s solutions within
the whole optimization process for the first two dimensions: X1 and X2 of an optimization
problem. The same pattern is followed for the other dimensions. As can be seen in this
preceding column, LSO does not follow a consistent pattern for all test functions. Consider
F21 as an example: to find an optimal solution for this problem, LSO first explores the
entire search space before narrowing its focus to the range 0–50. The search history graph
shows that LSO’s performance is more dispersed for the multimodal and composition
test functions, while its performance for the unimodal test function is more concentrated
around the optimum points.
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4.11. Computational Cost

The average computational cost consumed by each algorithm on the investigated test
functions is shown in Figure 19. The graph shows that the CPU time for all algorithms is
nearly the same, except RSA and SMA, which take a long time, and WOA, which takes less
than half the time required by the rest. LSO is thus far superior in terms of the convergence
speed and the quality of the obtained outcomes, with a negligible difference in CPU time.
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5. LSO for Engineering Design Problems

In section, LSO is applied to solve three constrained engineering benchmarks, includ-
ing Tension/Compression Spring Design Optimization Problem, Welded Beam Design
Problem, and Pressure Vessel Design Problem. The best values found by LSO during
25 runs are compared with many optimization algorithms. For compared the algorithms’
parameters settings, all parameters are left as the defaults suggested by the authors. The
parameters of LSO are kept as mentioned in Table 5, except for Ps, which substantially
affect the performance of LSO based on the nature of the solved problems. Therefore,
an extensive experiment has been done under various values for this parameter, and the
obtained outcomes are depicted in Figure 20. This figure shows that the performance of
LSO is maximized when Ps = 0.6. In addition to all rival algorithms used in the previous
comparisons, five recently-published metaheuristic algorithms known as political optimizer
(PO) [45], continuous-state cellular automata algorithm (CCAA) [128], snake optimizer
(SO) [91], beluga whale optimization (BWO), [96] and driving training-based optimization
(DTBO) [50] are added in the next experiments to further show the superiority of LSO
when tackling the real-world optimization problems, such as engineering design problems.
Additionally, LSO is compared to some of the state-of-the-art optimizers proposed for each
constrained engineering benchmark according to the cited results.

Engineering design problems are characterized by many different constraints. In order
to handle this type of constraint, we employ penalty-based constraint handling techniques
with LSO. There are several methods for handling constraints of optimization problems
based on the penalty function. In this work, we choose to implement the Death Penalty
method (the rejection of infeasible solutions method) [129], in which the infeasible solutions
are rejected and regenerated. So, the infeasible solution is automatically omitted from
the candidate solutions. The main advantage of the Death Penalty method is its simple
implementation and low computational complexity.



Mathematics 2022, 10, 3466 50 of 63Mathematics 2022, 10, x FOR PEER REVIEW 45 of 60 
 

 

 
Figure 20. Tuning the parameter Ps over tension spring design. 

Engineering design problems are characterized by many different constraints. In or-
der to handle this type of constraint, we employ penalty-based constraint handling tech-
niques with LSO. There are several methods for handling constraints of optimization 
problems based on the penalty function. In this work, we choose to implement the Death 
Penalty method (the rejection of infeasible solutions method) [129], in which the infeasible 
solutions are rejected and regenerated. So, the infeasible solution is automatically omitted 
from the candidate solutions. The main advantage of the Death Penalty method is its sim-
ple implementation and low computational complexity. 

5.1. Tension/Compression Spring Design Optimization Problem 
The main objective of the tension/compression spring design optimization problem 

is to find the minimum volume 𝑓(𝑋) of a coil spring under compression undergoing con-
straints of minimum deflection, shear stress, surge frequency, and limits on outside diam-
eter and design variables (See Figure 21a). Mathematically, the problem can be formulated 
as [130]: min 𝑓(𝑋) = (𝑥 + 2)𝑥 𝑥                      𝑠. 𝑡.    𝑔 (𝑋) = 1 − 𝑥 𝑥71785 𝑥 ≤ 0          

     𝑔 (𝑋) = 𝑥 (4𝑥 − 𝑥 )𝑥 (12566 𝑥 − 𝑥 ) + 15108 𝑥 − 1 ≤ 0 (31)

𝑔 (𝑋) = 1 − 140.45 𝑥𝑥 𝑥 ≤ 0 

𝑔 (𝑋) = 2(𝑥 + 𝑥 )3 − 1 ≤ 0 0.05 ≤ 𝑥 ≤ 2,   0.25 ≤ 𝑥 ≤ 1.3,   2 ≤ 𝑥 ≤ 15, 

where 𝑥  is the wire diameter, 𝑥  is the mean coil diameter, and 𝑥  is the length or num-
ber of coils. 

