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Abstract: Brucellosis a the serious infectious disease in Hinggan League. Research has demonstrated
that a large amount of transportation is one of the main reasons for so many cases. However, the
specific transmission mechanism of brucellosis is not clear. In this paper, we utilize a multi-patch
model to study the effect of the transportation of sheep on the spread of brucellosis in Hinggan
League. Theoretically, we prove the global stability of the disease-free equilibrium and the uniform
persistence of the endemic equilibrium. In a practical application, we apply the model to investigate
the spread of brucellosis in Ulanhot city and Jalaid Banner, which are geographically adjacent in
Hinggan League. The strains carried by humans are B.melitensis bv.1 and B.melitensis bv.3. We use
the two-patch model to fit reported brucellosis cases data of two places by Markov Chain Monte Carlo
(MCMC) simulations. It is found that the global basic reproduction number R0 is larger than 1, but
the isolated basic reproduction numbers in Ulanhot city and Jalaid Banner are both less than 1. This
indicates that the prevalence of brucellosis may be caused by the transportation of sheep. Sensitivity
analysis of parameters on R0 shows that it is the most effective means to control the transportation of
sheep from Jalaid to Ulanhot on preventing brucellosis. Moreover, we also discover that improving
vaccine efficiency is an effective method compared with strengthening the vaccination coverage rate
and improving the detection rate of sheep with brucellosis. Our dynamic behavior analysis of the
two-patch model can provide a reference for the dynamic behavior analysis of the n-patch model,
and our results provide a guide for how to control brucellosis based on transportation.

Keywords: brucellosis; basic reproduction number; transportation; vaccine efficiency; sensitivity
analysis

MSC: 37N25; 34D23; 37M05

1. Introduction

Brucellosis, as a type of zoonosis disease [1] that is extremely prevalent in pastoral
areas. When human beings are exposed to infected animals or contaminated environ-
ments [2,3], they may be infected by brucellosis. They usually have symptoms such as
fever, hyper-hidrosis, fatigue, pain in bone joints and muscles, lymphadenopathy, and
hepatosplenomegaly [4,5]. Animals are infected via contacting with infected animals or
contaminated environment. They will present miscarriage, infertility, decreased production
and lameness, and the fetus will die [6–8].

Dynamical models have become the important tool to characterize the space dis-
tributed laws of animals [9,10] and plants [11–13], and the spread laws of infectious dis-
eases [14]. The amount of research that uses dynamical model to analyze the prevention
and control assessment of the prevalence of brucellosis is increasing. Considering the
bacteria in the environment, Zhang et al., based on SEIV model, showed that the external
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input of dairy cows may be the main reason for the high fluctuation of the number of
dairy cows with brucellosis in Zhejiang Province [15]. Hou et al. constructed the coupling
dynamic model of humans and sheep, and found that disinfection of the environment and
immunization of sheep are effective means to control the transmission of brucellosis in
Inner Mongolia [16]. Sun et al. proposed the SEIVW model to study the global dynamics
of the model, and concluded that reducing immigration and self-sufficiency of the flock
are effective to controlling sheep brucellosis [17]. Zhang et al. utilized a two-patch SEIV
model to reveal the dispersal of the susceptible population in each patch and found that
concentrating the infected cattle to large breeding scale is effective to control the brucel-
losis [18]. Li et al. proposed a deterministic model to investigate the transmission dynamics
of brucellosis in Hinggan League. They demonstrated that a combination of prohibiting
mixed feeding between basic ewes and other sheep, vaccination, detection and elimination
is useful in controlling human brucellosis in Hinggan League [19]. It has been demonstrated
that the multi-patch model is the most appropriate mathematical model for studying the
transmission dynamics between regions [18,20].

Brucellosis is an important public health problem in China, particularly in pastoral
areas of northern China [21–23], although many developed countries control brucellosis
well. It accounts for more than 40% of Chinese human brucellosis in Inner Mongolia [24],
where the incidence rate of brucellosis cases is the highest in northern China. In Hinggan
League, as one of the largest pastoral areas in Inner Mongolia, a total of 121,151 new
human cases were reported from 2001 to 2010 [25]. Figure 1 shows the time series of
human cases from 2010 to 2020 in Hinggan League. It could be said that the curve of
Figure 1 decreases first and then increases. An important reason for the rise in the number
of brucellosis cases is the growing sheep breeding and trafficking, which enhances the
transportation of sheep among these places and increases the infected risk of brucellosis.
According to the investigation [3], most of the cases occurred in slaughterhouses, fur and
hair processing factories, sheep breeding, transportation and food factories processing
milk and meat in rural areas. Jalaid and Ulanhot, located in Horqin prairie, are a pair of
representative areas. The two places are geographically adjacent, and the strains carried
by human are B.melitensis bv.1 and B.melitensis bv.3 [3]. It could be inferred that there
is mutual transportation between the two places, but the mechanism of transportation of
sheep between the two places is still unclear. Few researchers apply the multi-patch model
of human-sheep coupling to actual circumstances to study the impact of transportation
on the prevalence of brucellosis. In this paper, we proposed a deterministic two-patch
model to study the impact of transportation on the spread of brucellosis between Jalaid
and Ulanhot, and put forward some practical prevention and control measures.
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Figure 1. Number of human brucellosis cases in Hinggan League from January 2010 to January
2020 (data from NNDRS [26]).
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The paper is organised in the following way. In Section 2, we present the dynamical
model. In Sections 3 and 4, we analyze the dynamical behavior of the model. We fit the
number of human brucellosis cases in Ulanhot and Jalaid from 2010 to 2020 and give the
sensitivity analysis on R0 in Section 5. In Section 6, we verify the theorem of the Section 3
through numerical simulation. Sections 7 and 8 gives a brief discussion of the main results,
shortcomings and future work.

2. Dynamical Model

In order to explore the transportation relationship of sheep, we construct a human-
sheep coupling transportation model based on the characteristics of brucellosis transmis-
sion. According to the transmission mechanism of brucellosis, the following assumptions
are made.

(H1) The susceptible sheep could be infected through touching the exposed and infected
sheep, or brucella in the environment.

(H2) Susceptible people could be infected by exposure to contaminated environments and
exposed and infected sheep, but they will not be infected by people with brucellosis.

(H3) Exposed sheep usually have no symptoms, and they will also be vaccinated. It is
assumed that susceptible and exposed sheep have immunity within the validity period
after vaccination, that is, they will not be infected with brucellosis.

(H4) Since the migration of sheep is mainly directional transportation through trade, we
consider the directed migration of sheep between patches, but do not consider the
spatial dispersal caused by the free movement of individuals.

The follow chart of transmission dynamic of brucellosis from sheep to sheep and from
sheep to human is in Figure 2.
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Figure 2. The transportation of brucella between sheep and from sheep with brucellosis to humans
and from patch to patch due to the transportation of sheep in patch i.

In Figure 2, the superscript G and H represent sheep and human, the subscript i
and j represent patch i and patch j, respectively. The number of susceptible, exposed,
infected and vaccinated sheep are indicated by SG

i , EG
i , IG

i , VG
i . Meanwhile, the numbers

of susceptible, exposed, and infected humans are represented by SH
i , EH

i , IH
i . The brucella

amount in the environment is WG
i . The meaning of other parameters is shown in Table 1, in

which parameters Ai, Bi, λG
i , βG

i , ε, αi, mG
i , kG

i , δG
i , µi,rG

i ,ei, ci, δH
i , aK

ij (K = SG, EG, IG, VG),
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bK
ij (K = SH , EH , IH) are nonnegative constants. Based on the above assumption, a dynami-

cal model of brucellosis transmission between sheep and human is established as follows.

dSG
i

dt
= Ai + λG

i VG
i − βG

i SG
i (IG

i + EG
i )− αiSG

i WG
i − (mG

i + kG
i )S

G
i + Σn

j=1aijSG
j ,

dEG
i

dt
= βG

i SG
i (IG

i + EG
i ) + αiSG

i WG
i − (mG

i + δG
i + kG

i )EG
i + Σn

j=1aijEG
j ,

dIG
i

dt
= δG

i EG
i − (µi + mG

i )IG
i + Σn

j=1aij IG
j ,

dVG
i

dt
= kG

i (S
G
i + EG

i )− (λG
i + mG

i )V
G
i + Σn

j=1aijVG
j ,

dWG
i

dt
= rG

i (EG
i + IG

i )− eiWG
i + Σn

j=1aijWG
j ,

dSH
i

dt
= Bi −mH

i SH
i − βH

i SH
i (IG

i + EG
i )− ciSH

i WG
i + Σn

j=1bijSH
j ,

dEH
i

dt
= βH

i SH
i (IG

i + EG
i ) + ciSH

i WG
i −mH

i EH
i − δH

i EH
i + Σn

j=1bijEH
j ,

dIH
i

dt
= δH

i EH
i −mH

i IH
i + Σn

j=1bij IH
j .

