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Abstract: With increased network downsizing and cost minimization in deployment of neural net-

work (NN) models, the utilization of edge computing takes a significant place in modern artificial 

intelligence today. To bridge the memory constraints of less-capable edge systems, a plethora of 

quantizer models and quantization techniques are proposed for NN compression with the goal of 

enabling the fitting of the quantized NN (QNN) on the edge device and guaranteeing a high extent 

of accuracy preservation. NN compression by means of post-training quantization has attracted a 

lot of research attention, where the efficiency of uniform quantizers (UQs) has been promoted and 

heavily exploited. In this paper, we propose two novel non-uniform quantizers (NUQs) that pru-

dently utilize one of the two properties of the simplest UQ. Although having the same quantization 

rule for specifying the support region, both NUQs have a different starting setting in terms of cell 

width, compared to a standard UQ. The first quantizer, named the simplest power-of-two quantizer 

(SPTQ), defines the width of cells that are multiplied by the power of two. As it is the case in the 

simplest UQ design, the representation levels of SPTQ are midpoints of the quantization cells. The 

second quantizer, named the modified SPTQ (MSPTQ), is a more competitive quantizer model, rep-

resenting an enhanced version of SPTQ in which the quantizer decision thresholds are centered 

between the nearest representation levels, similar to the UQ design. These properties make the 

novel NUQs relatively simple. Unlike UQ, the quantization cells of MSPTQ are not of equal widths 

and the representation levels are not midpoints of the quantization cells. In this paper, we describe 

the design procedure of SPTQ and MSPTQ and we perform their optimization for the assumed 

Laplacian source. Afterwards, we perform post-training quantization by implementing SPTQ and 

MSPTQ, study the viability of QNN accuracy and show the implementation benefits over the case 

where UQ of an equal number of quantization cells is utilized in QNN for the same classification 

task. We believe that both NUQs are particularly substantial for memory-constrained environ-

ments, where simple and acceptably accurate solutions are of crucial importance. 

Keywords: non-uniform quantization; support region; post-training quantization; quantized neural 

networks 

MSC: 68P30 

 

1. Introduction 

The Internet of Things (IoTs) facilitates automatization and simplification of many 

daily tasks in the commercial, industrial and infrastructure fields. As the number of con-

nected IoT devices constantly grows, the IoTs seem to become an unavoidable part of our 

everyday life. Due to the rapid proliferation of IoTs, as predicted by [1], the volume of 

data generated by IoTs is increasing ceaselessly. Therefore, an efficient utilization of cloud 
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computing resources is of great importance and requires a prudent strategy for the band-

width usage, energy consumption and computational and memory costs [2]. Many appli-

cations for the interconnected devices in the IoT environment require or prefer fast, real-

time communications with the cloud. To avoid delays in interactions with the cloud serv-

ers, the idea of edge computing has been increasingly used [3]. Although edge computing 

devices are less powerful than the cloud servers and are subject to many constraints, edge 

computing allows storing data and executing applications on the edge, directly connected 

with IoT devices. Further, an intersection of artificial intelligence (AI) and edge computing 

has introduced the concept that brings AI to the edge [4]. Achieving efficient edge com-

puting with an acceptable or high accuracy of neural networks (NNs) requires the utiliza-

tion of different techniques, such as pruning, neural network quantization, knowledge 

distillation, manual design of efficient architecture, neural network architecture search, 

etc., as profoundly discussed in [5,6]. Although these techniques can be as essential as 

complex, they require comprehensive rethinking of NN design to enable fitting of NNs to 

the memory of the edge device at first place. 

One of the vulnerabilities of brining AI solutions to the edge can be reflected in the 

accuracy degradation of built-in NNs. Driven by the need for compression of NN param-

eters, which is especially beneficial for the memory-efficient deployment of NN on re-

source-constrained devices, numerous papers have already confirmed abundant oppor-

tunities for NN parameter compression by means of quantization [7–14]. The quantization 

process introduces a quantization error [15], which accumulation can cause an incorrect 

output of the quantized NN (QNN), thus degrading the accuracy, compared to the NN. 

As quantization error is the quality indicator of every quantizer, it is of particular interest 

to examine its relation to the QNN accuracy. Not so obvious relations between NN and 

its quantized counterpart, QNN, can be examined on the simple classification task [14,16–

19], by analyzing the classification accuracy and achieved experimental and theoretical 

signal to quantization noise ratio (SQNR) values. To the best of our knowledge, SQNR is 

not an unambiguous fidelity measure of the QNN model, since the highest SQNR does 

not necessarily guarantee the highest accuracy of QNN [14]. However, in traditional quan-

tization, it is of utmost importance for a quantizer design to determine a set of parameters 

that provide the maximum of SQNR [20–23]. Therefore, in this paper, we do not only pro-

pose two novel non-uniform quantizers (NUQs), but we also perform their optimization 

to achieve minimal distortion, i.e., maximal SQNR. In addition, we apply these NUQs in 

post-training quantization and examine the accuracy preservation for the same classifica-

tion task, as in [14,18,19]. To make our analysis even wider, we analyze experimental and 

theoretical SQNR values and the accuracy of the QNN (for MLP and CNN) for a few sig-

nificant cases of designing both implemented NUQs and for two datasets. 

2. Related Work and Motivation 

To achieve both simplicity and efficiency, most of the recent research in the field of 

NN compression have focused on post-training quantization, rather than on quantization-

aware training [5,6]. The core idea of post-training quantization reflects on the compres-

sion of NN model weights after training the NN. Since the original NN parameters are 

typically stored in FP32 format, quantization can bring unique opportunities in imple-

menting compressed NN models, as long as the quantized NN parameters have relatively 

close values as the original ones [19]. Despite the high difference between the QNN model 

and the original one (NN before quantization), it has been shown in [19] that the accuracy 

of the neural network can be slightly degraded after the quantization is performed. Ad-

mittedly, the accuracy gap between the full-precision NN and QNN can be still very large 

in some cases, with the apparent space for improvements, especially for the extremely 

low-bit QNNs [6,10,17,24,25]. 

Generally, in low-bit quantization, a very small number of bits per sample is used to 

represent the data being quantized (less than or equal to 3 bit/sample) [20]. Relying on 

plenty of quantization models from the signal processing area, quantization has proved 
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to be an efficient technique that can perform signal compression according to some of the 

underlying criteria [15,21–23]. Many efforts in classical compression by means of quanti-

zation have been made towards the minimization of an inevitable quantization error for 

a given bit-rate. The main goal in compression is actually to minimize the bit-rate. How-

ever, in general, the smaller the bit-rate, the lower the storage cost and computation re-

quirements, but the higher the quantization error [20]. These conflicting requirements 

mean quantization is a very intriguing area of research, specifically the choice of the quan-

tization model itself and specification of its key parameters (the support region, quantiza-

tion steps, bit-rate, decision and representation levels [15,20–23]) affect the amount of the 

total quantization error, that is, the total distortion. Following the main aspect of signal 

coding and compression, which is the bit-rate shrinkage, we can expect that for non-uni-

form sources, such as the Laplacian one assumed in this paper, non-uniform quantization 

allows better utilization of the available bit rate. Additional constraints, especially for low-

bit conditions, include non-uniform quantizers that should be well suited to the lower 

design complexity and implementation requirements. 

