
Citation: Perić, Z.; Aleksić, D.;

Nikolić, J.; Tomić, S. Two Novel

Non-Uniform Quantizers with

Application in Post-Training

Quantization. Mathematics 2022, 10,

3435. https://doi.org/10.3390/

math10193435

Academic Editor: Xinsong Yang

Received: 2 August 2022

Accepted: 15 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Two Novel Non-Uniform Quantizers with Application in
Post-Training Quantization
Zoran Perić 1, Danijela Aleksić 2,* , Jelena Nikolić 1 and Stefan Tomić 3

1 Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia
2 Department of Mobile Network Nis, Telekom Srbija, Vozdova 11, 18000 Nis, Serbia
3 School of Engineering and Technology, Al Dar University College, Dubai P.O. Box 35529, United Arab Emirates
* Correspondence: danijelaal@telekom.rs

Abstract: With increased network downsizing and cost minimization in deployment of neural
network (NN) models, the utilization of edge computing takes a significant place in modern artificial
intelligence today. To bridge the memory constraints of less-capable edge systems, a plethora of
quantizer models and quantization techniques are proposed for NN compression with the goal of
enabling the fitting of the quantized NN (QNN) on the edge device and guaranteeing a high extent of
accuracy preservation. NN compression by means of post-training quantization has attracted a lot of
research attention, where the efficiency of uniform quantizers (UQs) has been promoted and heavily
exploited. In this paper, we propose two novel non-uniform quantizers (NUQs) that prudently
utilize one of the two properties of the simplest UQ. Although having the same quantization rule
for specifying the support region, both NUQs have a different starting setting in terms of cell width,
compared to a standard UQ. The first quantizer, named the simplest power-of-two quantizer (SPTQ),
defines the width of cells that are multiplied by the power of two. As it is the case in the simplest
UQ design, the representation levels of SPTQ are midpoints of the quantization cells. The second
quantizer, named the modified SPTQ (MSPTQ), is a more competitive quantizer model, representing
an enhanced version of SPTQ in which the quantizer decision thresholds are centered between the
nearest representation levels, similar to the UQ design. These properties make the novel NUQs
relatively simple. Unlike UQ, the quantization cells of MSPTQ are not of equal widths and the
representation levels are not midpoints of the quantization cells. In this paper, we describe the design
procedure of SPTQ and MSPTQ and we perform their optimization for the assumed Laplacian source.
Afterwards, we perform post-training quantization by implementing SPTQ and MSPTQ, study the
viability of QNN accuracy and show the implementation benefits over the case where UQ of an equal
number of quantization cells is utilized in QNN for the same classification task. We believe that
both NUQs are particularly substantial for memory-constrained environments, where simple and
acceptably accurate solutions are of crucial importance.

Keywords: non-uniform quantization; support region; post-training quantization; quantized
neural networks

MSC: 68P30

1. Introduction

The Internet of Things (IoTs) facilitates automatization and simplification of many
daily tasks in the commercial, industrial and infrastructure fields. As the number of con-
nected IoT devices constantly grows, the IoTs seem to become an unavoidable part of our
everyday life. Due to the rapid proliferation of IoTs, as predicted by [1], the volume of data
generated by IoTs is increasing ceaselessly. Therefore, an efficient utilization of cloud com-
puting resources is of great importance and requires a prudent strategy for the bandwidth
usage, energy consumption and computational and memory costs [2]. Many applications

Mathematics 2022, 10, 3435. https://doi.org/10.3390/math10193435 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193435
https://doi.org/10.3390/math10193435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8660-6473
https://orcid.org/0000-0002-3552-7211
https://doi.org/10.3390/math10193435
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193435?type=check_update&version=2

Mathematics 2022, 10, 3435 2 of 21

for the interconnected devices in the IoT environment require or prefer fast, real-time com-
munications with the cloud. To avoid delays in interactions with the cloud servers, the idea
of edge computing has been increasingly used [3]. Although edge computing devices are
less powerful than the cloud servers and are subject to many constraints, edge computing
allows storing data and executing applications on the edge, directly connected with IoT
devices. Further, an intersection of artificial intelligence (AI) and edge computing has
introduced the concept that brings AI to the edge [4]. Achieving efficient edge computing
with an acceptable or high accuracy of neural networks (NNs) requires the utilization of
different techniques, such as pruning, neural network quantization, knowledge distillation,
manual design of efficient architecture, neural network architecture search, etc., as pro-
foundly discussed in [5,6]. Although these techniques can be as essential as complex, they
require comprehensive rethinking of NN design to enable fitting of NNs to the memory of
the edge device at first place.