(1)

Table 1. Definitions of variables and parameters.

Parameters Description

Ai the annual birth rate of sheep in patch i
Bi the annual birth rate of humans in patch i
λG

i the loss rate of vaccination immunity for sheep in patch i

βG
i

the transmission coefficient of infectious sheep to susceptible sheep
in patch i

βH
i

the transmission coefficient of infectious sheep to
susceptible humans in patch i

αi
the transmission coefficient of polluted environment to
susceptible sheep in patch i

mG
i natural death and slaughter elimination rate coefficient of sheep in patch i

kG
i vaccination rate of sheep

mH
i the natural death rate of people in patch i

δG
i the rate of clinical outcome of exposed sheep in patch i

µi disease-related culling rate of infectious sheep in patch i
rG

i the amount of brucella per unit time emitted by exposed and infected sheep
ei brucella decay rate in patch i

ci
the transmission rate coefficient of brucella in
environment-to-susceptible human in patch i

δH
i the rate of clinical outcome of exposed human in patch i

aij the migration rate of sheep from patch j to patch i (i 6= j)
bij the migration rate of people from patch j to patch i (i 6= j)

All solutions of (1) satisfy SG
i (t) > 0, EG

i (t) ≥ 0, IG
i (t) ≥ 0, VG

i (t) ≥ 0, WG
i (t) ≥ 0,

SH
i (t) ≥ 0, EH

i (t) ≥ 0 and IH
i (t) ≥ 0, if initial condition satisfy SG

i (0) ≥ 0, EG
i (0) ≥ 0,

IG
i (0) ≥ 0, VG

i (0) ≥ 0, WG
i (0) ≥ 0, SH

i (0) ≥ 0, EH
i (0) ≥ 0 and IH

i (0) ≥ 0 for i = n.

Proof. For the first equation of system (1), there is

dSG
i

SG
i dt

=
Ai + λG

i VG
i − βG

i SG
i (IG

i + EG
i )− αiSG

i WG
i − (mG

i + kG
i )S

G
i + Σn

j=1aijSG
j

SG
i

.
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By calculating,

SG
i (t) = SG

i (0)e
∫ t

0 Ai+λG
i VG

i (t)−βG
i SG

i (t)(IG
i (t)+EG

i (t))−αiSG
i (t)W

G
i (t)−(mG

i +kG
i )S

G
i (t)+Σn

j=1aijSG
j (t)dt ≥ 0.

Similarly, EG
i (t) ≥ 0, IG

i (t) ≥ 0, VG
i (t) ≥ 0, WG

i (t) ≥ 0, SH
i (t) ≥ 0, EH

i (t) ≥ 0 and
IH
i (t) ≥ 0, when SG

i (0) ≥ 0, EG
i (0) ≥ 0, IG

i (0) ≥ 0, VG
i (0) ≥ 0, WG

i (0) ≥ 0, SH
i (0) ≥ 0,

EH
i (0) ≥ 0 and IH

i (0) ≥ 0 for i = n.

Ignoring births and deaths in transportation, we get the relationship related to the
transportation rate, as follows,

Σn
i=1aij = 0, Σn

i=1bij = 0 1 ≤ i ≤ n.

System (1) is a system of n patches. In next section, we will discuss the case when
n = 2. Brucellosis generally does not spread from person to person and the equations for
sheep (first five equation of system (1)) are independent of those for humans (last three
equation of system (1)). Thus, dynamical analysis of the first five equations of system (1)
is presented in Section 3. In Section 4, we analyze the dynamic behavior of the last three
equations of system (1). In order two simplify the presentation, we consider the following
notation,

gi = (SG
i , EG

i , IG
i , VG

i , WG
i ), hi = (SH

i , EH
i , IH

i ) i = 1, 2.

3. Dynamic Analysis of First Five Equation of System (1) for n = 2

When transportation is not considered, the first five equations of system (1) could
be transformed into system (2); when we consider transportation, system (1) is con-
verted to system (3). In the following, we analyze the dynamical behaviours according to
theory [27–33].

3.1. The Single Patch Model without Sheep Transportation

Ignoring the transportation of the sheep, aij = 0 (i = 1, 2). Then system (1) reduces to
the following model.

dSG
i

dt
= Ai + λG

i VG
i − βG

i SG
i (IG

i + EG
i )− αiSG

i WG
i − (mG

i + kG
i )S

G
i ,

dEG
i

dt
= βG

i SG
i (IG

i + EG
i ) + αiSG

i WG
i − (mG

i + δG
i + kG

i )EG
i ,

dIG
i

dt
= δG

i EG
i − (µi + mG

i )IG
i ,

dVG
i

dt
= kG

i (S
G
i + EG

i )− (λG
i + mG

i )V
G
i ,

dWG
i

dt
= rG

i (EG
i + IG

i )− eiWG
i .

(2)

lim sup
t→∞

(SG
i + EG

i + IG
i +VG

i ) = Ai
mG

i
, lim sup

t→∞
WG

i =
rG

i Ai

mG
i ei

(i = 1, 2). So, the positive invariant

set of system (2) is expressed as

D =

{
(g1, g2) ∈ R10

+ |SG
i + EG

i + IG
i + VG

i ≤
Ai

mG
i

, WG
i ≤

rG
i Ai

mG
i ei

}
.

By calculating, the disease free equilibrium are

P∗ = (g∗1 , g∗2) = (S∗1 , 0, 0, V∗1 , 0, S∗2 , 0, 0, V∗2 , 0),

where

S∗i =
(λG

i + mG
i )Ai

(mG
i (k

G
i + λi + mG

i )
, V∗i =

kG
i Ai

mG
i (k

G
i + λG

i + mG
i )

(i = 1, 2).
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Then, using the next generation method [27], we could obtain the basic reproduction
number

Ri
0 =

S∗i (αiδ
G
i rG

i + αimG
i rG

i + αirG
i µG

i + δG
i βG

i ei + βG
i eimG

i + βG
i eiui)

ei(δ
G
i mG

i + δG
i µG

i + kG
i mG

i + kG
i µi + mG

i
2
+ mG

i µi)
(i = 1, 2).

Since the exposed and infected people are not infectious, the basic reproduction
number of the system (2) is the basic reproduction number of the system (1) without
transmission of humans and sheep.

3.2. The Two Patch Model with the Transportation of Sheep between Two Patches

We consider the transmission of sheep between two patches, and system (1) could be
rewritten as

dSG
i

dt
= Ai + λG

i VG
i − βG

i SG
i (IG

i + EG
i )− αiSG

i WG
i − (mG

i + kG
i )S

G
i − a21SG

1 + a12SG
1 ,

dEG
i

dt
= βG

i SG
i (IG

i + EG
i ) + αiSG

i WG
i − (mG

i + δG
i + kG

i )EG
i − a21EG

1 + a12EG
1 ,

dIG
i

dt
= δG

i EG
i − (µi + mG

i )IG
i − a21 IG

1 + a12 IG
1 ,

dVG
i

dt
= kG

i (S
G
i + EG

i )− (λG
i + mG

i )V
G
i − a21VG

1 + a12VG
1 ,

dWG
i

dt
= rG

i (EG
i + IG

i )− eiWG
i − a21WG

1 + a12WG
1 .

(3)

The disease-free equilibrium of system (3) is

P0 = (g0
1, g0

2) = (S0
1, 0, 0, V0

1 , 0, S0
2, 0, 0, V0

2 , 0),

where

S0
1 =

a12(A2 + λG
2 Z2) + (A1 + λG

1 Z1)(λ
G
2 + c6 + kG

2 )

−a12a21 + (λG
1 + c5 + kG

1 )(λ
G
2 + c6 + kG

2 )
,

S0
2 =

a21(A1 + λG
1 Z1) + (A2 + λG

2 Z2)(λ
G
1 + c5 + kG

1 )

−a12a21 + (λG
1 + c5 + kG

1 )(λ
G
2 + c6 + kG

2 )
,

V0
1 =

a12kG
2 (A1a21 + A2c5) + kG

1 (A2a12 + A1c6)(λ
G
2 + c6 + kG

2 )

[−a12a21 + (λG
1 + c5 + kG

1 )(λ
G
2 + c6 + kG

2 )](c5c6 − a12a21)
,

V0
2 =

a21kG
1 (A2a12 + A1c6) + kG

2 (A1a21 + A2c5)(λ
G
1 + c5 + kG

1 )

[−a12a21 + (λG
1 + c5 + kG

1 )(λ
G
2 + c6 + kG

2 )](c5c6 − a12a21)
,

with
c5 = mG

1 + a21, c6 = mG
2 + a12,

Z1 =
A1c6 + A2a12

c5c6 − a12a21
, Z2 =

A1a21 + A2c5

c5c6 − a12a21
.