Unlike in our previous works, where we addressed low-bit uniform quantizer (UQ), 

two-bit and three-bit UQ [18,19], respectively, in this paper, we propose two novel non-

uniform two-bit quantization models and we analyze QNN performance for the same 

classification task as the one reported in [18,19]. Our goal is to improve both the SQNR 

and the accuracy of the QNN model, compared to two-bit UQ from [18]. In this research, 

we show that this goal is achievable by utilizing the novel NUQs that will be specified in 

detail in the following. Let us highlight that to provide a fair comparison with the results 

from [18,19], in this paper, the identical multilayer perceptron (MLP) architecture is as-

sumed, while the identical weights (stored in FP32 format) are non-uniformly quantized 

according to completely novel quantization rules by also using only two bits per sample. 

Our motivation to address the two-bit NUQs stems from the fact that non-uniform quan-

tizers are more convenient for non-uniform distributions, as the Laplacian pdf. Having in 

mind that the weights distribution can closely fit some of well-known probability density 

functions (pdfs), as the Laplacian pdf is [7,8,12]; in this paper, as in [18,19], we assume the 

Laplacian-like distribution for experimental weights distribution and the Laplacian pdf 

for the theoretical distribution of weights, for estimating the performance of our two novel 

non-uniform quantizers in question. The main reason why we chose to utilize two-bit 

quantizers lies in an already confirmed premise for the two-bit UQ [18], that quantizer 

parameterization has been shown to be crucial not only for the performance of the quan-

tizer alone but also for the QNN model accuracy, due to only four representations being 

available. In brief, the performance gain over UQ is relatively easily achieved by means of 

high-bit non-uniform quantization [22], where this is not a case with low-bit non-uniform 

quantization due to the small number of representations available. This makes low-bit 

non-uniform quantization, as the one addressed in this paper, more intriguing to research. 

To alleviate the shortage of UQ applied to non-uniform distributions, reflected in 

uniform quantization of all weight values with most of them aggregated near the mean, 

in this paper, we specify the novel quantization rules for two-bit NUQs. More precisely, 

in our first novel NUQ, the quantization cell that lies inwardly closest to the mean, is of 

width Δ, while the width of subsequent cell, that lies in the rest of the support region is 

2Δ, so that the quantizer’s support region ranges [-3Δ, 3Δ]. Hereinafter we utilize nota-

tions simplest power-of-two quantizer (SPTQ) for the first quantizer and modified sim-

plest power-of-two quantizer (MSPTQ), as it is the modified and enhanced SPTQ version. 

Both aforementioned quantization models, SPTQ and MSPTQ, follow the same prede-

fined rule for defining the support region ranging [-3Δ, 3Δ] or [-3Δmod, 3Δmod], respectively, 

while differing in the way of specifying the decision and representation levels of the quan-

tizer. In SPTQ design, the representation levels are the midpoints of the quantization cells, 

as it is the case in the simplest UQ design, while its quantization cells are not of equal 

widths, as is the case with UQ. In MSPTQ design, the quantizer decision thresholds are 

centered between the nearest representation levels, similar to the UQ design. However, 
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unlike UQ, the quantization cells of MSPTQ are not of equal widths and the representation 

levels are not midpoints of the quantization cells. More details about SPTQ and MSPTQ 

models will be provided in the following sections. Intending to determine the parameters 

of the novel quantizers more favorably and as precise as possible, we also provide a stu-

dious analysis and the description of the optimization procedure of two-bit SPTQ and 

MSPTQ. Specifically, we describe their design for the assumed Laplacian source and per-

form their optimization in an iterative manner, as well as by performing numerical opti-

mization procedure. Afterwards, we perform post-training quantization with the imple-

mentation of SPTQ and MSPTQ, study the viability of QNN accuracy and present the 

benefits in the case where two-bit UQ from [18] is utilized for the same classification task. 

We believe that both NUQs are particularly substantial for memory-constrained devices, 

where simple and acceptably accurate solutions are one of the key requirements. 

The rest of this paper is organized as follows: Sections 3 and 4 describe the design of 

symmetrical SPTQ and MSPTQ for the Laplacian source. Section 5 briefly describes the 

application of novel NUQs in post-training quantization. Section 6 provides the discus-

sion on the numerical results for two novel NUQs specified in Sections 3 and 4. Finally, 

Section 7 summarizes the paper contributions and concludes our research results. 

3. Symmetric SPTQ Design for the Laplacian Source 

Quantization is ubiquitous in signal processing, and it specifies a mapping of contin-

uous data to a discrete set of N quantization or representation levels [20]. The primary 

goal of quantization is to minimize the distortion, i.e., the deviation of the quantized signal 

(QN(X)), compared to the original (X), for a given N and bit-rate R, where R = log2N [20] 

  
2

ND E X Q X  
 

 (1)

Specifically, the choice of the quantizer model itself and its parameterization affect the 

total amount of the quantization error. Therefore, in the following, we describe two novel 

NUQs and we specify the expressions to quantify their quantization error. 

Let us first specify the key parameter of an N-level symmetrical quantizer QN. By the 

quantization procedure, an input signal amplitude range is divided into a granular region 

ℜg and an overload region ℜo (see Figure 1 for SPTQ). For any symmetric quantizer, as 

those we design here, these regions are separated by the support region thresholds de-

noted by -xmax and xmax, respectively [20]. The granular region ℜg 

 
1 /2

max max
/2 1

,
N

g i i
i N i

x x


 

        (2)

consists of N nonoverlapped limited in width quantization cells, where the ith cell is: 

 max max{ | [        , , , ,] }        i N i i jx x x x Q x y i j  (3)

while yi denotes the ith representation level and  
1

/2
 i i N




  and  

/ 2

1
 
N

i i 
  denote the gran-

ular cells from the negative and positive amplitude regions, which are symmetrically 

placed around the zero mean. In symmetric quantization, the quantizer’s main parameter 

sets are halved, since only the positive or the absolute values of the quantizer’s parameters 

should be determined and stored. The symmetry also holds for the overload cells, that is, 

for a pair of quantization cells unlimited in width in the overload region, ℜo, defined as 

   max0 max /2 /2,{ | [ ], , 0 , 0}       N N N Nx x x x Q Q yx xx y x  (4)

If the cells are of nonequal width, then the quantizer is non-uniform [20], as is the case 

with the two-bit SPTQ we address here. 
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Figure 1. Granular region, ℜg, and overload region, ℜo, of the symmetric two-bit SPTQ. 