LSO is compared with 14 additional algorithms (mathematical techniques or me-
taheuristics) selected from various literature including evolution strategies (ES) [131], 
gravitational search algorithm (GSA) [55], Tabu search (TS) [132], swarm strategy [133], 
unified particle swarm optimization (UPSO) [134], cultural algorithms (CA) [132], two-
point adaptive nonlinear approximations-3 (TANA-3) [135], particle swarm optimization 
(PSO) [136], ant colony optimization (ACO) [137], genetic algorithm (GA) [138], quantum 
evolutionary algorithm (QEA) [137], ray optimization (RO) [67], probability collectives 
(PC) [139], social interaction genetic algorithm (SIGA) [140], and parallel genetic 

4.0123

13.3446

10.0120

3.3457

5.0122

3.3457

0.4127
0.8127

0.0127
0

2

4

6

8

10

12

14

16

0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6

Av
er

ag
e 

Fi
tn

es
s v

al
ue

Ps

Figure 20. Tuning the parameter Ps over tension spring design.

5.1. Tension/Compression Spring Design Optimization Problem

The main objective of the tension/compression spring design optimization problem
is to find the minimum volume f (X) of a coil spring under compression undergoing
constraints of minimum deflection, shear stress, surge frequency, and limits on outside
diameter and design variables (See Figure 21a). Mathematically, the problem can be
formulated as [130]:

min f (X) = (x3 + 2)x2x2
1

s.t. g1(X) = 1−
x3

2x3

71785 x4
1
≤ 0

g2(X) =
x2(4x2 − x1)

x3
1(12566 x2 − x1)

+
1

5108 x2
1
− 1 ≤ 0 (31)

g3(X) = 1− 140.45 x1

x2
2x3

≤ 0

g4(X) =
2(x1 + x2)

3
− 1 ≤ 0

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15,

where x1 is the wire diameter, x2 is the mean coil diameter, and x3 is the length or number
of coils.

Mathematics 2022, 10, x FOR PEER REVIEW 46 of 60 
 

 

algorithm with social interaction (PSIGA) [138]. Table 17 shows the results obtained by 

LSO for tension/compression spring design optimization problem. As shown, LSO is bet-

ter able to reach minimum values than others. Figure 21b shows the convergence speed 

of LSO. 

  

(a) (b) 

Figure 21. Tension/compression spring design problem. (a) Structure. (b) Convergence curve. 

Table 17. Comparison of the results for tension/compression spring design optimization problem. 

No. Algorithm 𝑥1 𝑥2 𝑥3 𝑓𝑚𝑖𝑛(𝑥) 