One of the vulnerabilities of brining AI solutions to the edge can be reflected in the
accuracy degradation of built-in NNs. Driven by the need for compression of NN pa-
rameters, which is especially beneficial for the memory-efficient deployment of NN on
resource-constrained devices, numerous papers have already confirmed abundant oppor-
tunities for NN parameter compression by means of quantization [7–14]. The quantization
process introduces a quantization error [15], which accumulation can cause an incorrect
output of the quantized NN (QNN), thus degrading the accuracy, compared to the NN. As
quantization error is the quality indicator of every quantizer, it is of particular interest to
examine its relation to the QNN accuracy. Not so obvious relations between NN and its
quantized counterpart, QNN, can be examined on the simple classification task [14,16–19],
by analyzing the classification accuracy and achieved experimental and theoretical signal
to quantization noise ratio (SQNR) values. To the best of our knowledge, SQNR is not an
unambiguous fidelity measure of the QNN model, since the highest SQNR does not neces-
sarily guarantee the highest accuracy of QNN [14]. However, in traditional quantization, it
is of utmost importance for a quantizer design to determine a set of parameters that pro-
vide the maximum of SQNR [20–23]. Therefore, in this paper, we do not only propose two
novel non-uniform quantizers (NUQs), but we also perform their optimization to achieve
minimal distortion, i.e., maximal SQNR. In addition, we apply these NUQs in post-training
quantization and examine the accuracy preservation for the same classification task, as
in [14,18,19]. To make our analysis even wider, we analyze experimental and theoretical
SQNR values and the accuracy of the QNN (for MLP and CNN) for a few significant cases
of designing both implemented NUQs and for two datasets.

2. Related Work and Motivation

To achieve both simplicity and efficiency, most of the recent research in the field of NN
compression have focused on post-training quantization, rather than on quantization-aware
training [5,6]. The core idea of post-training quantization reflects on the compression of NN
model weights after training the NN. Since the original NN parameters are typically stored
in FP32 format, quantization can bring unique opportunities in implementing compressed
NN models, as long as the quantized NN parameters have relatively close values as the
original ones [19]. Despite the high difference between the QNN model and the original
one (NN before quantization), it has been shown in [19] that the accuracy of the neural
network can be slightly degraded after the quantization is performed. Admittedly, the
accuracy gap between the full-precision NN and QNN can be still very large in some
cases, with the apparent space for improvements, especially for the extremely low-bit
QNNs [6,10,17,24,25].

Generally, in low-bit quantization, a very small number of bits per sample is used to
represent the data being quantized (less than or equal to 3 bit/sample) [20]. Relying on
plenty of quantization models from the signal processing area, quantization has proved
to be an efficient technique that can perform signal compression according to some of
the underlying criteria [15,21–23]. Many efforts in classical compression by means of

Mathematics 2022, 10, 3435 3 of 21

quantization have been made towards the minimization of an inevitable quantization
error for a given bit-rate. The main goal in compression is actually to minimize the
bit-rate. However, in general, the smaller the bit-rate, the lower the storage cost and
computation requirements, but the higher the quantization error [20]. These conflicting
requirements mean quantization is a very intriguing area of research, specifically the
choice of the quantization model itself and specification of its key parameters (the support
region, quantization steps, bit-rate, decision and representation levels [15,20–23]) affect
the amount of the total quantization error, that is, the total distortion. Following the
main aspect of signal coding and compression, which is the bit-rate shrinkage, we can
expect that for non-uniform sources, such as the Laplacian one assumed in this paper,
non-uniform quantization allows better utilization of the available bit rate. Additional
constraints, especially for low-bit conditions, include non-uniform quantizers that should
be well suited to the lower design complexity and implementation requirements.