Assuming that Ni = SG
i + EG

i + IG
i + VG

i (i = 1, 2), we sum the equations in system
(3) and find that, 

dN1(t)
dt

= A1 − c5N1(t) + a12N2(t)− µG
1 IG

1 (t),
dN2(t)

dt
= A2 − c6N2(t) + a21N1(t)− µG

2 IG
2 (t).

(4)
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Here, Ni represents the total population of patch i. The dynamical behavior of the
linearized system corresponding to system (4) near the equilibrium point is similar to that
of system (4). Therefore, we consider an auxiliary linear system,

dx1(t)
dt

= A1 − c5x1(t) + a12x2(t),
dx2(t)

dt
= A2 − c6x2(t) + a21x1(t).

(5)

It could be seen that system (5) has a unique equilibrium (Z1, Z2). The corresponding
characteristic equation of system (5) at (Z1, Z2) is,

λ2 + (c5 + c6)λ + c5c6 − a12a21 = 0. (6)

As c5 = mG
1 + a21 > 0, c6 = mG

2 + a12 > 0, so c5 + c6 > 0 and c5c6 − a12a21 =
(mG

1 + a21)(mG
2 + a12) − a12a21 = mG

1 mG
2 + a12mG

1 + a21mG
2 > 0. It follows that all roots

of system (6) have negative real parts, and (Z1, Z2) is locally asymptotically stable. It
follows that,

lim
t→∞

(x1(t), x2(t)) = (Z1, Z2).

As system (5) is a cooperative and irreducible system, and the local stability of linear
system is global stability. It is known by comparison principle [28] that Ni(t) ≤ Zi + ε,
(i = 1, 2) for all ε ≥ 0 and all large enough t through the comparison principle. It implies
that, as t→ ∞, all solutions of system (3) with nonnegative conditions ultimately turn into
positively invariant set

Ω =

{
(g1, g2) ∈ R10

+ | (SG
i + EG

i + IG
i + VG

i ) ≤ Zi + ε,

WG
1 ≤

Z1rG
1 (a12 + e2) + a12Z2rG

2
(a12 + e2)(a21 + e1)− a21a12

, WG
2 ≤

Z2rG
2 (a21 + e1) + a21Z1rG

1
(a12 + e2)(a21 + e1)− a21a12

}
. (7)

According to the next generation method [27], we define

F =



βG
1 S0

1(I0
1 + E0

1) + α1S0
1W0

1
β0

2S0
2(I0

2 + E0
2) + α2S0

2W0
2

0
0
0
0

, V =



(mG
1 + δG

1 + kG
1 + a21)E0

1 − a12E0
2

(mG
2 + δG

2 + kG
2 + a12)E0

2 − a21E0
1

−δG
1 E0

1 + (µ1 + mG
1 + a21)I0

1 − a12 I0
2

−δG
2 E0

2 + (µ2 + mG
2 + a12)I0

2 − a21 I0
1

−rG
1 (E0

1 + I0
1 ) + (e1 + a21)W0

1 − a12W0
2

−rG
2 (E0

2 + I0
2 ) + (e2 + a12)W0

2 − a21W0
1

,

F =



βG
1 S0

1 0 βG
1 S0

1 0 α1S0
1 0

0 βG
2 S0

2 0 βG
2 S0

2 0 α2S0
2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

V =


mG

1 + δG
1 + kG

1 + a21 −a12 0 0 0 0
−a21 mG

2 + δG
2 + kG

2 + a12 0 0 0 0
−δG

1 0 µ1 + mG
1 + a21 −a12 0 0

0 −δG
2 −a21 µ2 + mG

2 + a12 0 0
−rG

1 0 −rG
1 0 e1 + a21 −a12

0 −rG
2 0 −rG

2 −a21 e2 + a12

.

We also define,
J = F−V,

y1 = mG
1 + δG

1 + kG
1 + a21, y2 = mG

2 + δG
2 + kG

2 + a12, y3 = mG
1 + µ1 + a21,
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y4 = mG
2 + µ2 + a12, y5 = e1 + a21, y6 = e2 + a12,

b11 =
y2δG

1 y4 + a12δG
2 a21

(a12a21 − y1y2)(a12a21 − y3y4)
, b12 =

y2δG
1 a12 + a12δG

1 y3

(a12a21 − y1y2)(a12a21 − y3y4)
,

b13 =
y2rG

1 y6 + a12rG
1 a21

(a12a21 − y1y2)(a12a21 − y5y6)
, b14 =

y2rG
1 a12 + a12rG

2 y5

(a12a21 − y1y2)(a12a21 − y5y6)
,

b21 =
a21δG

1 y4 + y1δG
2 a21

(a12a21 − y1y2)(a12a21 − y3y4)
, b22 =

a21δG
1 a12 + y1δG

1 y3

(a12a21 − y1y2)(a12a21 − y3y4)
,

b23 =
a21rG

1 y6 + y1rG
2 a21

(a12a21 − y1y2)(a12a21 − y5y6)
, b14 =

a21rG
1 a12 + y1rG

1 y5

(a12a21 − y1y2)(a12a21 − y5y6)
.

Through a series of simplification, the basic reproduction number is

R0 = ρ(FV−1) =
A + D +

√
(A + D)2 − 4(AD− BC)

2
. (8)

with

A = −
β1S0

1y2

(a12a21 − y1y2)
+ β1S0

1b11 + α1S0
1(−

b11r1y6 + b12rG
2 a21

a12a21 − y5y6
+ b13),

B = −
β1S0

1a12

(a12a21 − y1y2)
+ β1S0

1b12 + α1S0
1(−

b11rG
1 a12 + b12rG

2 y5

a12a21 − y5y6
+ b14),

C = −
β2S0

2a21

(a12a21 − y1y2)
+ β2S0

2b21 + α2S0
2(−

b21rG
1 y6 + b22rG

2 a21

a12a21 − y5y6
+ b23),

D = −
β2S0

2y1

(a12a21 − y1y2)
+ β2S0

2b22 + α2S0
2(−

b21rG
1 a12 + b22rG

2 y5

a12a21 − y5y6
+ b24).

Since the exposed and infected people are not infectious, the basic reproduction
number of the system (3) is the basic reproduction number of the system (1).

Lemma 1. Let us consider the system (3), R0 defined on (8) and the notation s(J) := max
{

Re Z:
Z is an eigenvalue of J

}
. Then, the following assertions are satisfied

(i) R0 < 1 is equivalent to S(J) < 0,
(ii) R0 > 1 is equivalent to S(J) > 0.

Proof. We can prove the Lemma by follow [27].

By Theorem 2 in [27], it is easy to conclude that the disease-free equilibrium P0 is
locally asymptotically stable when R0 < 1 and P0 is unstable when R0 > 1. Then we
further investigate the global dynamical behavior of P0.

Theorem 1. When R0 < 1, the disease-free equilibrium P0 is global asymptotically stable.

Proof. In this section, we only need to prove the global attraction of P0. From system (3),
for sufficient large t, we have
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dVG
1

dt
= kG

1 (S
G
1 + EG

1 )− (λG
1 + mG

1 + a21)VG
1 + a12VG

2

= kG
1 (NG

1 − IG
1 −VG

1 )− (λG
1 + mG

1 + a21)VG
1 + a12VG

2

≤ kG
1 (Z1 + ε)− c1VG

1 + a12VG
2 ,

dVG
2

dt
= kG

2 (S
G
2 + EG

2 )− (λG
2 + mG

2 + a12)VG
2 + a21VG

1

= kG
2 (NG

2 − IG
2 −VG

2 )− (λG
2 + mG

2 + a12)VG
2 + a21VG

1

≤ kG
2 (Z2 + ε)− c2VG

2 + a21VG
1 ,

(9)

with c1 = λG
1 + mG

1 + a21 + kG
1 , c2 = λG

2 + mG
2 + a12 + kG

2 . Next considering an auxiliary
linear system 

du1(t)
dt

= kG
1 (Z1 + ε)− c1u1 + a12u2,

du2(t)
dt

= kG
2 (Z2 + ε)− c2u2 + a21u1.