1.  LSO 5.1689 × 10−2 3.5671 × 10−1 1.1290 × 101 1.2665233 × 10−2 

2.  SSA 5.0000 × 10−2 3.1737 × 10−1 1.4051 × 101 1.2735631 × 10−2 

3.  GBO 5.3274 × 10−2 3.9605 × 10−1 9.3074 × 100 1.2709931 × 10−2 

4.  RUN 5.1960 × 10−2 3.6328 × 10−1 1.0914 × 101 1.2666568 × 10−2 

5.  WOA 5.2797 × 10−2 3.8396 × 10−1 9.8542 × 100 1.2687243 × 10−2 

6.  GTO 5.2437 × 10−2 3.7499 × 10−1 1.0293 × 101 1.2675330 × 10−2 

7.  AVOA 5.1702 × 10−2 3.5704 × 10−1 1.1270 × 101 1.2665236 × 10−2 

8.  EO 5.3212 × 10−2 3.9449 × 10−1 9.3755 × 100 1.2706550 × 10−2 

9.  GWO 5.2770 × 10−2 3.8328 × 10−1 9.8863 × 100 1.2686160 × 10−2 

10.  RSA 5.1387 × 10−2 3.4946 × 10−1 1.1734 × 101 1.2673204 × 10−2 

11.  SMA 5.0000 × 10−2 3.1050 × 10−1 1.5000 × 101 1.3196460 × 10−2 

12.  DE 5.2354 × 10−2 3.7292 × 10−1 1.0399 × 101 1.2673207 × 10−2 

13.  PO 5.1778 × 10−2 3.5884 × 10−1 1.1166 × 101 1.26665924 × 10−2 

14.  SO 5.1403 × 10−2 3.4988 × 10−1 1.1701 × 101 1.26667301 × 10−2 

15.  BWO 5.4611 × 10−2 4.2818 × 10−1 9.0696 × 100 1.41360583 × 10−2 

16.  DTBO 5.3059 × 10−2 3.8966 × 10−1 9.6233 × 100 1.27507490 × 10−2 

17.  CCAA 5.2012 × 10−2 3.6453 × 10−1 1.0846 × 101 1.26674032 × 10−2 

18.  RO 5.13700 × 10−2 3.49096 × 10−1 1.17628 × 101 1.2678800 × 10−2 

19.  ES 5.1989 × 10−2 3.6397 × 10−1 1.08905 × 101 1.2681 × 10−2 

20.  GSA 5.02760 × 10−2 3.2368 × 10−1 1.352541 × 101 1.27022 × 10−2 

21.  TS N/A N/A N/A 1.2935 × 10−2 

22.  Swarm strategy 5.0417 × 10−2 3.2153 × 10−1 1.3980 × 10−1 1.3060 × 10−02 

23.  UPSO N/A N/A N/A 1.31 × 10−2 

24.  CA N/A N/A N/A 1.2867 × 10−2 

25.  TANA-3 5.8400 × 10−2 5.4170 × 10−1 5.2745 × 100 1.3400 × 10−2 

26.  PSO N/A N/A N/A 1.2857 × 10−2 

27.  ACO N/A N/A N/A 1.3223 × 10−2 

28.  GA 5.8231 × 10−2 5.2106 × 10−1 5.8845 × 10 1.3931 × 10−2 

Figure 21. Tension/compression spring design problem. (a) Structure. (b) Convergence curve.



Mathematics 2022, 10, 3466 51 of 63

LSO is compared with 14 additional algorithms (mathematical techniques or meta-
heuristics) selected from various literature including evolution strategies (ES) [131], gravi-
tational search algorithm (GSA) [55], Tabu search (TS) [132], swarm strategy [133], unified
particle swarm optimization (UPSO) [134], cultural algorithms (CA) [132], two-point adap-
tive nonlinear approximations-3 (TANA-3) [135], particle swarm optimization (PSO) [136],
ant colony optimization (ACO) [137], genetic algorithm (GA) [138], quantum evolutionary
algorithm (QEA) [137], ray optimization (RO) [67], probability collectives (PC) [139], social
interaction genetic algorithm (SIGA) [140], and parallel genetic algorithm with social inter-
action (PSIGA) [138]. Table 17 shows the results obtained by LSO for tension/compression
spring design optimization problem. As shown, LSO is better able to reach minimum
values than others. Figure 21b shows the convergence speed of LSO.

Table 17. Comparison of the results for tension/compression spring design optimization problem.

No. Algorithm x1 x2 x3 fmin(x)