Let us denote with Δ the step size of the cells of our symmetrical two-bit SPTQ that 

are the closest ones to the mean (see Figure 1). We further assume that the decision thresh-

olds are not equidistant, as it is the case in UQ design. Specifically, suppose that the width 

of the adjacent cells is multiplied by two (observe only the positive half of the amplitude 

region and take into account that symmetry holds). As SPTQ is two-bit quantizer, from 

max 2x      (5)

for the quantization step size, we have 

max

3

x
   (6)

The decision thresholds of our two-bit SPTQ are specified by: 

   2 1 ,   ,   0,1, 2i
i i ix ix x       (7)

The code book of our two-bit SPTQ,  SPTQ
2 1 1 2, , ,Y y y y y   , contains N = 4 represen-

tation levels yi (see Figure 1), specified as midpoints of cells by: 

 
 1 1 2(2 2 1) , ,   1, 2

2

i i i i
i i i

x x
y y y i  




          (8)

Recall that xmax denotes the support region threshold of our two-bit SPTQ, and it is 

one of the key parameters of the quantizer. From Equations (5)–(8) one can conclude that 

xmax or the step size, Δ, completely determine the decision thresholds, xi, and the represen-

tation levels, yi, of the proposed two-bit SPTQ. In other words, the quantizer in question 

is completely determined by knowing the support region threshold, xmax = xmaxSPTQ. There-

fore, we introduce the following notation of our transfer characteristic of the symmetric 

two-bit SPTQ, QSPTQ(x; xmax) (see Figure 2, where the characteristic of the symmetric two-

bit SPTQ is presented for xmax = 2.5512, where the notation [J] comes from the name of the 

author of [20]). 

Let us highlight here that due to the symmetry of the unrestricted Laplacian pdf, p(x) 

of zero mean and variance σ2 = 1 

 1
( ) exp 2

2
p x x   (9)

for which we intend to optimize the design of our SPTQ, the decision thresholds and rep-

resentation levels of SPTQ are assumed to be symmetric in relation to the zero-mean value. 
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Figure 2. Transfer characteristic of two-bit SPTQ QSPTQ(x) for [-xmaxSPTQ, xmaxSPTQ] = [-2.5512, 2.5512]. 

To determine the total distortion of our symmetrical two-bit SPTQ, composed of the 

granular and the overload distortion, SPTQ SPTQ SPTQ
g oD D D  , we begin with the basic defi-

nition of distortion, given by Equation (1) [20], where the granular distortion, SPTQ
gD , and 

the overload distortion, 
SPTQ
oD , for symmetric two-bit SPTQ in question are: 

   
1

2
2SPTQ

g
1

2
i

i

x

i
i x

D x y p x dx




    (10)

   
2

2SPTQ
o 22

x

D x y p x dx


   (11)

Foremost, to simplify our derivation, let us define that it holds x3 = ∞, denoting the 

upper limit of the integral in Equation (11). Then, the total distortion of our symmetrical 

two-bit SPTQ can be rewritten as: 

     

   

1 1 2

1 2

3 2
SPTQ 2

2
1 1

2
2 2

2
1

2 4

2

 





 





 
   

 
 

 
  

 
 

   

  

i i

i i

i

i

x x

i
i ix x x

x

i
i x x

D x p x dx y xp x dx y xp x dx

y p x dx y p x dx

 (12) 

For the Laplacian pdf, specified in Equation (9), from Equation (12), we derive: 

       SPTQ 2 2 2
1 1 1 2 1 1 1 2 11 2 2 1 exp 2 exp 2D y x x y y y x y y          

 
 (13)

By further reorganizing Equation (13), we have: 

    SPTQ 2
1 1 2 1 2 1 1 11 2 2 2 exp 2D y y y y y y x x         

 
 (14)

Eventually, by substituting Equations (7) and (8) into Equation (14), we derive: 

 
2

SPTQ 22 3 3 2
1 exp 2
2 4 4 2

D
 

          
 

 (15)

By minimizing distortion, that is, by setting the first derivative of so obtained distor-

tion, DSPTQ, with respect to Δ equal to zero: 
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SPTQ

0
D




 (16)

we derive: 

 23 2
2 9 3 2 exp 2 0

2

 
           

 
 (17)

and we determine Δ iteratively from: 

     
21 ( ) ( ) ( )3 2

2 9 3 2 exp 2
2

i i i i  
          

 
 (18)

Taking a second derivative of DSPTQ with respect to Δ yields: 

    
2 SPTQ 2

2

1
1 3exp 2 2 2 3

2

D          
 (19)

It is trivial to conclude that for 2 2 3    and 2 2 3    it stands that 
2 SPTQ 2/ 1/ 2D   . We will now pay special attention to 2 2 3 2 2 3     , where 

we can expect the minimum of 2 SPTQ 2/ D . By further taking the derivative of expres-

sion (19) with respect to Δ and equating the result to zero 

    21
1 3exp 2 2 2 3 0

2

              
 (20)

we derive: 

2 5 2 9 0      (21)

and we determine the roots of Equation (21) as  1,2 5 7 / 2   . As for  2 5 7 / 2    

the inequality does not apply 2 2 3 2 2 3    , the minimal value of 2 SPTQ 2/ D  is 

achieved for  1 5 7 / 2    and amounts to 0.263. Thus, we can conclude that DSPTQ is a 

convex function of Δ. Moreover, to confirm that we end up iteratively with the unique 

optimal value for Δ in the numerical result section, we provide the results of numerical 

distortion optimization per Δ. 

4. Symmetric MSPTQ Design for the Laplacian Source 

Let us assume the same quantization rule [−3Δ, 3Δ] as in the SPTQ design for speci-

fying the support region of MSPTQ, [−3Δmod, 3Δmod], as well as the same rule for specifying 

the representation levels, here denoted with mod
1y  and mod

2y  

 1 2 modmod mod mod2 2( 1) , ,   1, 2
        i
i

i i
iy y y i  (22)

where mod indicates modification. Let us further assume an additional specification of 

MSPTQ that quantizer decision threshold is centered between the nearest representation 

levels (similarly as in the UQ design): 

mod mod
mod 1 2
1

2

y y
x


  (23)

We should highlight that the spreading of the first quantization cell in MSPTQ, near-

est to the mean, causes shrinkage of the adjacent quantization cell (see Figure 3), whereas 

the common quantization rule of both quantizers in question that the quantization sup-

port region ranges [−3Δ, 3Δ] or [−3Δmod, 3Δmod] is preserved. More precisely, the condition 

stated in Equation (23), previously mentioned as the additional specification, is one of the 
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prerequisites for the MSPTQ design. To completely specify MSPTQ, it is necessary to de-

termine the quantization step size Δmod. To do so, we can minimize the distortion of 

MSPTQ having the support region that ranges [−3Δmod, 3Δmod]. For the given xmaxMSPTQ = 

3Δmod = 
mod
2x  according to Equations (22) and (23), we can determine the code book 

 MSPTQ mod mod mod mod
2 1 1 2, , ,Y y y y y     of our two-bit MSPTQ and the decision threshold 

mod
1x . 

Let us highlight again that symmetry about zero-mean value holds, so that by specifying 
mod
0 0x , and identifying that  mod mod 1, , 2   i i ix x , MSPTQ is completely determined. To 

clearly distinguish the two NUQ models we have proposed in this paper, in Table 1 we 

summarize the main parameters that unambiguously describe our NUQs, SPTQ (Table 

1a)) and MSPTQ (Table 1b)). Note that the representation levels of SPTQ and MSPTQ fol-

low the same rule y1 = Δ/2, y1mod = Δmod/2 and y2 = 2Δ, y2mod = 2Δmod, where the main differ-

ence is in specifying the decision thresholds 1x  and 
mod
1x . 

Let us specify the distortion of MSPTQ. By recalling the Equation (14) and applying 

the condition specified in Equation (23), we have: 

     
2MSPTQ mod mod mod mod mod

1 1 2 1 11 2 2 exp 2       D y y y y x  (24)

 

Figure 3. Granular region,  g, and overload region,  o, of the symmetric two-bit MSPTQ. 