(10)

The endemic equilibrium of system (10) is,

(Z̃1, Z̃2) =
1

c1c2 − a12a21
(c2kG

1 (Z1 + ε) + a12kG
2 (Z2 + ε), c1kG

2 (Z2 + ε) + a21kG
1 (Z1 + ε))

= (V0
1 + ε11, V0

2 + ε12),

where ε11 =
ε(c2kG

1 +a12kG
2 )

c1c2−a12a21
, ε12 =

ε(c1kG
2 +a21kG

1 )
c1c2−a12a21

. Since system (10) is similar to (5), (Z̃1, Z̃2)
is globally asymptotically stable. Using comparison theorem, we know that for a small
enough ε > 0, there is a small enough ε1 > 0 such that V1(t) ≤ V0

1 + ε1, V2(t) ≤ V0
2 + ε1,

when t > t1(t1 > 0). Consequently, we have

d(SG
1 (t) + EG

1 (t))
dt

= A1 + λG
1 VG

1 − c3SG
1 − (c3 + δ1)EG

1 + a12SG
2 + a12EG

2

≤ A1 + λG
1 (V

0
1 + ε11)− c3(SG

1 + EG
1 ) + a12(SG

2 + EG
2 ),

d(SG
2 (t) + EG

2 (t))
dt

= A2 + λG
2 VG

2 − c4SG
2 − (c4 + δ2)EG

2 + a21SG
2 + a21EG

1

≤ A2 + λG
2 (V

0
2 + ε12)− c4(SG

2 + EG
2 ) + a21(SG

1 + EG
1 ),

(11)

with c3 = mG
1 + a21 + kG

1 , c4 = mG
2 + a12 + kG

2 . Now considering the following system,
du3

dt
= A1 + λG

1 (V
0
1 + ε11)− c3u3 + a12u4,

du4

dt
= A2 + λG

2 (V
0
2 + ε12)− c4u4 + a21u3,

(12)

the endemic equilibrium of the system (12) is

(Z1, Z2) =
1

c3c4 − a12a21
(c4(A1 + λG

1 (V
0
1 + ε1)) + a12(A2 + λG

2 (V
0
2

+ ε1)), c3(A2 + λG
2 (V

0
2 + ε1)) + a21(A1 + λG

1 (V
0
1 + ε1))) = (S0

1 + ε13, S0
2 + ε14),

which is globally asymptotically stable, here ε13 =
ε1(λ

G
1 c4+λG

2 a12)
c3c4−a12a21

, ε14 =
ε1(λ

G
2 c3+λG

1 a21)
c1c2−a12a21

.
Therefore, there exist ε2 > 0, t2 > t1 > 0, SG

1 (t) ≤ SG
1 (t) + EG

1 (t) ≤ S0
1 + ε2 and S2(t) ≤

SG
2 (t) + EG

2 (t) ≤ S0
2 + ε2, when t > t2. So, we have



Mathematics 2022, 10, 3436 10 of 26



dEG
1

dt
≤ βG

1 (S
0
1 + ε2)IG

1 + α1(S0
1 + ε2)WG

1 − (mG
1 + δG

1 + kG
1 + a21 − βG

1 (S
0
1 + ε2))EG

1

+ a12EG
2 ,

dIG
1

dt
= δG

1 EG
1 − (µ1 + mG

1 + a21)IG
1 + a12 IG

2 ,

dWG
1

dt
= rG

1 (EG
1 + IG

1 )− (e1 + a21)WG
1 + a12WG

2 ,

dEG
2

dt
≤ βG

2 (S
0
2 + ε2)IG

2 + α2(S0
2 + ε2)WG

2 − (mG
2 + δG

2 + kG
1 + a12 − βG

2 (S
0
2 + ε2))EG

2

+ a21EG
1 ,

dIG
2

dt
= δG

2 EG
2 − (µ2 + mG

2 + a12)IG
2 + a21 IG

2 ,

dWG
2

dt
= rG

2 (EG
2 + IG

2 )− (e2 + a12)WG
2 + a21WG

2 .

(13)

Similarly consider the following auxiliary system,

dx1

dt
= βG

1 (S
0
1 + ε2)x2 + α1(S0

1 + ε2)x3 − (mG
1 + δG

1 + kG
1 + a21 − βG

1 (S
0
1 + ε2))x1 + a12x4,

dx2

dt
= δG

1 x1 − (µ1 + mG
1 + a21)xG

1 + a12x2,
dx3

dt
= rG

1 x1 + rG
1 x2 − (e1 + a21)x3 + a12x6,

dx4

dt
= βG

2 (S
0
2 + ε2)x5 + α2(S0

2 + ε2)x6 − (mG
2 + δG

2 + kG
1 + a12 − βG

2 (S
0
2 + ε2))x4 + a21x1,

dx5

dt
= δG

2 x4 − (µ2 + mG
2 + a12)x5 + a21x2,

dx6

dt
= rG

2 x4 + rG
2 x6 − (e2 + a12)x6 + a21x3.

(14)

We conclude that (14) has an equilibrium P1 = (0, 0, 0, 0, 0, 0). Then we rewrite the
system (14) as the following form,

dx1

dt
dx2

dt
dx3

dt
dx4

dt
dx5

dt
dx6

dt


= Jε2



x1
x2
x3
x4
x5
x6

,

where

J∗ =



βG
1 0 βG

1 0 α1 0
0 βG

2 0 βG
2 0 α2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

Jε2 = J + ε2 J∗.
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The root of the characteristic equation corresponding to system (14) at the equilibrium
point P1 is the eigenvalue of Jε2 . From the previous analysis, we know that when R0 < 1,
s(J) < 0. Hence, there exists a small enough number ε2 > 0 such that s(Jε2) < 0, and all
the eigenvalues of matrix Jε2 have negative real parts. Therefore, the solution of system (14)
satisfies xi(t)→ 0 (i = 1, 2, 3, 4, 5, 6) as t→ ∞. According to the comparison principle, we
have EG

i (t)→ 0, IG
i (t)→ 0, WG

i (t)→ 0 (i = 1, 2). Furthermore, we consider the limiting
system of system (3), 

dSG
1

dt
= A1 + λG

1 VG
1 − c3SG

1 + a12SG
2 ,

dVG
1

dt
= kG

1 SG
1 − c1VG

1 + a12VG
2 ,

dSG
2

dt
= A2 + λG

2 VG
2 − c4SG

2 + a21SG
1 ,

dVG
2

dt
= kG

2 SG
2 − c2cG

2 + a21VG
1 .

(15)

It has an equilibrium P2 = (S0
1, V0

1 , S0
2, V0

2 ). And the characteristic equation at P2 is

f (x) = x4 + b1x3 + b2x2 + b3x + b4 = 0,

where

b1 = c1 + c2 + c5 + c6 > 0,

b2 = c1c5 + c2c6 + (c1 + c5)(c2 + c6)− 2a12a21,

b3 = (c1 + c5)c2c6 + (c2 + c6)c1c5 − a12a21(c1 + c2 + c5 + c6),

b4 = (c1c2 − a12a21)(c3c4 − a12a21) > 0.

Based on Routh Hurwitz criterion, all roots of f (x) have negative real parts. Therefore,
P2 is locally asymptotically stable. Considering (15) is a linearized system, P2 is global
asymptotically stable. By the theory of asymptotic autonomous systems [29], P0 is globally
attractive when R0 < 1. Then, we obtain that disease free equilibrium P0 is globally
asymptotically stable if R0 < 1. This completes the proof of Theorem 1.

We define

X = {(SG
i , EG

i , IG
i , VG

i , WG
i ) : SG

i ≥ 0, EG
i ≥ 0, IG

i ≥ 0, VG
i ≥ 0, WG

i ≥ 0, i = 1, 2}
X0 = {(SG

i , EG
i , IG

i , VG
i , WG

i ) ∈ X : EG
i > 0, IG

i > 0, WG
i > 0, i = 1, 2}

∂X0 = X\X0.

Then, we have following theorem.

Theorem 2. If R0 > 1, there admits a positive constant ε3 > 0 such that when (SG
1 (0), EG

1 (0), IG
1 (0),

VG
1 (0), WG

1 (0), SG
2 (0), EG

2 (0), IG
2 (0), VG

2 (0), WG
2 (0)) ∈ X0 and ‖EG

1 (0), IG
1 (0), WG

1 (0), EG
2 (0),

IG
2 (0), WG

2 (0)‖ < ε3, we have

lim sup
t→∞

max ||EG
i (t), IG

i (t), WG
i (t)|| ≥ ε3. (i = 1, 2)

Proof. According to the previous proof, system (15) has a positive equilibrium
P2 = (S0

1, V0
1 , S0

2, V0
2 ) which is globally asymptotically stable. R0 > 1 is equivalent to

s(J) > 0. Therefore, we could choose a small enough ε > 0 such that s(Jε) > 0 (Jε = J− εJ∗).
Consider the following perturbed system,
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dSG
1

dt
= A1 + λG

1 VG
1 − (c3 + β1δ)SG

1 + a12SG
2 ,

dVG
1

dt
= kG

1 S̄G
1 − c1VG

1 + a12VG
2 ,

dSG
2

dt
= A2 + λG

2 VG
2 − (c4 + β2δ)SG

2 + a21SG
1 ,

dVG
2

dt
= kG

2 SG
2 − c2VG

2 + a21VG
1 .