1 LSO 5.1689 × 10−2 3.5671 × 10−1 1.1290 × 101 1.2665233 × 10−2

2 SSA 5.0000 × 10−2 3.1737 × 10−1 1.4051 × 101 1.2735631 × 10−2

3 GBO 5.3274 × 10−2 3.9605 × 10−1 9.3074 × 100 1.2709931 × 10−2

4 RUN 5.1960 × 10−2 3.6328 × 10−1 1.0914 × 101 1.2666568 × 10−2

5 WOA 5.2797 × 10−2 3.8396 × 10−1 9.8542 × 100 1.2687243 × 10−2

6 GTO 5.2437 × 10−2 3.7499 × 10−1 1.0293 × 101 1.2675330 × 10−2

7 AVOA 5.1702 × 10−2 3.5704 × 10−1 1.1270 × 101 1.2665236 × 10−2

8 EO 5.3212 × 10−2 3.9449 × 10−1 9.3755 × 100 1.2706550 × 10−2

9 GWO 5.2770 × 10−2 3.8328 × 10−1 9.8863 × 100 1.2686160 × 10−2

10 RSA 5.1387 × 10−2 3.4946 × 10−1 1.1734 × 101 1.2673204 × 10−2

11 SMA 5.0000 × 10−2 3.1050 × 10−1 1.5000 × 101 1.3196460 × 10−2

12 DE 5.2354 × 10−2 3.7292 × 10−1 1.0399 × 101 1.2673207 × 10−2

13 PO 5.1778 × 10−2 3.5884 × 10−1 1.1166 × 101 1.26665924 × 10−2

14 SO 5.1403 × 10−2 3.4988 × 10−1 1.1701 × 101 1.26667301 × 10−2

15 BWO 5.4611 × 10−2 4.2818 × 10−1 9.0696 × 100 1.41360583 × 10−2

16 DTBO 5.3059 × 10−2 3.8966 × 10−1 9.6233 × 100 1.27507490 × 10−2

17 CCAA 5.2012 × 10−2 3.6453 × 10−1 1.0846 × 101 1.26674032 × 10−2

18 RO 5.13700 × 10−2 3.49096 × 10−1 1.17628 × 101 1.2678800 × 10−2

19 ES 5.1989 × 10−2 3.6397 × 10−1 1.08905 × 101 1.2681 × 10−2

20 GSA 5.02760 × 10−2 3.2368 × 10−1 1.352541 ×
101 1.27022 × 10−2

21 TS N/A N/A N/A 1.2935 × 10−2

22 Swarm
strategy 5.0417 × 10−2 3.2153 × 10−1 1.3980 ×

10−1 1.3060 × 10−2

23 UPSO N/A N/A N/A 1.31 × 10−2

24 CA N/A N/A N/A 1.2867 × 10−2

25 TANA-3 5.8400 × 10−2 5.4170 × 10−1 5.2745 × 100 1.3400 × 10−2

26 PSO N/A N/A N/A 1.2857 × 10−2

27 ACO N/A N/A N/A 1.3223 × 10−2

28 GA 5.8231 × 10−2 5.2106 × 10−1 5.8845 × 10 1.3931 × 10−2

29 QEA N/A N/A N/A 1.2928 × 10−2

30 PC 5.06 × 10−2 3.28 × 10−1 1.41 × 10−1 1.35 × 10−2

31 SIGA N/A N/A N/A 1.3076 × 10−2

32 PSIGA N/A N/A N/A 1.2864 × 10−2

5.2. Welded Beam Design Problem

The problem of designing welded beams can be defined as finding the feasible dimen-
sions of a welded beam x1, x2, x3, and x4 (which are the thickness of weld, length of the
clamped bar, the height of the bar, and thickness of the bar, respectively) that minimize the
total manufacturing cost f (X) subject to a set of constraints. Figure 22a shows a representa-
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tion of the weld beam design problem. Mathematically, the problem can be formulated as
the following [130]:

min f (X) = 1.10471x2
1x2 + 0.04811x3x4(L + x2)

g1(X) = τ(X)− τmax ≤ 0

s.t.

g2(X) = σ(X)− σmax ≤ 0

g3(X) = x1 − x4 ≤ 0

g4(X) = 0.10471x2
1 − 0.04811x3x4(L + x2)− 5 ≤ 0

g5(X) = 0.125− x1 ≤ 0

g6(X) = δ(X)− δmax ≤ 0

g7(X) = P− PC(X) ≤ 0 (32)

τ(X) =

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′ )2, τ′ =

P√
2x1x2

, τ′′ =
MR

J

M = P(L +
x2

2
), R =

√
x2

2
4

+

(
x1 + x3

2

)2
,

J = 2

(
√

2x1x2

(
x2

2
12

+

(
x1 + x3

2

)2
))

σ(X) =
6PL
x2

3x4
, δ(X) =

4PL3

Ex3
3x4

,

Pc(X) =

4.013E

√(
x2

3x6
4

36

)
L2

(
1− x3

2L

√
E

4G

)
P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi

τmax = 13600 psi, σmax = 30000 psi, δmax = 0.25 in

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2,

where τ is shear stress, σ is the bending stress, PC is the buckling load, and δ is the
end deflection.
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The proposed algorithm is compared with nine additional algorithms from the litera-
ture including hybrid and improved ones, which are RO [67], WOA [41], HS [141], hybrid
charged system search and particle swarm optimization (PSO) algorithms I (CSS&PSO
I) [136], hybrid charged system search and particle swarm optimization (PSO) algorithms
II (CSS&PSO II) [136], particle swarm optimization algorithm with struggle selection
(PSOStr) [140], RO [67], firefly algorithm (FA) [142], differential evolution with dynamic
stochastic selection (DE) [143], and hybrid artificial immune system and genetic algorithm
(AIS-GA). As shown in Table 18, on one side, LSO has a competitive result comparing
to GBO, GTO, EO, and DE, and superior in terms of the convergence speed as shown in
Figure 22b. On the other side, LSO is superior to all the other optimizers.

Table 18. Comparison of the results for weld beam design problem.

No. Algorithm x1 x2 x3 x4 fmin(x)

1 LSO 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.7248658
2 SSA 2.0548 × 10−1 3.4757 × 100 9.0369 × 100 2.0573 × 10−1 1.7252086
3 GBO 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.7248658
4 RUN 2.0572 × 10−1 3.4708 × 100 9.0366 × 100 2.0573 × 10−1 1.7248746
5 WOA 1.9721 × 10−1 3.6965 × 100 9.0151 × 100 2.0671 × 10−1 1.7454019
6 GTO 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.7248658
7 AVOA 2.0567 × 10−1 3.4718 × 100 9.0366 × 100 2.0573 × 10−1 1.7249388
8 EO 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.7248658
9 GWO 2.0557 × 10−1 3.4741 × 100 9.0376 × 100 2.0573 × 10−1 1.7253039