Table 1. The decision thresholds and representation levels of our two-bit (a) SPTQ and (b) 

MSPTQ. 

Quantizer type x0 x1 x2 = xmaxSPT y1 y2 

SPTQ 0 Δ 3Δ 1/2Δ 2Δ 

(a) 

Quantizer type x0mod x1mod x2mod= xmaxMSPTQ y1mod y2mod 

MSPTQ 0 5/4 Δmod 3Δmod 1/2Δmod 2Δmod 

(b) 

By further rearranging Equation (24), so that it only depends on Δmod and not on the 

representation and decision levels, we can derive the expression for the distortion as: 

 
2mod mod

MSPTQ mod2 5 2
1 1 3exp

4 2 4
D

    
       

    
 (25)

By minimizing the distortion, that is by setting the first derivative of obtained distortion 

in Equation (25) with respect to Δmod equal to zero: 

MSPTQ

mod
0

D



 (26)

we derive: 
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mod mod mod5 2 5 2
15 2exp 6 2exp 0

4 42

           
                     

 (27)

Δmod can be determined iteratively from: 

 

 

1mod

mod

9
2 1

5 2
15 2exp

4

i

i



 
 
 

   
    

   
   

 (28)

By determining Δmod we can calculate the total distortion of the MSPTQ from Equation 

(25). 

Let us determine the second derivative of so obtained distortion, with respect to Δmod: 

 

2 MSPTQ mod

2mod

1 75 2 5 2
1 15 exp

2 8 4

D       
                 

 (29)

As it holds that 15 75 2 / 8 0   and, therefore,  
22 MSPTQ mod/ 1/ 2D    , we can con-

clude that DMSPTQ is a convex function of Δmod, which guarantees the existence of the 

unique minimum of DMSPTQ. As in the case of SPTQ, to confirm that we end up iteratively 

with the unique optimal value for Δmod, in the numerical result section, we provide the 

results of numerical distortion optimization per Δmod. 

5. Application of Two Novel Non-Uniform Quantizers in Post-training Quantization 

The MNIST handwritten digits database [26] was used in [18,19] for the experimental 

evaluation of the post-training low-bit UQ performance in weights compression of the 

three-layer fully connected (FC) NN model (shortly, our NN model). We chose to work 

with the MNIST dataset as it provides a large number of handwritten digit instances, 

which is a prerequisite for the highly accurate NNs. We consider that it is interesting to 

research whether with QNN this high accuracy can be preserved. More precisely, the 

MNIST dataset consists of 70,000 grayscale images, divided as 60,000 training images and 

10,000 images in the test set [26,27], while these sets do not have overlapping instances. 

All the images used for training and testing the NN are previously standardized and nor-

malized according to their mean value and standard deviation so the pixel values, ranging 

between 0 and 255, are mapped to a range between 0 and 1. Each image contains 28 × 28 

pixels with a size-normalized digit or number (0–9). All digits are positioned in a fixed 

size with the intensity at the center. 

Figure 4 illustrates the process of our experiments: MNIST training and testing da-

tasets are loaded and then reshaped (flattened) into 1-dimensional vectors of 784 (28*28) 

elements. Each component of the vector is a binary value, which specifies the intensity of 

the pixel. Our NN model architecture is the same as those specified in [18,19] for compar-

ison reasons and it consists of three FC (Dense) layers. First two FC layers consist of 512 

nodes, where the first layer accepts an input shape of (784). These layers are called the 

hidden layers, as we do not directly consider their outputs. After both hidden layers ReLU 

activation function is applied. To reduce overfitting, we introduced dropout regulariza-

tion that randomly sets outputs of 20% of the total nodes in the layer to zero. Output of 

the second hidden layer is fed to the output layer, which consists of ten neurons that de-

termine the input digit in the range from 0 to 9. Since the output layer uses SoftMax as an 

activation function, it classifies the output digit according to the highest probability value 

of the SoftMax function at the output layer [28]. 
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Figure 4. Post-training procedure by applying two novel two-bit quantizers. 

Training and accuracy evaluation of our NN model is implemented in TensorFlow 

framework with Keras API, version 2.5.0 [28]. Our MLP model consists of 669,706 traina-

ble parameters, which are quantized by using the two-bit novel NUQs after training. 

Training is conducted in 10 epochs, with a batch size of 128, resulting in 469 iterations per 

epoch to complete the training over 60,000 training examples. The validation set accuracy 

after the training amounts to 0.981, meaning that the MLP model made accurate predic-

tions for 98.1% of the images in the validation set. It is well-known that different sizes of 

the fully connected layers would result in different accuracies obtained. Although NN 

with a large number of layers and a lot of hidden neurons per layer can achieve better 

accuracy, smaller NNs run much faster. As already mentioned in this paper, we use the 

same three-layer FC MLP model as in [18,19]. Our goal is to test the performance of two 

novel NUQs in post-training quantization and to provide a fair comparison with the re-

sults from [18,19]. 

For the specified NN model, training, accuracy analysis and quantization have been 

implemented in Python programming language [28]. In our QNN model, all trained 

weights have been quantized using one of the proposed novel NUQs (SPTQ or MSPTQ) 

and our QNN model’s accuracy, as well as SQNR, has been evaluated for com-

pressed/quantized weights to represent post-training two-bit NUQ (SPTQ or MSPTQ) 

performance (see Algorithm 1). We can evaluate the experimental performance of SPTQ 

and MSPTQ by determining the distortion or SQNR, defined similarly as in [19]: 

     
T2 2* * * **

ex
2

1

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ
W

j j
j

D W W W W W W
W W

w
W

w


        (30)

2

1*
ex 10 *

ex

1

SQNR 10 log

W

j
j

w
W

D



 
 
 
 
 
 



 

(31)

where * refers to the application of SPTQ or MSPTQ. Dex* and SQNRex* are experimentally 

determined distortion and SQNR, Ŵ = {wj}j = 1, 2, …, W denotes the vector of weights repre-

sented in FP32 format and Ŵ* = {wj*}j = 1, 2, …, W denotes the vector of weights to be loaded in 

QNN. In brief, at the very beginning of the post-training quantization, NN weights are 

normalized to zero mean and unit variance, forming the vector ŴN = {wjN}j = 1, 2, …, W. After 

all normalized weights are quantized by applying SPTQ or MSPTQ and denormalized to 

the original range, Ŵ* = {wj*}j = 1, 2, …, W is loaded into the QNN model (see Algorithm 1). 

Algorithm 1: Weights compression by means of post-training quantization using 

SPTQ/MSPTQ. 