(16)

System (16) has an unique positive equilibrium P3 = (S∗1 , V∗1 , S∗2 , V∗2 ), where

S∗1 =
c6[A1(c1c2 − a12a21) + λG

1 (A2a12 + A1c2)] + a12[A2(c1c2 − a12a21) + λG
2 (A1a21 + A2c1)]

∆

+
A1βG

2 (λ
G
2 c1 + c1c2 − a12a21)δ

∆
,

V∗1 =
a12kG

2 (A1a21 + A2c1) + c6kG
1 (A2a12 + A1c2) + [kG

1 βG
2 (λ

G
2 + c2)A1 + kG

2 A2a12βG
1 ]δ

∆
,

S∗2 =
c5[A2(c1c2 − a12a21) + λG

2 (A1a21 + A2c1)] + a21[A1(c1c2 − a12a21) + λG
1 (A2a12 + A1c2)]

∆

+
A2βG

1 [(λ
G
1 + c1)(λ

G
2 + c2)− a12a21]δ

∆
,

V∗2 =
a21kG

1 (A2a12 + A2c2) + c6kG
2 (A1a21 + A2c1) + [kG

2 βG
1 (λ

G
1 + c1)A2 + kG

1 A1a21βG
2 ]δ

∆
,

here ∆ = (c5c6 − a12a21)(c1c2 − a12a21) + {[(λG
1 + c1)(λ

G
2 + c2) − a12a21][β1(β2δ + c4) +

β2c3]− k2λG
2 β1(λ

G
1 + c1)− λG

1 kG
1 β2(λ

G
2 + c2)}δ. Since system (15) has a globally asymp-

totically stable equilibrium P2, we could choose a small enough δ > 0 such that P3 is
globally asymptotically stable. Moreover we find lim

δ→0
(S∗1 , V∗1 , S∗2 , V∗2 ) = (S0

1, V0
1 , S0

2, V0
2 ).

So, there exists δ > 0 small enough such that S∗1(t) ≥ S0
1 − ε, S∗2(t) ≥ S0

2 − ε. Nextly we
prove theorem 2 by means of contradiction. Supposed that T > 0 and EG

i (t) < δ, IG
i (t) <

δ, WG
i (t) < δ, i = 1, 2. When t ≥ T, we have

dSG
1

dt
≥ A1 + λG

1 VG
1 − (c3 + β1δ)SG

1 + a12SG
2 ,

dV̄G
1

dt
= kG

1 SG
1 − c1VG

1 + a12VG
2 ,

dS̄G
2

dt
≥ A2 + λG

2 VG
2 − (c4 + β2δ)SG

2 + a21SG
1 ,

dV̄G
2

dt
= kG

2 SG
2 − c2VG

2 + a21VG
1 .

(17)

System (16) has a globally asymptotically stable positive equilibrium and lim
δ→0

(S∗1 , V∗1 , S∗2 , V∗2 )

= (S0
1, V0

1 , S0
2, V0

2 ), S∗1(t) ≥ S0
1 − ε1, S∗2(t) ≥ S0

2 − ε1. When T1 > T > 0, there is SG
i (t) >

S0
i − ε1( i = 1, 2; t > T1). Therefore, for any t > T1, we have
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dEG
1

dt
≥ βG

1 (S
0
1 − ε1)(EG

1 + IG
1 ) + α1(S0

1 − ε1)WG
1 − (mG

1 + δG
1 + kG

1 + a21)EG
1 + a12EG

2 ,

dIG
1

dt
= δG

1 EG
1 − (µ1 + mG

1 + a21)IG
1 + a12 IG

2 ,

dWG
1

dt
= rG

1 (EG
1 + IG

1 )− (e1 + a21)WG
1 + a12WG

2 ,

dEG
2

dt
≥ βG

2 (S
0
2 − ε1)(EG

2 + IG
2 ) + α2(S0

2 − ε1)WG
2 − (mG

2 + δG
2 + kG

2 + a12)EG
2 + a12EG

2 ,

dIG
2

dt
= δG

2 EG
2 − (µ2 + mG

2 + a12)IG
2 + a21 IG

2 ,

dWG
2

dt
= rG

2 (EG
2 + IG

2 )− (e2 + a12)WG
2 + a21WG

2 .

(18)

Considering the following auxiliary system,

dEG
1

dt
= βG

1 (S
0
1 − ε1)(EG

1 + IG
1 ) + α1(S0

1 − ε1)WG
1 − (mG

1 + δG
1 + kG

1 + a21)EG
1 + a12EG

2 ,

dIG
1

dt
= δG

1 EG
1 − (µ1 + mG

1 + a21)IG
1 + a12 IG

2 ,

dWG
1

dt
= rG

1 (EG
1 + IG

1 )− (e1 + a21)WG
1 + a12WG

2 ,

dEG
2

dt
= βG

2 (S
0
2 − ε1)(EG

2 + IG
2 ) + α2(S0

2 − ε1)WG
2 − (mG

2 + δG
2 + kG

2 + a12)EG
2 + a12EG

2 ,

dIG
2

dt
= δG

2 EG
2 − (µ2 + mG

2 + a12)IG
2 + a21 IG

2 ,

dWG
2

dt
= rG

2 (EG
2 + IG

2 )− (e2 + a12)WG
2 + a21WG

2 ,

(19)

and R0 > 1 is equivalent to s(J) > 0, it has

(EG
1 (t), IG

1 (t), WG
1 (t), EG

2 (t), IG
2 (t), WG

2 (t))→ (∞, ∞, ∞, ∞, ∞, ∞) (t→ ∞).

Using the principle of comparison [28], there is

(EG
1 (t), IG

1 (t), WG
1 (t), EG

2 (t), IG
2 (t), WG

2 (t))→ (∞, ∞, ∞, ∞, ∞, ∞) (t→ ∞),

which is contradictory with our assumptions, it follows that

lim sup
t→∞

max ‖|EG
i (t), IG

i (t), WG
i (t))|| ≥ ε3 (i = 1, 2).

Theorem 3. When R0 > 1, system (3) admits at least one positive equilibrium, and there is a posi-
tive constant ε3 such that every solution of system (3) with (SG

i (0), EG
i (0), IG

i (0), VG
i (0), WG

i (0))
∈ X0 (i = 1, 2) satisfies

min{ lim
t→∞

in f EG
i (t), lim

t→∞
in f IG

i (t), lim
t→∞

in f WG
i (t)} ≥ ε3 (i = 1, 2).
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Proof. First of all, we prove that system (3) is uniformly persistent with respect to (X0, ∂X0).
Both X and X0 are positively invariant and ∂X0 is relatively closed in X. System (3) is point
dissipative because of (7). According to [30] and for convenience of proof, we set

M∂ ={(SG
i (0), EG

i (0), IG
i (0), VG

i (0), WG
i (0)) : (SG

i (t), EG
i (t), IG

i (t), VG
i (t), WG

i (t)) ∈ ∂X0,

∀t ≥ 0 i = 1, 2}.

Then we show

M∂ = {(SG
i (t), 0, 0, VG

i (t), 0) : SG
i (t) ≥ 0, VG

i (t) ≥ 0, i = 1, 2}. (20)

As {(SG
i (t), 0, 0, VG

i (t), 0) : SG
i (t) ≥ 0, VG

i (t) ≥ 0} ⊆ M∂, we mainly prove

M∂ ⊆ {(SG
i (t), 0, 0, VG

i (t), 0) : SG
i (t) ≥ 0, VG

i (t) ≥ 0, i = 1, 2}.