10 RSA 2.0615 × 10−1 3.4694 × 100 9.0775 × 100 2.2698 × 10−1 1.8945096
11 SMA 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.7248689
12 DE 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.7248658
13 PO 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.72486608
14 SO 2.0572 × 10−1 3.4707 × 100 9.0366 × 100 2.0573 × 10−1 1.7248658
15 BWO 1.8639 × 10−1 3.9876 × 100 8.9766 × 100 2.1300 × 10−1 1.8076732
16 DTBO 2.0571 × 10−1 3.4709 × 100 9.0368 × 100 2.0574 × 10−1 1.7249588
17 CCAA 2.0572 × 10−1 3.4707 × 100 9.0367 × 100 2.0573 × 10−1 1.72487987
18 RO 2.03687 × 10−1 3.52847 × 100 9.00423 × 100 2.07241 × 10−1 1.735344
19 RO 2.03687 × 10−1 3.52847 × 100 9.00423 × 100 2.072410 × 10−1 1.735344 × 100

20 WOA 2.05396 × 10−1 3.48429 × 100 9.03743 × 100 2.06276 × 10−1 1.73050 × 100

21 HS 2.4420 × 10−1 6.2231 × 100 8.29150 × 100 2.4430 × 10−1 2.38070 × 100

22 CSS&PSO I 2.0639 × 10−1 3.4236 × 100 9.1241 × 100 2.0531 × 10−1 1.7314 × 100

23 CSS&PSO II 2.0546 × 10−1 3.4800 × 100 9.05401 × 100 2.0578 × 10−1 1.72910 × 100

24 PSOStr 2.0150 × 10−1 3.5620 × 100 9.0414 × 100 2.0571 × 10−1 1.73118 × 100

25 FA 2.015 × 10−1 3.5620 × 100 9.0414 × 100 2.0570 × 10−1 1.73121 × 100

26 DE 2.444 × 10−1 6.2175 × 100 8.2915 × 100 2.4440 × 10−1 2.3810 × 100

27 AIS-GA 2.444 × 10−1 6.2183 × 100 8.2912 × 100 2.444 × 10−1 2.3812 × 100

5.3. Pressure Vessel Design Problem

The problem of pressure vessel design can be described as minimizing the total
fabrication cost of a cylindrical pressure vessel with the consideration of optimization
constraints. The mathematical formulation of the problem can be expressed as [41]:

min f (X) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t. g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x3 + 0.00954x3 ≤ 0 (33)

g3(X) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0

g4(X) = x4 − 240 ≤ 0

0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200,
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where x1 is the shell thickness, x2 is the head thickness, x3 is the inner radius, and x4 is the
cylindrical section length (without the head), as shown in Figure 23a.
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For the problem of pressure vessel design, the proposed algorithm is compared
with 16 metaheuristics and mathematical methods, including Harris Hawks optimiza-
tion (HHO) [22], grey wolf optimizer (GWO) [122], hybrid particle swarm optimization
with a feasibility-based rule (HPSO) [144], Gaussian quantum-behaved particle swarm
optimization (G-QPSO) [145], water evaporation optimization (WEO) [146], bat algorithm
(BA) [147], MFO [148], charged system search (CSS) [56], multimembered evolution strat-
egy (ESs) [149], genetic algorithm for design and optimization of composite laminates
(BIANCA) [150], modified differential evolution (MDDE) [151], differential evolution with
level comparison (DELC) [152], WOA [41], niched-pareto genetic algorithm (NPGA) [153],
Lagrangian multiplier [41], and branch-bound [41]. As observed from Table 19, LSO sig-
nificantly reaches the best results for the given problem compared to other algorithms
except for DE and GTO, which have competitive performance for the best result, but LSO
is superior for the average convergence speed as shown in Figure 23b.

Table 19. Comparison of the results for pressure vessel design optimization problem.

No. Algorithm x1 x2 x3 x4 fmin(x)