Notation: wj—pretrained weight, wjSPTQ—quantized weight using SPTQ, wjMSPTQ—

quantized weight using MSPTQ 

Input: Ŵ = {wj}j = 1, 2, …, W, weights represented in FP32 format, εmin = 10−4 
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Output: Quantized weights for SPTQ—ŴSPTQ = {wjSPTQ}j = 1, 2, …, W, Quantized weights 

for MSPTQ—ŴMSPTQ = {wjMSPTQ}j = 1, 2, …, W, SPTQ
thSQNR , SPTQ

exSQNR , MSPTQ
thSQNR , 

MSPTQ
exSQNR , AccuracySPTQ, AccuracyMSPTQ 

Algorithm steps: 

1: load initial pretrained and stored weights Ŵ = {wj}j = 1, 2, …, W 

2: normalize weights and form ŴN = {wjN}j = 1, 2, …, W, 

3: wmin← minimal value of the normalized weights from ŴN 

4: wmax ← maximal value of the normalized weights from ŴN 

5: select SPTQ model to quantize normalized weights 

6:  initialize εSPTQ ← 1, Δ(0) = ΔSPTQ ← 1 (or some other given value), i ← 1 

7:   while εSPTQ ≥ εmin do 

8:  calculate Δ(i + 1) by using (18) 

9:  calculate εSPTQ =abs (Δ(i + 1)-ΔSPTQ) 

10:  ΔSPTQ ← Δ(i + 1) 

11:  i ← i + 1 

12:   end while 

13:  Δ ← ΔSPTQ 

14:  xmaxSPTQ ← 3 Δ 

15:  calculate {x-2, x-1, x0, x1, x2} by using (7) for xmaxSPTQ 

16:  form codebook YSPTQ = {y-2, y-1, y1, y2} by using (8) or Table 1a) 

17: quantize normalized weights by using codebook YSPTQ 

18: denormalize quantized weights and form vector ŴSPTQ = {wjSPTQ}j = 1, 2, …, W 

19: select MSPTQ model to quantize normalized weights 

20: initialize εMSPTQ ← 1, Δmod(0) = ΔMSPTQ ← ΔSPTQ, i ← 1 

21:  while εMSPTQ ≥ εmin do 

22: calculate Δmod(i + 1) by using (28) 

23: calculate εMSPTQ =abs (Δmod(i + 1)-ΔMSPTQ) 

24: ΔMSPTQ ← Δmod(i + 1) 

25: i ← i + 1 

26: end while 

27:  Δmod ← ΔMSPTQ 

28: xmaxMSPTQ ← 3 ΔMSPTQ 

29: calculate {x-2mod, x-1mod, x0mod, x1mod, x2mod} by using Table 1b) for xmaxMSPTQ 

30: form codebook YMSPTQ ≡ {y-2mod, y-1mod, y1mod, y2mod} by using Table 1b) 

31: quantize normalized weights by using codebook YMSPTQ 

32: denormalize quantized weights and form vector ŴMSPTQ = {wjMSPTQ}j = 1, 2, …, W 

33: calculate SPTQ
exSQNR , SPTQ

thSQNR , MSPTQ
exSQNR , MSPTQ

thSQNR  by using Equa-

tions (15), (25), (30)–(33), estimate accuracies of QNNs. 

Let us finally define the theoretical SQNR as: 

SPTQ
th 10 SPTQ

1
SQNR 10log

 
  

 D
 (32)

MSPTQ
th 10 MSPTQ

1
SQNR 10log

 
  

 D
 (33)

which will also be calculated and compared with the experimentally determined SQNR. 

Recall that DSPTQ and DMSPTQ are specified by Equations (15) and (25), respectively. 

Additional results are also provided in the paper for specified NN trained on the 

Fashion-MNIST dataset [29]. Fashion-MNIST is a dataset comprising of 28×28 grayscale 

images of 70,000 fashion products from 10 categories, with 7,000 images per category [29]. 

The training set has 60,000 images and the test set has 10,000 images. Fashion-MNIST 

shares the same image size, data format and the structure of training and testing splits 

with the MNIST. It has been highlighted in [30] that although Fashion-MNIST dataset 
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poses a more challenging classification task, compared to MNIST dataset, the usage of 

MNIST dataset does not seem to be decreasing. Moreover, it has been pointed out at the 

fact that the reason MNIST dataset is still widely utilized comes from its size, allowing 

deep learning researchers to quickly check and prototype their algorithms. 

The CNN model, also considered in the paper, consists of one convolutional layer, 

followed by ReLU activation, max pooling and flatten layer, whose output is fed to the 

previously described MLP with two hidden FC layers and the output layer. The images 

for MLP are being flattened into 1-dimensional vectors of 784 (28 × 28) elements to match 

the shape accepted by our first NN, while for a proper CNN input, one additional dimen-

sion is being added to represent the channel. Convolutional layer contains 16 filters with 

kernel size set to 3 × 3, while the max pooling layer utilizes a pooling window of size 2 × 

2. The output of the pooling layer is further flattened into a one-dimensional vector for 

feeding it forward to the FC dense layer. The only difference between the previously de-

scribed MLP and the dense layers utilized in CNN is in the dropout percentage, which is 

in the case of CNN set to 0.5, to further prevent overfitting of the FC layers. Therefore, the 

CNN model consists of three hidden layers and the output layer with the total of 1 652 

906 trainable parameters. The training is performed for the Fashion-MNIST, in the same 

manner as for the MLP, with the total of 10 epochs, while the batch size is equal to 128 

training samples. 

6. Numerical Results and Analysis 

Referencing Algorithm 1 for both previously described novel NUQs, we firstly ana-

lyze the number of necessary iterations for iterative determination of Δ and Δmod, or 

equally, for determining xmaxSPTQ and xmaxMSPTQ. To initialize Algorithm 1 for determining 

Δ, we use different values of Δ(0), specified in Table 2. To determine Δmod, we use the result 

of the first iterative process, that is, we assume Δmod(0) = Δ. The same condition as in [22], 

that two adjacent iterations differ by less than 10−4 is used as the output criterion of algo-

rithm. By observing statistics of the trained and normalized NN weights, we have found 

that the minimum and maximum weights in original FP32 amount to wmin = -7.063787 and 

wmax = 4.8371024. Following a predefined rule for specifying the support region of SPTQ 

ranging in [-3Δ, 3Δ], we use Δ(0) = |wmax|/3 = 1.61237 and Δ(0) = |wmin|/3 = 2.3546 to initialize 

Algorithm 1 for SPTQ. Moreover, we assume that Δ(0) = xmax[H]/3 = 0.6536 and Δ(0) = xmax[J] 

/3 = 0.7249, where xmax[H] and xmax[J] are optimal and asymptotically optimal xmax values 

for UQ given by Hui [23] and Jayant [20] (see Table 2). It is worthy highlighting that dif-

ferent initializations require around 40 iterations (see Table 2 and Figure 5). Moreover, we 

should highlight that all the observed initializations lead to the unique final value of Δ (Δ 

= 0.8504) and xmaxSPTQ = 3Δ= 2.5512. If we further use Δmod(0) = Δ = 0.8504 for iteratively de-

termining Δmod, given the same output algorithm criterion, we only need seven iterations. 

As a result of the second iterative process, we determine Δmod = 0.9021, as well as xmaxMSPTQ 

= 3Δmod = 2.7063. To additionally confirm that with the output criterion of Algorithm 1 we 

ended up with the optimal values for Δ and Δmod; one can observe in Figure 6, the depic-

tion of the dependences of the distortion of the applied quantizers on the corresponding 

basic step sizes. Iteratively obtained values for Δ and Δmod are marked with asterisks in 

Figure 6 and are indeed optimal as they give the minimum of DSPTQ and DMSPTQ. 

Further in this section, we present experimentally obtained results of applying both 

SPTQ and MSPTQ in post-training quantization of NN model’s weights. As mentioned, 

we utilize the same NN model as in [18,19] with the same weights stored in FP32 format. 