Assume that (SG
i (0), EG

i (0), IG
i (0), VG

i (0), WG
i (0)) ∈ M∂ (i = 1, 2). It is sufficient to

show that EG
i (t) = 0, IG

i (t) = 0 and WG
i (t) = 0 (∀t ≥ 0, i = 1, 2). Reductio ad absurdum,

there is a t0 > 0 such that (EG
1 (t0), IG

1 (t0), WG
1 (t0))

T > 0 or (EG
2 (t0), IG

2 (t0), WG
2 (t0))

T > 0.
In order not to lose generality, assume that EG

1 (t0) > 0, IG
1 (t0) = 0, WG

1 (t0) = 0, EG
2 (t0) =

0, IG
2 (t0) = 0, WG

2 (t0) = 0. Then the following inequality holds, dIG
1 (t0)
dt = δ1EG

1 > 0

and dWG
1 (t0)
dt = r1EG

1 > 0. These mean that there is a small enough η1 > 0 such that

EG
1 (t) > 0, I1(t) > 0 and WG

1 (t) > 0 for t0 < t < t0 + η1. For dEG
2 (t0)
dt ≥ a21EG

1 (t0) > 0,
there is a η2 > 0 such that EG

2 (t) > 0 for t0 < t < t0 + η2. Just as the above proof
method, there is a η3 > 0 such that IG

2 (t) > 0 WG
2 (t) > 0 for t0 < t < t0 + η3. It

means that (SG
i (t), EG

i (t), IG
i (t), VG

i (t), WG
i (t)) /∈ ∂X0 (i = 1, 2) for t0 < t < t0 + η4, η4 =

min(η1, η2, η3). This contradicts to the hypothesis, so (20) holds. Considering that the
disease-free equilibrium P0 of system (3) is globally asymptotically stable, there is only one
equilibrium point P0 in set M∂. According to Theorem 2, P0 is an isolated invariant set
in X and Ws(P0)

⋂
X0 = ∅. The disease-free equilibrium P0 which has been calculated is

globally asymptotically stable. Based on the above argument P0 is the unique fixed point
and acyclic in ∂X0. By Theorem 4.6 [31], it follows that system (3) is uniformly persistent
with respect to (X, ∂X0).

Theorem 2.4 of [32] implies that system (3) has one equilibrium P∗ = (S∗1 , E∗1 , I∗1 , V∗1 , W∗1 ,
S∗2 , E∗2 , I∗2 , V∗2 , W∗2 ) ∈ X0, which implies that E∗1 > 0, I∗1 > 0, W∗1 > 0, E∗2 > 0, I∗2 > 0, W∗2 > 0.
Nextly, we prove S∗1 > 0, V∗1 > 0, S∗2 > 0, V∗2 > 0 by contradiction. Assume that
S∗1 = 0, V∗1 = 0, S∗2 = 0, V∗2 = 0, we have E∗1 = 0, I∗1 = 0, W∗1 = 0, E∗2 = 0, I∗2 = 0, W∗2 = 0,
because of Ai + λG

i VG
i − βG

i SG
i (IG

i + EG
i )− αiSG

i WG
i − (mG

i + kG
i )S

G
i + Σn

j=1aijSG
j = 0 with

Ai > 0, and kG
i (S

G
i + EG

i )− (λG
i + mG

i )V
G
i + Σn

j=1aijVG
j = 0. It is contradict to Theorem 2.

Therefore (S∗1 , E∗1 , I∗1 , V∗1 , W∗1 , S∗2 , E∗2 , I∗2 , V∗2 , W∗2 ) is a positive equilibrium of system (3).

4. Dynamic Analysis of Last Three Equations of System (1) for n = 2

When transportation is not considered, the last three equations of system (1) could be
transformed into system (21); when considering transportation, system (1) is converted to
system (22).

4.1. The Single Patch Model without Transmission of the Humans

Ignoring the transmission of the humans, bij = 0 (i = 1, 2), then system (1) reduces to
the following model.
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dSH
i

dt
= Bi −mH

i SH
i − βH

i SH
i (IG

i + EG
i )− ciSH

i WG
i ,

dEH
i

dt
= βH

i SH
i (IG

i + EG
i ) + ciSH

i WG
i −mH

i EH
i − δH

i EH
i ,

dIH
i

dt
= δH

i EH
i −mH

i IH
i .

(21)

lim sup
t→∞

(SH
i + EH

i + IH
i ) = Ai

mH
i

(i = 1, 2). So, the positive invariant set of system (21) is

expressed as

D =

{
(h1, h2) ∈ R10

+ |SH
i + EH

i + IH
i ≤

Bi

mH
i

}
.

By calculating, the disease free equilibrium is

P∗1 = (h∗1 , h∗2) = (
B1

mH
1

, 0, 0,
B2

mH
2

, 0, 0),

4.2. The Two Patch Model with the Transmission of the Humans between Two Patches

We consider the transmission of the humans between two patches, and system (1)
could be rewritten as

dSH
i

dt
= Bi −mH

i SH
i − βH

i SH
i (IG

i + EG
i )− ciSH

i WG
i + Σn

j=1bijSH
j ,

dEH
i

dt
= βH

i SH
i (IG

i + EG
i ) + ciSH

i WG
i −mH

i EH
i − δH

i EH
i + Σn

j=1bijEH
j ,

dIH
i

dt
= δH

i EH
i −mH

i IH
i + Σn

j=1bij IH
j .

(22)

By calculating, the disease free equilibrium of system (22) is

P∗2 = (h∗∗1 , h∗∗2 ) = (S∗∗1 , 0, 0, S∗∗2 , 0, 0).

Here, S∗∗1 =
(mH

2 +b12)B1+B2b12
(mH

1 +b21)(mH
2 +b12)−b12b21

, S∗∗2 =
(mH

1 +b21)B2+B1b21
(mH

1 +b21)(mH
2 +b12)−b12b21

.

According to Theorem 1, when t→ ∞, IG
i (t)→ 0 and EG

i (t)→ 0. Similar to the previous
proof method, when t → ∞, IH

i (t) → 0 and EH
i (t) → 0. The limiting system of system

(22) is 
dSH

i
dt

= B1 −mH
1 SH

1 − b21SH
1 + b12SH

2 ,

dSH
i

dt
= B2 −mH

2 SH
2 − b12SH

2 + b21SH
1 .

(23)

Its equilibrium (S∗∗1 , S∗∗2 ) is locally asymptotically stable based on Routh Hurwitz
criterion. As system (23) is a linear system, (S∗∗1 , S∗∗2 ) is globally asymptotically stable.
According to theory of asymptotic autonomous system [31], the disease free equilibrium
P∗2 of system (22) is global asymptotically stable when R0 < 1.

The endemic equilibrium point of system (22) is

P∗3 = (h∗∗∗1 , h∗∗∗2 ) = (S∗∗∗1 , E∗∗∗1 , I∗∗∗1 , S∗∗∗2 , E∗∗∗1 , I∗∗∗1 ).

Here, S∗∗∗1 = A2B1+B2b12
A1 A2−b12b21

> 0, S∗∗∗2 = A1B2+B1b21
A1 A2−b12b21

> 0, E∗∗∗1 = A4b12+A3 A6
A5 A6−b12b21

> 0, E∗∗∗2 =
A3b21+A4 A5
A5 A6−b12b21

> 0, I∗∗∗1 =
A8E∗∗∗1 δ1+E2b12δ2

A7 A8−b12∗b21
> 0, I∗∗∗2 =

A7E∗∗∗2 δ2+E1b21δ1
A7 A8−b12∗b21

> 0, with A1 = mH
1 +

βH
1 (I∗1 + E∗1 )+ c1W∗1 + b21, A2 = mH

2 + βH
1 (I∗2 + E∗2 )+ c2W∗2 + b12, A3 = βH

1 S∗∗∗1 (I∗1 + E∗1 )+
c1S∗∗∗1 W∗1 , A4 = βH

2 S∗∗∗2 (I∗2 + E∗2 ) + c2S∗∗∗2 W∗2 , A5 = mH
1 + δH

1 + b21, A6 = mH
2 + δH

2 + b12,
A7 = mH

1 + b21, A8 = mH
2 + b12.
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5. Case Study of Brucellosis in Ulanhot and Jalaid

Hinggan League, located in Horqin grassland in Inner Mongolia, is an important
pastoral area in China. In recent years, the living standard of people has improved sig-
nificantly, which leads to the huge demand for mutton and the rise of mutton price. This
makes more and more ares in Hinggan League, such as Jalaid banner (patch 1) and Ulanhot
(patch 2), start to breed sheep in large quantities. Both Ulanhot and Jalaid are in Horqin
prairie; they are geographically adjacent. The strains carried by human are B.melitensis
bv.1 and B.melitensis bv.3 in these places. Therefore, the transportation of sheep between
them has had a significant effect on brucellosis transmission, especially in the past 10 years
(see Figure 1).

5.1. Parameter Estimation

In this section, we mainly estimate the parameters by fitting the model (3) with the
reported data of human with brucellosis in Ulanhot and Jalaid. Firstly, all parameters
are with units of year, and the values of parameters are listed in Table 2. We explain the
parameter values as follows.

[A] According to the Inner Mongolia Bureau of Statistics 2010–2020 [34] and Hinggan
League Bureau of Statistics 2015–2020 [35], the average birth rate of human in Jalaid banner
and Ulanhot are BH

1 = 3, 840, BH
2 = 214, and the average mortality are mH

1 = 7.23‰ and
mH

2 = 6‰ in these places. According to [19], the survival time of sick sheep with positive
serum results is generally one month. Almost all sick sheep related to the disease die within
one year, so we set the mortality rate µ1 = µ2 = 1.