1 LSO 7.7818 × 10−1 3.8466 × 10−1 4.0320 × 101 2.0000 × 102 5885.43417456
2 SSA 7.8272 × 10−1 3.8690 × 10−1 4.0555 × 101 1.9675 × 102 5893.25120195
3 GBO 7.7818 × 10−1 3.8466 × 10−1 4.0320 × 101 2.0000 × 102 5885.44199882
4 RUN 7.7824 × 10−1 3.8471 × 10−1 4.0323 × 101 1.9995 × 102 5885.60517789
5 WOA 1.0863 × 100 5.5859 × 10−1 5.6156 × 101 5.5940 × 101 6779.76692510
6 GTO 7.7818 × 10−1 3.8466 × 10−1 4.0320 × 101 2.0000 × 102 5885.43417456
7 AVOA 7.7820 × 10−1 3.8467 × 10−1 4.0321 × 101 1.9998 × 102 5885.47556956
8 EO 8.2691 × 10−1 4.0875 × 10−1 4.2845 × 101 1.6760 × 102 5974.05971856
9 GWO 7.7854 × 10−1 3.8509 × 10−1 4.0332 × 101 1.9986 × 102 5888.33742107
10 RSA 1.2411 × 100 9.5886 × 10−1 4.5644 × 101 1.3730 × 102 10,457.57367139
11 SMA 7.7818 × 10−1 3.8466 × 10−1 4.0320 × 101 2.0000 × 102 5885.43624519
12 DE 7.7818 × 10−1 3.8466 × 10−1 4.0320 × 101 2.0000 × 102 5885.43417456
13 PO 7.7818 × 10−1 3.8466 × 10−1 4.0320 × 101 2.0000 × 102 5885.43636261
14 SO 7.7818 × 10−1 3.8470 × 10−1 4.0320 × 101 2.0000 × 102 5885.54986448
15 BWO 7.9249 × 10−1 3.9708 × 10−1 4.0982 × 101 1.9550 × 102 6036.98073005
16 DTBO 8.7638 × 10−1 4.5781 × 10−1 4.5407 × 101 1.3954 × 102 6165.77458390
17 CCAA 7.7837 × 10−1 3.8488 × 10−1 4.0327 × 101 1.9989 × 102 5886.45565028
18 HHO 0.817583 0.40729 42.0917 176.7196 6000.46259
19 GWO 0.8125 0.4345 42.089181 176.758731 6051.5639
20 HPSO 0.8125 0.437500 42.0984 176.6366 6059.7143
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Table 19. Cont.

No. Algorithm x1 x2 x3 x4 fmin(x)

21 G-QPSO 0.8125 0.437500 42.0984 176.6372 6059.7208
22 WEO 0.8125 0.437500 42.0984 176.6366 6059.71
23 BA 0.8125 0.437500 42.098445 176.63659 6059.7143
24 MFO 0.8125 0.4375 42.098445 176.636596 6059.7143
25 CSS 0.8125 0.4375 42.103624 176.572656 6059.0888
26 ESs 0.8125 0.4375 42.098087 176.640518 6059.7456
27 BIANCA 0.8125 0.4375 42.0968 176.658 6059.9384
28 MDDE 0.8125 0.4375 42.098446 176.636047 6059.70166
29 DELC 0.8125 0.4375 42.0984456 176.6365958 6059.7143
30 WOA 0.8125 0.4375 42.0982699 176.638998 6059.7410
31 NPGA 0.8125 0.4375 42.0974 176.654 6059.9463

32 Lagrangian
multiplier 1.125 0.625 58.291 43.69 7198.0428

33 Branch-bound 1.125 0.625 47.7 117.701 8129.1036

6. Conclusions

In this work, a novel LSO metaheuristic algorithm is introduced that is inspired by
sunlight dispersion through a water droplet, causing the rainbow phenomenon. The
proposed algorithm is tested on several selected benchmarks. For CEC2005 benchmarks,
LSO significantly performs well, especially for fixed dimensional multi-model functions.
This indicates that LSO has high exploration capabilities. In addition, the sensitivity
analysis of LSO parameters shows that the selected values of the parameters are the best.
Finally, for CEC2020, CEC2017, CEC2022, and CEC2014, LSO has a superior performance
compared to several well-established and recently published metaheuristic algorithms like
DE, WOA, SMA, EO, GWO, GTO, GBO, RSA, SSA, RUN, and AVOA, which have been
selected in our comparison due to their stability and recent publication compared to some
of the other optimization algorithms like MBO, EWA, EHO, MS, HGS, CPA, and HHO
proposed for tackling the same benchmarks. This indicates that LSO has a good balance
between exploration and exploitation. LSO has competitive results for engineering design
problems compared to other algorithms, even for improved and hybrid metaheuristics.
For future work, we suggest developing the binary and multi-objective versions of LSO.
In addition, several enhancements can be proposed for LSO by using fuzzy controllers
or chaotic maps for defining LSO controlling probabilities and the hybridization with
other algorithms. Finally, we suggest using LSO for solving recent real-life optimization
problems such as sensor allocation problems, smart management of the power grid, and
smart routing of vehicles.
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Nomenclature

Nomenclature of symbols used in this study

θ Angle of reflection or refraction
k ∈ R Refractive index of a medium
Li(i = 0, . . . , 3) ith refracted or reflected light ray
ns Normal line at a point s
p ∈ [0, 1] Controlling probability of inner and outer reflection and refraction
q ∈ [0, 1] Controlling probability of the first scattering phase
z ∈ [0, 1] Controlling probability of the second scattering phase
t ∈ N Iteration number
→
x0 ∈ R Initial candidate solution
N ∈ N Population size
d ∈ N Problem dimension
lb ∈ R Lower bound of the search space
ub ∈ R Upper bound of the search space
RV ∈ [0, 1] Vector of uniform random numbers
→
xt ∈ R Candidate solution at iteration t
w ∈ [0, ∞] Scaling factor
GI ∈ R Scaling factor
ε ∈ R Scaling factor
ginv Inverse incomplete gamma function

Appendix A

Table A1. Description of uni-modal benchmark functions.