Therefore, by conducting experiments with the novel NUQs, we can fairly compare the 

performance with the case of applying two-bit UQ under the same circumstances. To an-

alyze the performance of the proposed quantizers in NN quantization, we conduct exper-

iments for multiple specific choices of the support region threshold of NUQs. These ex-

periments aim to provide insights on the impact of different support region thresholds on 

both NUQs performance and QNN accuracy. 
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Table 2. Number of iterations for determining xmaxSPTQ for different initializations. 

SPTQ  Δ(0) = 1 Δ(0) = |wmax|/3 Δ(0) = |wmin|/3 Δ(0) = xmax[H] /3 Δ(0) = xmax[J] /3 

number of iterations 40 39 40 41 41 
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Figure 5. Algorithm convergence ilustration: (a) Δ(0) = 1, Δ(0) = xmax[H]/3, Δ(0) = xmax[J] /3; (b) Δ(0) = 

|wmax|/3, Δ(0) = |wmin|/3. 
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Figure 6. Distortion dependance on the corresponding basic step size for (a) SPTQ and (b) MSPTQ. 

The support region in our Case 1 is defined as [−min(|wmin|,|wmax|), 

min(|wmin|,|wmax|)], which is in our experiment simply [−wmax, wmax]. Therefore, in Case 1, 

the support region depends on the maximum value of the normalized trained model 

weights in full precision, which for the observed trained weights (for MNIST dataset) 

amounts to wmax = 4.8371024. By setting the support region of SPTQ and MSPTQ as stated, 

it includes 99.988% of all the normalized weights. One can notice from Table 3 that thus 

defined Case 1 provides the highest QNN model’s accuracy of all the observed cases, 

amounting to 97.61% of correctly classified validation samples of MNIST dataset. By com-

paring it to the application of simple UQ, we can conclude that with the applied SPTQ, 

we provide an increase in the accuracy of 0.64% (see Table 4). This represents a significant 

increase in accuracy, especially taking into account that the only difference is in the ap-
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plied quantizers, while the same bit rate is assumed and we are very close to the full pre-

cision accuracy of the baseline NN. Similarly, the experimental and theoretically obtained 

SQNR of SPTQ is higher, compared to UQ, providing gain in SQNR of 1.8078 dB and 

2.5078 dB, respectively. We can notice that theoretically determined SQNR has lower val-

ues than experimentally determined SQNR. As explained in [18,19], the reason is that in 

the experimental analysis, the weights originating from the Laplacian-like distribution be-

ing quantized are from the limited set of possible values [−7.063787, 4.8371024] (see Figure 

7), while in the theoretical analysis, the quantization of values from the unrestricted La-

placian source is assumed, causing an increase in the amount of distortion, that is, the 

decrease in the theoretical SQNR value. In summary, Case 1 already shows the benefits of 

implementing SPTQ over the UQ providing increase in all significant performance indi-

cators observed. 

In Case 2, the support region is [−max(|wmin|, |wmax|), max(|wmin|, |wmax|)], and it is 

defined as it is in [31]. In our experiment, it can be expressed as [−|wmin|, |wmin|], which 

in practice becomes [wmin, -wmin], forming the support region (in case of MNIST dataset) as 

[−7.063787, 7.063787]. It can be observed that the support region in Case 2 includes 100% 

of the weights and even goes beyond the maximum value of the normalized weights, 

which makes it unnecessarily wide and representative of an unfavorable choice of ℜg. 

Table 3. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset: different SPTQ 

designs for R = 2 bit/sample. 

wmin = −7.063787, wmax = 4.8371024, 

3Δ = 2.5512 

xmax[H] = 1.9605, xmax[J] = 2.1748 

Case 1 ℜg 

[−wmax, wmax] 

Case 2 ℜg 

[wmin, −wmin] 

Case 3 ℜg 

[−3Δ, 3Δ] 

Case 4 ℜg 

[−xmax[H], xmax[H]] 

Case 5 ℜg 

[−xmax[J], xmax[J]] 

SQNRexSPTQ(dB) 4.6899 2.5745 7.8099 7.9051 8.0068 

SQNRthSPTQ(dB) 4.4438 1.6044 6.9790 6.5437 6.8086 

Accuracy (%) 97.61 97.42 95.75 93.77 94.52 

Within ℜg (%) 99.988 100 98.567 94.787 96.691 

Table 4. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset with the application 

of different UQ designs for bit rate of R = 2 bit/sample (part of the results are from [18]). 

wmin = −7.063787, wmax = 4.8371024, 

3Δ = 2.5512 

xmax[H] = 1.9605, xmax[J] = 2.1748 

Case 1 ℜg 

[−wmax, wmax] 

Case 2 ℜg 

[wmin, −wmin] 

Case 3 ℜg 

[−3Δ, 3Δ] 

Case 4 ℜg 

[−xmax[H], xmax[H]] 

Case 5 ℜg 

[−xmax[J], xmax[J]] 

SQNRexUQ(dB) 2.8821 -1.2402 8.2325 8.7676 8.7639 

SQNRthUQ(dB) 1.9360 -2.0066 6.8237 6.9787 7.0707 

Accuracy (%) 96.97 94.58 97.12 96.34 96.74 

Within ℜg (%) 99.988 100 98.567 94.787 96.691 
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Figure 7. Normalized histogram of weights (FP32) for MLP trained on MNIST dataset. 

Therefore, in this case we obtain the lowest observed SQNR value among all cases, 

while being significantly higher than the one obtained by UQ, which reaches negative 

values. Unlike the low SQNR value, the accuracy in Case 2 is very high with 97.42% 

achieved, especially taking into consideration that for UQ observed in the same case, the 

accuracy amounts to only 94.58%. This highlights the benefits of utilizing non-uniform 

quantization, which provides better QNN performance even in the case of choosing an 

overly wide support region. 

In Case 3, the support region, ℜg, is determined for the iteratively calculated optimal 

quantization step, Δ = 0.8504. The support region threshold of SPTQ is defined as follows: 

xmaxSPTQ = 3Δ, and xmaxSPTQ amounts to 2.5512. This value represents the theoretically opti-

mal support region threshold value, therefore, providing the maximal theoretical SQNR 

value for this case. Although Case 3 yields the highest theoretical and higher experimental 

SQNR, compared to the previous cases, the QNN model’s accuracy is significantly lower. 

This further confirms the premise that the quantizer that provides the highest SQNR does 

not necessarily provide the highest accuracy of the QNN, which highly depends on the ℜg 

choice as well. 

Cases 4 and 5 utilize well-known, optimal and asymptotically optimal support region 

thresholds from the literature, which are determined for UQ by Hui [23] and Jayant [20]. 

Although these values are not optimal for our SPTQ, we include them into our analysis to 

obtain a better insight on the influence of the ℜg choice to both SQNR and QNN perfor-

mance. One can notice that although not optimal for SPTQ, support region thresholds 

specified in Cases 4 and 5 provide the highest experimental SQNR values, with theoretical 

SQNR being relatively close to the optimal value with the maximum difference from it of 

about 0.4 dB. Unlike SQNR, in these two cases we obtain the lowest QNN model’s accu-

racy. The maximum accuracy difference in these two cases is about 4%, compared to the 

best performing Case 1, which represents a significant NN performance degradation. 