Unlike in our previous works, where we addressed low-bit uniform quantizer (UQ),
two-bit and three-bit UQ [18,19], respectively, in this paper, we propose two novel non-
uniform two-bit quantization models and we analyze QNN performance for the same
classification task as the one reported in [18,19]. Our goal is to improve both the SQNR
and the accuracy of the QNN model, compared to two-bit UQ from [18]. In this research,
we show that this goal is achievable by utilizing the novel NUQs that will be specified
in detail in the following. Let us highlight that to provide a fair comparison with the
results from [18,19], in this paper, the identical multilayer perceptron (MLP) architecture is
assumed, while the identical weights (stored in FP32 format) are non-uniformly quantized
according to completely novel quantization rules by also using only two bits per sample.
Our motivation to address the two-bit NUQs stems from the fact that non-uniform quantiz-
ers are more convenient for non-uniform distributions, as the Laplacian pdf. Having in
mind that the weights distribution can closely fit some of well-known probability density
functions (pdfs), as the Laplacian pdf is [7,8,12]; in this paper, as in [18,19], we assume the
Laplacian-like distribution for experimental weights distribution and the Laplacian pdf for
the theoretical distribution of weights, for estimating the performance of our two novel
non-uniform quantizers in question. The main reason why we chose to utilize two-bit
quantizers lies in an already confirmed premise for the two-bit UQ [18], that quantizer
parameterization has been shown to be crucial not only for the performance of the quan-
tizer alone but also for the QNN model accuracy, due to only four representations being
available. In brief, the performance gain over UQ is relatively easily achieved by means of
high-bit non-uniform quantization [22], where this is not a case with low-bit non-uniform
quantization due to the small number of representations available. This makes low-bit
non-uniform quantization, as the one addressed in this paper, more intriguing to research.

To alleviate the shortage of UQ applied to non-uniform distributions, reflected in
uniform quantization of all weight values with most of them aggregated near the mean,
in this paper, we specify the novel quantization rules for two-bit NUQs. More precisely,
in our first novel NUQ, the quantization cell that lies inwardly closest to the mean, is of
width ∆, while the width of subsequent cell, that lies in the rest of the support region is 2∆,
so that the quantizer’s support region ranges [−3∆, 3∆]. Hereinafter we utilize notations
simplest power-of-two quantizer (SPTQ) for the first quantizer and modified simplest
power-of-two quantizer (MSPTQ), as it is the modified and enhanced SPTQ version. Both
aforementioned quantization models, SPTQ and MSPTQ, follow the same predefined rule
for defining the support region ranging [−3∆, 3∆] or [−3∆mod, 3∆mod], respectively, while
differing in the way of specifying the decision and representation levels of the quantizer.
In SPTQ design, the representation levels are the midpoints of the quantization cells, as it
is the case in the simplest UQ design, while its quantization cells are not of equal widths,
as is the case with UQ. In MSPTQ design, the quantizer decision thresholds are centered
between the nearest representation levels, similar to the UQ design. However, unlike UQ,
the quantization cells of MSPTQ are not of equal widths and the representation levels are
not midpoints of the quantization cells. More details about SPTQ and MSPTQ models

Mathematics 2022, 10, 3435 4 of 21

will be provided in the following sections. Intending to determine the parameters of the
novel quantizers more favorably and as precise as possible, we also provide a studious
analysis and the description of the optimization procedure of two-bit SPTQ and MSPTQ.
Specifically, we describe their design for the assumed Laplacian source and perform their
optimization in an iterative manner, as well as by performing numerical optimization
procedure. Afterwards, we perform post-training quantization with the implementation
of SPTQ and MSPTQ, study the viability of QNN accuracy and present the benefits in the
case where two-bit UQ from [18] is utilized for the same classification task. We believe that
both NUQs are particularly substantial for memory-constrained devices, where simple and
acceptably accurate solutions are one of the key requirements.

The rest of this paper is organized as follows: Sections 3 and 4 describe the design of
symmetrical SPTQ and MSPTQ for the Laplacian source. Section 5 briefly describes the
application of novel NUQs in post-training quantization. Section 6 provides the discussion
on the numerical results for two novel NUQs specified in Sections 3 and 4. Finally, Section 7
summarizes the paper contributions and concludes our research results.

3. Symmetric SPTQ Design for the Laplacian Source

Quantization is ubiquitous in signal processing, and it specifies a mapping of contin-
uous data to a discrete set of N quantization or representation levels [20]. The primary
goal of quantization is to minimize the distortion, i.e., the deviation of the quantized signal
(QN(X)), compared to the original (X), for a given N and bit-rate R, where R = log2N [20]

D = E
[
(X−QN(X))2

]
(1)

Specifically, the choice of the quantizer model itself and its parameterization affect the
total amount of the quantization error. Therefore, in the following, we describe two novel
NUQs and we specify the expressions to quantify their quantization error.