ID Benchmark D Domain Global Opt.

F1 f1(x) =
n
∑

i=1
x2

i
100 [−100, 100] 0

F2 f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1

xi 100 [−10, 10] 0

F3 f3(x) =
n
∑

i=1

(
∑i

j−1 xj

)2 100 [−100, 100] 0

F4 f4(x) =
maxi{|xi|, 1 ≤ i ≤ n} 100 [−100, 100] 0

F5
f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
] 100 [−30, 30] 0

Table A2. Description of multi-modal benchmark functions.

ID Benchmark D Domain Global Opt.

F6 f6(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 100 [−5.12, 5.12] 0

F7 f7(x) = −20e(−0.2
√

1
n ∑n

i=1 x2
i ) − e(

1
n ∑n

i=1 cos (2πxi)) + 20 + e 100 [−32, 32] 0

F8 f8(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 100 [−600, 600] 0

F9

f9(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4 , u(xi , s, l, v) =

 l(xi − s)vxi > s
0 − s < xi < s
l(−xi − s)vxi < −s

100 [−50, 50] 0

F10
f10(x) = 0.1

{
sin2(3πx1)

+
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]
+

n
∑

i=1
u(xi , 5, 100, 4)

} 100 [−1.28, 1.28] 0
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Table A3. Fixed-dimension multi-modal benchmark.

ID Benchmark D Domain Global Opt.

F11 f11(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
2 [−65, 65] 1

F12 f12(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

F13 f13(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316
F14 f14(x) =

(
x2 − 5.1

4π2 x2
1 +

5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.39789

F15 f15(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
)
]

× [30 + (2x1 − 3x2)
2 ×

(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)
]

2 [−2, 2] 3

F16 f16(x) = −
4
∑

i=1
ciexp

(
−∑6

j=1 aij

(
xj − pij

)2
)

3 [1, 3] −3.86

F17 f17(x) = −
4
∑

i=1
ciexp

(
−∑3

j=1 aij

(
xj − pij

)2
)

6 [0, 1] −3.32

F18 f18(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

F19 f19(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

F20 f20(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

Table A4. Description of CEC-2014 benchmark.

Type ID Functions Global Opt. Domain

Unimodal
function

F21 (CF1) Rotated High Conditioned Elliptic Function 100 [−100,100]
F22 (CF2) Rotated Bent Cigar Function 200 [−100,100]
F23 (CF3) Rotated Discus Function 300 [−100,100]

Simple
multimodal

Test functions

F24 (CF4) Shifted and Rotated Rosenbrock’s Function 400 [−100,100]
F25 (CF5) Shifted and Rotated Ackley’s Function 500 [−100,100]
F26 (CF6) Shifted and Rotated Weierstrass Function 600 [−100,100]
F27 (CF7) Shifted and Rotated Griewank’s Function 700 [−100,100]
F28 (CF8) Shifted Rastrigin’s Function 800 [−100,100]
F29 (CF9) Shifted and Rotated Rastrigin’s Function 900 [−100,100]

F30 (CF10) Shifted Schwefel’s Function 1000 [−100,100]
F31 (CF11) Shifted and Rotated Schwefel’s Function 1100 [−100,100]
F32 (CF12) Shifted and Rotated Katsuura Function 1200 [−100,100]
F33 (CF13) Shifted and Rotated HappyCat Function 1300 [−100,100]
F34 (CF14) Shifted and Rotated HGBat Function 1400 [−100,100]

F35 (CF15) Shifted and Rotated Expanded Griewank’s plus
Rosenbrock’s Function 1500 [−100,100]

F36 (CF16) Shifted and Rotated Expanded Scaffer’s F6 Function 1600 [−100,100]

Hybrid test
functions

F37 (CF17) Hybrid Function 1 1700 [−100,100]
F38 (CF18) Hybrid Function 2 1800 [−100,100]
F39 (CF19) Hybrid Function 3 1900 [−100,100]
F40 (CF20) Hybrid Function 4 2000 [−100,100]
F41 (CF17) Hybrid Function 5 2100 [−100,100]
F42 (CF18) Hybrid Function 6 2200 [−100,100]

Composition test
functions

F43 (CF23) Composition Function 1 2300 [−100,100]
F44 (CF24) Composition Function 2 2400 [−100,100]
F45 (CF25) Composition Function 3 2500 [−100,100]
F46 (CF26) Composition Function 4 2600 [−100,100]
F47 (CF27) Composition Function 5 2700 [−100,100]
F48 (CF28) Composition Function 6 2800 [−100,100]
F49 (CF29) Composition Function 7 2900 [−100,100]
F50 (CF30) Composition Function 8 3000 [−100,100]
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Table A5. Description of CEC-2017 benchmark.