Lower accuracy is a direct result of overly narrow support region threshold, with 94.787% 

and 96.691% of the weights being within the ℜg for the Cases 4 and 5, respectively. 

By analyzing all the observed cases, one can conclude that ℜg has a very strong influ-

ence on the QNN accuracy and obtained SQNR. Moreover, it has been shown that SPTQ 

performs much better than UQ for the case of using wider ℜg, which we intuitively ex-

pected, and it is generally known for non-uniform quantization [20]. In contrast, it can be 

observed that the accuracy of the QNN with the application of UQ outperforms the QNN 

with SPTQ in Cases 3–5, with Case 3 being the most significant one, as it represents the 

optimal solution for the theoretical SQNR of the SPTQ. Based on the SQNR analysis of 
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SPTQ, we can conclude that SPTQ designed in Case 3 could be greatly applicable in tra-

ditional quantization tasks. To overcome the mentioned imperfection of SPTQ in post-

training quantization, in this paper, we have introduced a simple, yet efficient modifica-

tion and optimization of the SPTQ, denoted by MSPTQ, which performance is presented 

and analyzed in the following. 

As previously described, MSPTQ introduces a simple modification in specifying one 

decision threshold to improve the performance of SPTQ for the cases of narrower ℜg, in-

cluding the one constructed with the optimal support region threshold value. The perfor-

mances of the modified SPTQ and MSPTQ are presented in Table 5 for slightly different 

Cases of the support region threshold, as previously defined Cases 4 and 5 are not relevant 

to the non-uniform quantization. Cases 1 to 3 are the same as in the previous analysis, so 

that we can conduct a direct comparison of performance. One can notice that MSPTQ out-

performs both SPTQ and UQ in all the observed performance indicators for Cases 1 and 

3, while QNN with the application of SPTQ obtains a higher accuracy with the margin of 

0.44% for Case 2. Moreover, MSPTQ provides the gain in both theoretical and experi-

mental SNQR values for all comparable cases over the QNN with the implementation of 

UQ. Case 2 is a specific one, being an example of an unfavorable choice of ℜg, and QNN 

with SPTQ performs better, compared to its modified counterpart. On the other hand, for 

carefully designed ℜg, by applying the modified SPTQ and MSPTQ, we obtain a signifi-

cant increase in both SQNR and QNN accuracy, compared to the SPTQ. The gain in the 

accuracy is specifically large in Case 3, which utilizes the support region threshold, opti-

mally determined for SPTQ, and it amounts to 1.42%. For the ℜg specified in Case 3, 

MSPTQ obtains the highest experimental SQNR value, with an increase of 0.874 dB, com-

pared to SPTQ and 0.4514 dB, in comparison to UQ. Case 4 implements the numerically 

optimized ℜg width for the MSPTQ, with the support region threshold value being close 

to the one obtained for SPTQ. Expectedly, theoretically obtained SQNR is highest for this 

case, while experimentally obtained SQNR, as well as the accuracy, take the second high-

est value among all the cases by having 99.001% of the normalized weights within the ℜg. 

As the degradation of the accuracy in Case 4 amounts to about 0.9%, compared to the full 

precession case (98.1% − 97.23% = 0.87%), we can conclude that with the simple modifica-

tion we have managed not only to improve SQNR, but also to increase the accuracy of the 

QNN, compared to the case where UQ and SPTQ are implemented. 

Table 5. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset: the application of 

MSPTQ designs for bit rate of R = 2 bit/sample. 

wmin = −7.063787, wmax = 4.8371024, 

xmaxSPTQ =3Δ = 2.5512 

xmaxMSPTQ = 3Δmod = 2.7063 

Case 1 ℜg 

[−wmax, wmax] 

Case 2 ℜg 

[wmin, −wmin] 

Case 3 ℜg 

[−3Δ, 3Δ] 

Case 4 ℜg 

[−3Δmod, 3Δmod] 

SQNRexMSPTQ(dB) 5.5741 2.9114 8.6839 8.5608 

SQNRthMSPTQ(dB) 5.0581 1.9158 7.4890 7.5165 

Accuracy (%) 97.91 96.98 97.17 97.23 

Within ℜg (%) 99.988 100 98.567 99.001 

We can additionally compare our results with the ones from [16]. In particular, in 

[16], 2-bit logarithmic quantization of neural network weights has been addressed, where 

MLP (multilayer perceptron) has also been trained for the MNIST dataset. Specifically, 

paper [16] addressed a two-bit μ-law logarithmic quantizer, parameterized to achieve in-

creased robustness, which is particularly important for the variance-mismatched scenario, 

where the designed for and applied to variance of data being quantized do not match. 

However, by performing normalization, which is commonly applied in NNs, this problem 

reduces to optimization of the quantizer models, typically for the zero mean and unit var-

iance, as with the ones we address in this paper. Although the robustness of the logarith-

mic quantizer has been recognized as the main advantage, it has been shown in [16] that 
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the higher robustness causes the lower SQNR, compared to the uniform quantizer in the 

zero mean and unit variance case (see Figure 13 from [16] for σ = σref, that is, for 

20log10(σ/σref) = 0). In [16], SQNR was calculated for different representative values of 

parameter, μ, in wide dynamic range of variances. By comparing achieved SQNR values 

from Table I given in [16] (SQNR = 4.44 dB for μ =255) and SQNR values from our Tables 

3 and 5 (SQNR = 7.8099 dB for SPTQ Case 3 and SQNR = 8.5608 dB for MSPTQ Case 4), 

we can conclude that with SPTQ and MSPTQ, we have achieved higher SQNR values, 

compared to μ-law logarithmic quantizer from [16]. This confirms that the advantages of 

the logarithmic quantizer do not come to the forefront in the case of lower bit rates. 

In [32], ternary uniform quantization is considered, where binary coding is used, 

which we also used in this paper, while in [33], ternary coding is applied. Unlike our pre-

vious research [18], in which the design of UQ is optimized for the Laplacian pdf of zero 

mean and unit variance; in [32], the support region threshold of the ternary quantizer is 

not optimized. However, by introducing the scale factor, α, in [33], a kind of optimization 

of the considered ternary quantizer model is performed. In order to provide a fair com-

parison of our results with those from [32] and [33], we assume the same weights for 

quantization, the same NN, as well as the same support region threshold settings, as in 

the case of SPTQ and UQ given in Tables 3 and 4, where we apply the ternary quantization 

from [32]. Since the number of cells into which the support region is divided in the case 

of the ternary quantizer is smaller by one (N = 3) than the case of dividing the same sup-

port region in the case of the two-bit UQ (N = 22 = 4), our anticipation was that the ternary 

quantizer will provide a lower SQNR value, as well as a lower accuracy, compared to UQ, 

which the numerical results shown in Table 6 confirm. Namely, Table 6 shows the results 

of the application of ternary quantization to the NN weights of the considered previously 

trained MLP, where part of the results, shown in part (a) assumes the same support re-

gion, as in the case of optimal UQ (Case 5), asymptotically optimal UQ (Case 4) and opti-

mal SPTQ (Case 3), while part (b) illustrates the importance of choosing the value of the 

scale factor, α, which serves to scale the entire model of the ternary quantizer with the aim 

to perform its adaptation. In [20], the optimal support region threshold value for the ter-

nary quantizer is given, which for the assumed Laplace pdf is 3/sqrt(2). By setting α = 1, 

we indeed determined the highest theoretical value of SQNR for the ternary quantizer. 