Let us first specify the key parameter of an N-level symmetrical quantizer QN. By the
quantization procedure, an input signal amplitude range is divided into a granular region
<g and an overload region <o (see Figure 1 for SPTQ). For any symmetric quantizer, as
those we design here, these regions are separated by the support region thresholds denoted
by −xmax and xmax, respectively [20]. The granular region <g

<g =
−1
∪

i=−N/2
<i ∪

N/2
∪

i=1
<i = [−xmax, xmax] (2)

consists of N nonoverlapped limited in width quantization cells, where the ith cell is:

<i = {x|x ∈ [−xmax, xmax], QN(x) = yi},<i ∩ <j = ∅, i 6= j (3)

while yi denotes the ith representation level and {<i }−1
i=−N/2 and {<i }N/2

i=1 denote the
granular cells from the negative and positive amplitude regions, which are symmetrically
placed around the zero mean. In symmetric quantization, the quantizer’s main parameter
sets are halved, since only the positive or the absolute values of the quantizer’s parameters
should be determined and stored. The symmetry also holds for the overload cells, that is,
for a pair of quantization cells unlimited in width in the overload region, <o, defined as

<0 = {x|x /∈ [−xmax, xmax], QN(x) = yN/2, x > 0∨QN(x) = y−N/2, x < 0} (4)

If the cells are of nonequal width, then the quantizer is non-uniform [20], as is the case
with the two-bit SPTQ we address here.

Let us denote with ∆ the step size of the cells of our symmetrical two-bit SPTQ that are
the closest ones to the mean (see Figure 1). We further assume that the decision thresholds
are not equidistant, as it is the case in UQ design. Specifically, suppose that the width of the

Mathematics 2022, 10, 3435 5 of 21

adjacent cells is multiplied by two (observe only the positive half of the amplitude region
and take into account that symmetry holds). As SPTQ is two-bit quantizer, from

xmax = ∆ + 2∆ (5)

for the quantization step size, we have

∆ =
xmax

3
(6)

The decision thresholds of our two-bit SPTQ are specified by:

xi =
(

2i − 1
)

∆, x−i = −xi, i ∈ { 0, 1, 2} (7)

The code book of our two-bit SPTQ, YSPTQ ≡ {y−2, y−1, y1, y2} ⊂ R, contains N = 4
representation levels yi (see Figure 1), specified as midpoints of cells by:

yi =
(xi−1 + xi)

2
= (2i−1 + 2i−2 − 1)∆, y−i = −yi =, i ∈ { 1, 2} (8)

Recall that xmax denotes the support region threshold of our two-bit SPTQ, and it is one
of the key parameters of the quantizer. From Equations (5)–(8) one can conclude that xmax
or the step size, ∆, completely determine the decision thresholds, xi, and the representation
levels, yi, of the proposed two-bit SPTQ. In other words, the quantizer in question is com-
pletely determined by knowing the support region threshold, xmax = xmax

SPTQ. Therefore,
we introduce the following notation of our transfer characteristic of the symmetric two-bit
SPTQ, QSPTQ(x; xmax) (see Figure 2, where the characteristic of the symmetric two-bit SPTQ
is presented for xmax = 2.5512, where the notation [J] comes from the name of the author
of [20]).

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 21

Figure 1. Granular region, ℜg, and overload region, ℜo, of the symmetric two-bit SPTQ.

Let us denote with Δ the step size of the cells of our symmetrical two-bit SPTQ that
are the closest ones to the mean (see Figure 1). We further assume that the decision thresh-
olds are not equidistant, as it is the case in UQ design. Specifically, suppose that the width
of the adjacent cells is multiplied by two (observe only the positive half of the amplitude
region and take into account that symmetry holds). As SPTQ is two-bit quantizer, from

max 2x = Δ + Δ (5)

for the quantization step size, we have

max

3
x

Δ = (6)

The decision thresholds of our two-bit SPTQ are specified by:

() { }2 1 , , 0,1, 2i
i i ix ix x−= − Δ = − ∈ (7)

The code book of our two-bit SPTQ, { }SPTQ
2 1 1 2, , ,Y y y y y− −≡ ⊂ , contains N = 4 represen-

tation levels yi (see Figure 1), specified as midpoints of cells by:

() { }1 1 2(2 2 1) , , 1, 2
2

i i i i
i i i

x x
y y y i− − −

−

+
= = + − Δ = − = ∈ (8)

Recall that xmax denotes the support region threshold of our two-bit SPTQ, and it is
one of the key parameters of the quantizer. From Equations (5)–(8) one can conclude that
xmax or the step size, Δ, completely determine the decision thresholds, xi, and the represen-
tation levels, yi, of the proposed two-bit SPTQ. In other words, the quantizer in question
is completely determined by knowing the support region threshold, xmax = xmaxSPTQ. There-
fore, we introduce the following notation of our transfer characteristic of the symmetric
two-bit SPTQ, QSPTQ(x; xmax) (see Figure 2, where the characteristic of the symmetric two-
bit SPTQ is presented for xmax = 2.5512, where the notation [J] comes from the name of the
author of [20]).