[B] Here we use the data from 2015 to 2019 in [35] to calculate the average mortality
and average birth rate of sheep, since the number of births of lambs, slaughters of sheep,
deaths of sheep, sheep eaten by sheep breeders, and the transportation of humans and
sheep from 2010 to 2014 are not recorded. In 2015, 348,584 lambs were born in Jalaid.
Thus, the average birth rate of sheep in Jalaid and Ulanhot from 2015 to 2019 are A1 =
(348, 584 + 484, 702 + 247, 380 + 879, 302)/4 = 489, 992 and A2 = 135, 776. The rate of
natural deaths, self consumption and slaughter of local sheep in Jalaid and Ulanhot are
mG

1 = 0.3385 and mG
2 = 0.4873.

[C] According to [36], the effective protection period of the vaccine is three years, so
we set λG

1 = λG
2 = 1/3 = 0.3. According to [37], the effective vaccinated rate is 0.316, we set

kG
1 = kG

2 = 0.316. According to [16], we set δG
1 = δG

2 = 1, βG
1 = 1× 10−7, βG

2 = 3.5× 10−6,
α1 = α2 = 6× 10−8, c1 = 1.7453× 10−12, and c2 = 5.0825× 10−11. The average survival
time of brucella in the environment is 3.3 months [16], so eG

1 = eG
2 = 3.6. We set the

averaged Brucella shedding rate of incubation sheep rG
1 = rG

2 = 15 based on [16]. Since
the exposed period of human with brucellosis is generally two weeks, people usually
have no symptoms during the exposed period. Therefore, most people could not get
timely treatment to enter the infected period, we set δH

1 = δH
2 = 1. Next, we calculate

the transportation coefficient of sheep and people. For sheep, using the data in Hinggan
League of Statistics Yearbook from 2015 to 2018 [35], we divide the number of sheep sold
in Jalaid in this year by the total number of sheep in this year in Jalaid. The values for
four years are averaged to estimate the transportation coefficient of sheep transferred from
Jalaid to Ulanhot as a21 = 40.92% and the transportation coefficient of sheep from Ulanhot
to Jalaid a12 = 50.71%. For humans, we take the transportation from Ulanhot to Jalaid
banner as an example. We take the outgoing population of Ulanhot as the molecule, and
the outgoing population of five counties except Jalaid as the denominator to calculate a
result. Then we multiply this result by the immigration population of Jalaid. That is, the
number of people from Ulanhot to Jalaid banner. Finally, we divide the number of people
from Ulanhot to Jalaid banner by the total population of Ulanhot to get b12 in current year.
Then we average the values from 2015 to 2018 to get the mean value b12 = 27.89% and
b21 = 5.36%.
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Table 2. Definitions and values of variables and parameters.

Parameter Mean Value Unit Source

A1 489,992 year−1 [B]

A2 135,776 year−1 [B]

B1 3840 year−1 [A]

B2 214 year−1 [A]

λG
1 1/3 year−1 [C]

λG
2 1/3 year−1 [C]

βG
1 1× 10−7 year−1 [C]

βG
2 3.5× 10−6 year−1 [C]

βH
1 3.1647× 10−7 year−1 MCMC

βH
2 1.2219× 10−6 year−1 MCMC

α1 6× 10−8 year−1 [C]

α2 6× 10−8 year−1 [C]

mG
1 0.3385 year−1 [B]

mG
2 0.4873 year−1 [B]

kG
1 0.316 year−1 [C]

kG
2 0.316 year−1 [C]

mH
1 7.23‰ year−1 [A]

mH
2 6‰ year−1 [A]

δG
1 1 year−1 [C]

δG
2 1 year−1 [C]

µ1 1 year−1 [A]

µ2 1 year−1 [A]

rG
1 15 year−1 [C]

rG
2 15 year−1 [C]

e1 3.6 year−1 [C]

e2 3.6 year−1 [C]

c1 1.7453× 10−12 year−1 [C]

c2 5.0825× 10−11 year−1 [C]

δH
1 1 year−1 [C]

δH
2 1 year−1 [C]

aK
12(K = SG, EG, IG, VG, WG) 50.71% year−1 [C]

aK
21(K = SG, EG, IG, VG, WG) 40.92% year−1 [C]

bK
12(K = SH , EH , IH) 27.89% year−1 [C]

bK
21(K = SH , EH , IH) 5.36% year−1 [C]

In this paragraph, we set the initial conditions. We regard the population as residents
in rural areas, since residents in agricultural and pastoral areas are more likely to contact
infected sheep. For humans, the total number of newly reported cases in Jalaid in 2010
is 343 [34]. People with brucellosis are usually cured after two months, so IH

1 (0) = 369.
Considering the average exposed period of humans with brucellosis is about two weeks,
we set EH

1 (0) = 343÷ 2 = 172. At the beginning of 2010, the population in rural areas
is about 318,063 [34], so we assume SH

1 (0) = 318,063− 369− 172 = 317,522. For sheep,
there are 633,500 sheep in the end of the 2009 [34]. According to the national brucellosis
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control plan (2016–2020) [38], the individual positive rate of sheep in key areas of brucellosis
was 3.3%. As the population positive rate was 34% in 2015, we estimate IG

1 (0) = 3.3%×
34%× 633,500 = 7107, VG

1 (0) = 633,500× 31.6%× 11
12 = 200,186. SG

1 (0) = 633,500−
7107− 200,186 = 426,207 with EG

1 (0) = 0, W1(0) = 1. Similarly, we set SH
2 (0) = 81,401,

IH
2 (0) = 273, EH

2 (0) = 122, EG
2 (0) = 0, IG

2 (0) = 1996, VG
2 (0) = 56,216, W2(0) = 0.01.

Since the data is the cumulative number of new cases, we use Xi(t) to correspond to the
solution of the equation, which is

dX1(t)
dt

= δH
1 EH

1 + b12 IH
2 ,

dX2(t)
dt

= δH
1 EH

2 + b21 IH
1 .

According to the initial condition above, we set X1(0) = 369, X2(0) = 273.
Based on parameters and initial conditions giving above, we use the Latin Hypercube

Sampling and Markov Chain Monte Carlo(MCMC) simulations (the algorithm similar to
research in [39–42]) to estimate βH

1 , βH
2 . We use 10,000 times simulation, and the parameter

values of βH
1 and βH

2 with MCMC chain are in Figure 3. The mean value, the standard
deviation, MCMC error and Geweke of βH

1 and βH
2 are in Table 3. It could be seen from

Figure 3 that the Markov-chains of parameters βH
1 and βH

2 are converged. The fitting
results, the 95% percent interval, and the median of these simulation outputs are seen
in Figure 4. Then we were able to estimate the basic reproduction number R0 = 1.0134,
R1

0 = 0.325, R2
0 = 0.6915. It could be seen that the basic reproduction number R0 > 1 and

the isolated basic reproduction number R1
0 < 1, R2

0 < 1 according to dynamical analysis.
When there is no transportation, the disease die out in two ares. In contrast, when we
consider the transportation, the disease is persistent. This indicates that the transportation
of sheep between Ulanhot and Jalaid is one of the reasons for disease persistence. Next, we
will further analyze the impact of transportation on the prevalence of brucellosis.
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Figure 3. (a) Simulation results for parameter βH
1 and βH

2 of Markov chain with 10,000 sample
realizations. (b) The histogram of parameter βH

1 and βH
2 .

Table 3. Parameter estimation for βH
1 and βH

2 with the method of MCMC.

Parameter Mean Value Standard MC Error Geweke

βH
1 3.3433 × 10−7 4.8114 × 10−8 1.1761 × 10−9 0.99557

βH
2 1.1681 × 10−6 2.2907 × 10−7 5.6932 × 10−9 0.99545
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Figure 4. Fitting results of cumulative new cases from 2010 to 2020 in Jalaid banner and Ulanhot City.
The circles and triangles are the number of cumulative newly reported human cases, and the curve
represents the solution of the system.