Type ID Functions Global Opt. Domain

Unimodal
function

F51 (CF1) Shifted and Rotated Bent Cigar Function 100 [−100,100]
F52 (CF3) Shifted and Rotated Zakharov Function 300 [−100,100]

Simple
multimodal

Test functions

F53 (CF4) Shifted and Rotated Rosenbrock’s Function 400 [−100,100]
F54 (CF5) Shifted and Rotated Rastrigin’s Function 500 [−100,100]
F55 (CF6) Shifted and Rotated Expanded Scaffer’s Function 600 [−100,100]
F56 (CF7) Shifted and Rotated Lunacek Bi_Rastrigin Function 700 [−100,100]

F57 (CF8) Shifted and Rotated Non-Continuous Rastrigin’s
Function 800 [−100,100]

F58 (CF9) Shifted and Rotated Levy Function 900 [−100,100]
F59 (CF10) Shifted and Rotated Schwefel’s Function 1000 [−100,100]

Hybrid test
functions

F60 (CF11) Hybrid Function 1 1100 [−100,100]
F61 (CF12) Hybrid Function 2 1200 [−100,100]
F62 (CF13) Hybrid Function 3 1300 [−100,100]
F63 (CF14) Hybrid Function 4 1400 [−100,100]
F64 (CF15) Hybrid Function 5 1500 [−100,100]
F65 (CF16) Hybrid Function 6 1600 [−100,100]
F66 (CF17) Hybrid Function 7 1700 [−100,100]
F67 (CF18) Hybrid Function 8 1800 [−100,100]
F68 (CF19) Hybrid Function 9 1900 [−100,100]
F69 (CF20) Hybrid Function 10 2000 [−100,100]

Composition test
functions

F70 (CF21) Composition Function 1 2100 [−100,100]
F71 (CF22) Composition Function 2 2200 [−100,100]
F72 (CF23) Composition Function 3 2300 [−100,100]
F73 (CF24) Composition Function 4 2400 [−100,100]
F74 (CF25) Composition Function 5 2500 [−100,100]
F75 (CF26) Composition Function 6 2600 [−100,100]
F76 (CF27) Composition Function 7 2700 [−100,100]
F77 (CF28) Composition Function 8 2800 [−100,100]
F78 (CF29) Composition Function 9 2900 [−100,100]
F79 (CF30) Composition Function 10 3000 [−100,100]

Table A6. Description of CEC2020 benchmarks.

Type ID Functions Global Opt. Domain

Unimodal F80 (CF1) Shifted and Rotated Bent Cigar Function 100 [−100,100]

multimodal
F81 (CF2) Shifted and Rotated Lunacek Bi_Rastrigin Function 700 [−100,100]
F82 (CF3) Hybrid Function 1 1100 [−100,100]

Hybrid

F83 (CF4) Hybrid Function 2 1700 [−100,100]
F84 (CF5) Hybrid Function 3 1900 [−100,100]
F85 (CF6) Hybrid Function 4 2100 [−100,100]
F86 (CF7) Hybrid Function 5 1600 [−100,100]

Composition
F87 (CF8) Composition Function 1 2200 [−100,100]
F88 (CF9) Composition Function 2 2400 [−100,100]

F89 (CF10) Composition Function 3 2500 [−100,100]

Table A7. Description of CEC2022 benchmark.

Type No. Functions Global
Opt. Domain

Unimodal
function F90 Shifted and full Rotated Zakharov Function 300 [−100,100]

Basic functions
F91 Shifted and full Rotated Rosenbrock’s Function 400 [−100,100]
F92 Shifted and full Rotated Expanded Schaffer’s f6 Function 600 [−100,100]
F93 Shifted and full Rotated Non-continuous Rastrigin’s Function 800 [−100,100]
F94 Shifted and Rotated Levy Function 900 [−100,100]
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Table A7. Cont.

Type No. Functions Global
Opt. Domain

Hybrid functions
F95 Hybrid function 1 (N = 3) 1800 [−100,100]
F96 Hybrid function 2 (N = 6) 2000 [−100,100]
F97 Hybrid function 3 (N = 5) 2200 [−100,100]

Composite
functions

F98 Composite function 1 (N = 5) 2300 [−100,100]
F99 Composite function 2 (N = 4) 2400 [−100,100]

F100 Composite function 3 (N = 5) 2600 [−100,100]
F101 Composite function 4 (N = 6) 2700 [−100,100]
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