However, as it has been shown in [18], the highest SQNR does not always guarantee the 

highest accuracy; we have varied the value of the scale factor from 1/4 to 7/4 with steps of 

1/4, and we have ended up with the conclusion that, for the observed values of α, the 

highest accuracy is achieved for α = 3/2, providing the accuracy of the observed QNN that 

amounts to 97.51%. In short, both of our new models of non-uniform quantizers (SPTQ 

and MSPTQ) have superior performance (higher SQNR and accuracy), compared to the 

quantizer models from [32] and [33], which is not only a consequence of the fact that the 

number of cells in our quantizers is greater by one but also that with the wise distribution 

of the cell width, as well as the optimization of the support region threshold, we really 

provided significant step forward in the field of quantization. 

Table 6. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset: (a) the application 

of different ternary quantizer designs (b) adaptation of ternary quantizer with the scale factor α. 

wmin = −7.063787,  

wmax = 4.8371024, 

3Δ = 2.5512 

xmax[H] = 1.9605,  

xmax[J] = 2.1748 

Case 1 ℜg 

[−wmax, wmax] 

Case 2 ℜg 

[wmin, −wmin] 

Case 3 ℜg 

[−3Δ, 3Δ] 

Case 4 ℜg 

[−xmax[H], xmax[H]] 

Case 5 ℜg 

[−xmax[J], xmax[J]] 

SQNRex(dB) 1.6988 0.43 5.7178 6.7273 6.47 

SQNRth(dB) 2.7275 1.1827 5.5681 5.7436 5.7762 

Accuracy (%) 90.56 24.02 96.58 94.1 95.01 

Within ℜg (%) 99.988 100 98.567 94.787 96.691 
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(a) 

xmax = 3/sqrt(2) α 

ℜg 

[−xmax, xmax] 

Case 1 ℜg 

α = 1/4 

Case 2 ℜg 

α = 1/2 

Case 3 ℜg 

α = 3/4 

Case 4 ℜg 

α = 1 

Case 5 ℜg 

α = 5/4 

Case 6 ℜg 

α = 3/2 

Case 7 ℜg 

α = 7/4 

SQNRex(dB) 2.52 5.01 6.6 6.552 5.49 4.28 3.23 

SQNRth(dB) 2.1424 4.0509 5.3544 5.7800 5.4708 4.8068 4.0695 

Accuracy (%) 22.01 94.37 94.81 94.68 96.49 97.51 97.33 

Within ℜg (%) 41.142 72.968 89.17 96.283 98.869 99.648 99.887 

(b) 

Table 7 provides additional results for specified NNs trained on the Fashion-MNIST 

dataset, for the case of applying the proposed two novel NUQs (SPTQ and MSPTQ). As 

our MLP model achieves the accuracy of 88.96% on the Fashion-MNIST validation set, 

obtained after 10 epochs of training, we can conclude that similar to the case of the MNIST 

dataset, with the application of MSPTQ, we have managed to achieve closer to the accu-

racy obtained in the full precession case. Moreover, we have managed to preserve the 

original accuracy to a great extent. In addition, as with the results discussed for MNIST 

dataset, in quantization of weights of MLP trained on Fashion-MNIST dataset, we have 

ascertained that the theoretically and experimentally obtained SQNR values achieved 

with the application of MSPTQ are higher than ones obtained with the application of 

SPTQ. 

Table 7. SQNR and QNN model’s accuracy (MLP and CNN trained on Fashion-MNIST dataset) 

with the application of a) SPTQ b) MSPTQ, designed for bit rate of R = 2 bit/sample. 

xmaxSPTQ =3Δ = 2.5512  
MLP  

[−3Δ, 3Δ] 

CNN 

[−3Δ, 3Δ] 

SQNRexSPTQ(dB) 7.3242 7.51 

SQNRthSPTQ(dB) 6.9790 6.9790 

Accuracy (%) 86.05 83.69 

Within ℜg (%) 98.112 97.696 

(a) 

xmaxSPTQ =3Δ = 2.5512 

xmaxMSPTQ = 3Δmod = 2.7063 

MLP 

[−3Δ, 3Δ] 

MLP  

[−3Δmod, 3Δmod] 

CNN 

[−3Δ, 3Δ] 

CNN  

[−3Δmod, 3Δmod] 

SQNRexMSPTQ(dB) 8.13 8.082 8.12 8.13 

SQNRthMSPTQ(dB) 7.4890 7.5165 7.4890 7.5165 

Accuracy (%) 87.95 87.42 83 83.72 

Within ℜg (%) 98.118 98.552 97.696 98.232 

(b) 

Compared to MLP, the CNN model achieves a higher accuracy of 91.53%, obtained 

on the Fashion-MNIST validation set, with weights also represented in FP32 format. Nor-

malized histogram of weights that are being quantized for CNN trained on Fashion-

MNIST dataset is shown in Figure 8. It has been shown in [19] that with the application of 

optimal three-bit UQ, the accuracy degradation of the quantized CNN model amounts to 

about 3.5% (91.53% − 87.97% = 3.56%). In the case of applying the two-bit UQ to the same 

weights of the CNN (trained on Fashion-MNIST), we have calculated an even higher ac-

curacy degradation that amounts to about 9.5% (91.53% − 82.039% = 9.491%). As one can 

observe from Table 7, for the two novel NUQs, we have ascertained the accuracy of 83.69% 

and 83.72%, respectively. In other words, we have again overperformed UQ in terms of 

accuracy, and the mentioned accuracy increased amounts to about 1.7%. 
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Figure 8. Normalized histogram of weights (FP32) for CNN trained on Fashion-MNIST dataset. 

7. Summary and Conclusions 

In this paper, we have proposed two novel two-bit NUQs, SPTQ and MSPTQ, which 

prudently utilize one of the two properties of the simplest UQ, and we have examined 

whether they are more suitable for application in post-training quantization than UQ. By 

optimizing the distortion of the proposed NUQs to achieve the highest theoretical SQNR, 

we have derived formulas for iteratively determining the basic step sizes of both NUQs, 

Δ and Δmod, which is of the utmost importance in traditional quantization. We have proved 

that the iterative algorithms utilized output the values of Δ and Δmod that are indeed opti-

mal, as they match with the corresponding results of numerical distortion optimization 

per basic step sizes and give the minimum of distortion of SPTQ and MSPTQ. Moreover, 

the main benefits of this paper are meaningful conclusions that specify the manner in 

which the performance of the proposed quantizers, as well as the performance of QNNs 

that have implemented novel NUQs, behave with the basic step sizes. We have also con-

firmed the premise that the quantizer that provides the highest SQNR does not necessarily 

provide the highest accuracy of QNN. Finally, with the introduction of MSPTQ model we 

have managed not only to improve the SQNR, but also to increase the accuracy of the 

QNN, compared to the case where UQ and SPTQ are implemented. Although UQ is a 

highly exploited quantizer model due to its intriguing nature and its possibility to be mod-

ified to some extent, it is natural to expect that research and development of some modi-

fied quantization models will continue to attract the attention of the scientific community. 
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