5.2. Influence of Transportation Restriction on Brucellosis Transmission Dynamic

This paragraph analyzes the influence of transportation coefficient on the basic repro-
duction number R0. Firstly, when the transportation rates of sheep in both patches are the
same (a12 = a21 = a) and the other parameters are the same as Figure 3, we found that with
the increase of a, the basic reproduction number R0 increased (see Figure 5a). This means
that, with the increase of transportation of sheep, the disease will breakout. Secondly, when
the transportation from Jalaid banner to Ulanhot is zero, the basic reproduction number
R0 < 1 no matter how much a is (see Figure 5b). This reveals that the transportation of
sheep from Ulanhot to Jalaid could not make the disease epidemic between the two places.
We also find that the basic reproduction number R0 first increases and then decreases with
the increase of a from Figure 5b. This is because the number of sick sheep in Ulanhot is
much smaller than that in Jalaid banner. When there is only transportation from Ulan-
hot to Jalaid banner, the rate of exposed and infectious sheep in Jalaid banner could be
reduced, and then the basic reproduction number R0 could be reduced. However, when
the basic reproduction number R0 decreases to a certain extent, the rate of exposed and
infectious sheep in Jalaid banner and Ulanhot tends to be the same. At this time, further
transportation will slightly increase the basic reproduction number R0. Finally, when the
transportation from Ulanhot to Jalaid banner is zero, the basic reproduction number R0
increases rapidly with the increase of a (see Figure 5c), and the increase amplitude is higher
than Figure 5a. This shows that the transportation of sheep from Jalaid banner to Ulanhot
is a critical factor for the prevalence of brucellosis in the two places.
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Figure 5. (a) R0 versus a (The transportation rate between the two places is the same). (b) R0 in terms
of a (There is only transportation from Ulanhot to Jalaid banner). (c) R0 in terms of a (There is only
transportation from Jalaid banner to Ulanhot).

In this paragraph, we study the influence of the transportation coefficient on the cu-
mulative number of new infections. From a practical point of view, people with brucellosis
could move everywhere. However, we often slaughter sheep with brucellosis. This leads to
the fact that few sheep with brucellosis could be transported between patches. Considering
inhibiting the transportation of infected sheep from Ulanhot to Jalaid in each patch, we
set a12 = 0 for the third and the 11th equations of system (1). Figure 6a shows that when
this transportation ban policy appears, the cumulative number of human with brucellosis
will increase in the next years. Then we set a21 = 0 for the third and the 11th equations
of (1) when the transportation of infected sheep from Jalaid to Ulanhot is prohibited in
each patch. For Figure 6b, when this transportation ban policy is executed, the cumula-
tive number of humans with brucellosis will decrease in the next years. Thirdly, we set
a12 = a21 = 0 for the third and the 11th equations of (1) when there is no transportation
of infected sheep between the two places. We could see from Figure 6c that when this
transportation ban policy appears, the cumulative number of human with brucellosis will
increase. We consider a more ideal situation, which is that the exposed and infected sheep
and the bacteria in the environment will not be transported. We set a12 = 0 for the second,
the third, fifth, 10th, 11th and 13th equations of (1). We could see from Figure 6d that when
this transportation ban policy appears, the cumulative number of humans with brucellosis
in Ulanhot and Jalaid will increase. Similarly, we set a21 = 0 for the second, third, fifth,
10th, 11th and 13th equations of (1). Figure 6e shows that when this transportation ban
policy appears, the cumulative number of humans with brucellosis in Ulanhot and in Jalaid
banner will decrease. Finally, we set a21 = a12 = 0 for the second, third, fifth, 10th, 11th and
13th equations of (1). According to Figure 6f, we find that, when this transportation ban
policy appears, the cumulative number of human with brucellosis in Ulanhot and Jalaid
banner will increase.

To sum up, border control does not always have a positive influence on the epidemic
of brucellosis. Brucellosis cases will be well controlled if we suitably control unidirectional
transmission of sheep (especially exposed and infected sheep) and brucella in the environ-
ment from Jalaid to Ulanhot, and if appropriate release in the unidirectional transmission
of sheep (especially exposed and infected sheep) and brucella in the environment from
Ulanhot to Jalaid is observed. This means that expanding the breeding scale of sheep in
these places is also effective in preventing the spread of brucellosis.
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Figure 6. Cumulative number versus time t. Solid lines represent the solution of System (1). In (a–c),
the dotted line represents three cases: zero transportation rate of infected sheep in one direction
(a12 = 0 or a21 = 0) and zero transportation rate of infected sheep in two directions (a21 = a12 = 0).
In (d–f), the dotted line represents three cases: zero transportation rate of exposed, infected sheep
and brucella in the environment in one direction (a12 = 0 or a21 = 0) and zero transportation rate of
exposed, infected sheep and brucella in the environment in two directions (a21 = a12 = 0).

5.3. Sensitivity Analysis

The PRCC (Partial Rank Correlation Coefficient)-based sensitivity analysis evaluates
the influence of parameters on the basic reproduction number R0. Here, PRCC values of
some parameters are given based on Latin Hypercube Sampling [41]. We take the sample
size N = 100,000. The λG

1 , λG
2 , kG

1 , kG
2 , µ1, µ2, βG

1 , βG
2 , α1 and α2 are considered to be

input variables, which mean value are shown in Table 2. Furthermore, the values of R0
are the output variables. We assume that all parameters are uniformly distributed and
the respective standard deviations of λG

1 and λG
2 are 0.01, and kG

1 = 0.001, kG
2 = 0.001,
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µ1 = 0.01, µ2 = 0.01, βG
1 = 1× 10−9, βG

2 = 1× 10−9, α1 = 1× 10−9, α2 = 1× 10−9.
The magnitude of the partial rank correlation coefficient value of each input parameter
with respect to the basic reproduction number R0 is proportional to the correlation of this
parameter to R0. That is, the larger the bias correlation coefficient of this parameter is, the
greater the influence of this parameter on R0 is. We can see from Figure 7 that λ1,λ2, βG

1 , βG
2 ,

α1 and α2 are positively correlated with R0, and kG
1 , kG

2 , µ1 and µ2 are negatively correlated
with R0. This further shows that vaccination and capture of the sheep with brucellosis are
effective means to control the disease. We could further find that R0 is the most sensitive
to the values of λG

1 and λG
2 from Figure 7. This shows that improving vaccine efficiency

is the best way to prevent brucellosis. At the same time, strengthening the vaccination
rate, killing sick sheep and disinfecting the environment are effective means to prevent and
control brucellosis. Considering the effect of µ1 and µ2 on R0 is slightly greater than that of
kG

1 and kG
2 , we believe that timely killing of sheep with brucellosis is more effective than

vaccination.
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6. Validation of Theories

In this section, firstly we verify Theorem 1 through numerical simulation. Then we
use numerical simulation to illustrate that the endemic equilibrium point is globally asymp-
totically stable. First, we set βG

2 = 3.5× 10−8 and the values of other parameters to be the
same as those in Figure 5, then we get R0 = 0.2146. Through Theorem 1, the disease-free
equilibrium point P0 = (72659, 0, 0, 31090, 0, 484330, 0, 0, 37390, 0, 0, 18957, 0, 9189, 0, 0) is
globally asymptotically stable. In Figure 8a, it could be observed that the sheep in the sus-
ceptible stage and the immunized stage are stable at a fixed value. It can be seen from
the results in Figure 8b that the sheep in the exposed and infectious period and the
brucella in the environment will eventually be extinct. Figure 8c shows that the num-
ber of susceptible humans will tend to a fixed value. For Figure 8d, we found that ex-
posed and infected humans will tend to be 0. Next, assuming that βG

2 = 3.5× 10−5, we
get R0 = 9.3435 when the values of other parameters are the same as those in Figure 5.
It could be seen from Figure 8e–h that the endemic equilibrium point P∗ = (52,495,
4780, 5282, 23,086, 49,414, 5793, 219, 42,419, 3943, 15,342, 8778, 12,007, 93,031, 585, 137, 8463)
may be globally asymptotically stable.
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Figure 8. (a–d) represent the global stability of equilibrium P0 with R0 = 0.2146; (e–h) represent the
global stability of equilibrium P∗ with R0 = 9.3435.
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7. Discussion

Comparing with Hou et al. [16], we considered the transportation of sheep and human
between different patches. Following Zhang et al. [18] and Liu et al. [20], we considered
the sheep-human coupling model, and applied the model in practice. From the perspective
of transportation, we only study the transportation of sheep between Jalaid and Ulanhot
because of the frequent transportation between the two regions, ignoring the transportation
between other regions in Hinggan League. This may lead to a gap between our simulation
and the actual situation, which suggests that the model needs to add more patches to study
the problem.

8. Conclusions

Brucellosis, as a national epidemic disease, has brought great disaster to people’s
health and socioeconomic development. There have been many studies on prevention and
control of brucellosis [43–45], but the disease is still prevalent. As an important means of
epidemic spreading, transportation of sheep is more and more frequent in China because
of the development of the social economy. However, the effect of transportation of sheep
is still poorly understood. In this paper, firstly we constructed a two-patch model and
analyzed its dynamical behavior. In particular, this provided a reference for the dynamical
behavior analysis of the n-patch model. Then we considered Jalaid and Ulanhot in Hinggan
League of Inner Mongolia as an example to study how the transportation of sheep affects
the spread of brucellosis. The results show that controlling the transportation of sheep from
Jalaid to Ulanhot is the most effective means.
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