Let us highlight here that due to the symmetry of the unrestricted Laplacian pdf, p(x)
of zero mean and variance σ2 = 1

{ }1() exp 2
2

p x x= − (9)

for which we intend to optimize the design of our SPTQ, the decision thresholds and rep-
resentation levels of SPTQ are assumed to be symmetric in relation to the zero-mean value.

Figure 1. Granular region, <g, and overload region, <o, of the symmetric two-bit SPTQ.

Let us highlight here that due to the symmetry of the unrestricted Laplacian pdf, p(x)
of zero mean and variance σ2 = 1

p(x) =
1√
2

exp
{
−
√

2x
}

(9)

for which we intend to optimize the design of our SPTQ, the decision thresholds and repre-
sentation levels of SPTQ are assumed to be symmetric in relation to the zero-mean value.

Mathematics 2022, 10, 3435 6 of 21
Mathematics 2022, 10, x FOR PEER REVIEW 6 of 21

-2 -1 0 1 2

-2

-1

0

1

2

Q
SP
TQ
(x
)

x

Figure 2. Transfer characteristic of two-bit SPTQ QSPTQ(x) for [-xmaxSPTQ, xmaxSPTQ] = [-2.5512, 2.5512].

To determine the total distortion of our symmetrical two-bit SPTQ, composed of the
granular and the overload distortion, SPTQ SPTQ SPTQ

g oD D D= + , we begin with the basic defi-
nition of distortion, given by Equation (1) [20], where the granular distortion, SPTQ

gD , and

the overload distortion, SPTQ
oD , for symmetric two-bit SPTQ in question are:

() ()
1

2
2SPTQ

g
1

2
i

i

x

i
i x

D x y p x dx
−

=

= − (10)

() ()
2

2SPTQ
o 22

x

D x y p x dx
∞

= − (11)

Foremost, to simplify our derivation, let us define that it holds x3 = ∞, denoting the
upper limit of the integral in Equation (11). Then, the total distortion of our symmetrical
two-bit SPTQ can be rewritten as:

() () ()

() ()

1 1 2

1 2

3 2
SPTQ 2

2
1 1

2
2 2

2
1

2 4

2

− −

−

∞

= =

∞

=

= − +

+ +

i i

i i

i

i

x x

i
i ix x x

x

i
i x x

D x p x dx y xp x dx y xp x dx

y p x dx y p x dx

 (12)

For the Laplacian pdf, specified in Equation (9), from Equation (12), we derive:

() { }() { }()SPTQ 2 2 2
1 1 1 2 1 1 1 2 11 2 2 1 exp 2 exp 2D y x x y y y x y y = − + + − − + + − − (13)

By further reorganizing Equation (13), we have:

()() { }SPTQ 2
1 1 2 1 2 1 1 11 2 2 2 exp 2D y y y y y y x x = + − + − + − − − (14)

Eventually, by substituting Equations (7) and (8) into Equation (14), we derive:

{ }
2

SPTQ 22 3 3 21 exp 2
2 4 4 2

D
 Δ= − Δ + + Δ − Δ − Δ

 (15)

By minimizing distortion, that is, by setting the first derivative of so obtained distor-
tion, DSPTQ, with respect to Δ equal to zero:

Figure 2. Transfer characteristic of two-bit SPTQ QSPTQ(x) for [™xmax
SPTQ, xmax

SPTQ] = [™2.5512, 2.5512].

To determine the total distortion of our symmetrical two-bit SPTQ, composed of the
granular and the overload distortion, DSPTQ = DSPTQ

g + DSPTQ
o , we begin with the basic

definition of distortion, given by Equation (1) [20], where the granular distortion, DSPTQ
g ,

and the overload distortion, DSPTQ
o , for symmetric two-bit SPTQ in question are:

DSPTQ
g = 2

2

∑
i=1

xi∫
xi−1

(x− yi)
2 p(x)dx (10)

DSPTQ
o = 2

∞∫
x2

(x− y2)
2 p(x)dx (11)

Foremost, to simplify our derivation, let us define that it holds x3 = ∞, denoting the
upper limit of the integral in Equation (11). Then, the total distortion of our symmetrical
two-bit SPTQ can be rewritten as:

DSPTQ = 2
3
∑

i=1

xi∫
xi−1

x2 p(x)dx− 4

(
2
∑

i=1
yi

xi∫
xi−1

xp(x)dx + y2

∞∫
x2

xp(x)dx

)

+2

(
2
∑

i=1
yi

2
xi∫

xi−1

p(x)dx + y2
2

∞∫
x2

p(x)dx

) (12)

For the Laplacian pdf, specified in Equation (9), from Equation (12), we derive:

DSPTQ = 1−
√

2
[
y1 +

(√
2x1 + 1

)
exp

{
−
√

2x1

}
(y2 − y1)

]
+ y2

1 + exp
{
−
√

2x1

}(
y2

2 − y2
1

)
(13)

By further reorganizing Equation (13), we have:

DSPTQ = 1 + y1
2 −
√

2y1 +
[
(y2 − y1)

(
y2 + y1 − 2x1 −

√
2
)]

exp
{
−
√

2x1

}
(14)

Eventually, by substituting Equations (7) and (8) into Equation (14), we derive:

DSPTQ = 1−
√

2
2

∆ +
∆2

4
+

[
3
4

∆2 − 3
√

2
2

∆

]
exp

{
−
√

2∆
}

(15)

Mathematics 2022, 10, 3435 7 of 21

By minimizing distortion, that is, by setting the first derivative of so obtained distor-
tion, DSPTQ, with respect to ∆ equal to zero:

∂DSPTQ

∂∆
= 0 (16)

we derive:

∆−
√

2 +

(
3
√

2
2

∆2 − 9∆ + 3
√

2

)
exp

{
−
√

2∆
}
= 0 (17)

and we determine ∆ iteratively from:

∆(i+1) =
√

2 +

(
3
√

2
2

(
∆(i)

)2
− 9∆(i) + 3

√
2

)
exp

{
−
√

2∆(i)
}

(18)

Taking a second derivative of DSPTQ with respect to ∆ yields:

∂2DSPTQ

∂∆2 =
1
2

[
1 + 3 exp

{
−
√

2∆
}((

∆− 2
√

2
)2
− 3
)]

(19)

It is trivial to conclude that for ∆ ≤ 2
√

2−
√

3 and ∆ ≥ 2
√

2 +
√

3 it stands that
∂2DSPTQ/∂∆2 ≥ 1/2. We will now pay special attention to 2

√
2−
√

3 < ∆ < 2
√

2 +
√

3,
where we can expect the minimum of ∂2DSPTQ/∂∆2. By further taking the derivative of
expression (19) with respect to ∆ and equating the result to zero.

∂

∂∆

[
1
2

[
1 + 3 exp

{
−
√

2∆
}((

∆− 2
√

2
)2
− 3
)]]

= 0 (20)

we derive:
∆2 − 5

√
2∆ + 9 = 0 (21)

and we determine the roots of Equation (21) as ∆1,2 =
(

5±
√

7
)

/
√

2. As for

∆2 =
(

5 +
√

7
)

/
√

2 the inequality does not apply 2
√

2 −
√

3 < ∆ < 2
√

2 +
√

3, the

minimal value of ∂2DSPTQ/∂∆2 is achieved for ∆1 =
(

5−
√

7
)

/
√

2 and amounts to 0.263.

Thus, we can conclude that DSPTQ is a convex function of ∆. Moreover, to confirm that we
end up iteratively with the unique optimal value for ∆ in the numerical result section, we
provide the results of numerical distortion optimization per ∆.

4. Symmetric MSPTQ Design for the Laplacian Source

Let us assume the same quantization rule [−3∆, 3∆] as in the SPTQ design for specify-
ing the support region of MSPTQ, [−3∆mod, 3∆mod], as well as the same rule for specifying
the representation levels, here denoted with ymod

1 and ymod
2

ymod
i = (2i−1 + 2i−2 − 1)∆mod, ymod

−i = −ymod
i =, i ∈ { 1, 2} (22)

where mod indicates modification. Let us further assume an additional specification of
MSPTQ that quantizer decision threshold is centered between the nearest representation
levels (similarly as in the UQ design):

xmod
1 =

ymod
1 + ymod

2
2

(23)

We should highlight that the spreading of the first quantization cell in MSPTQ, nearest
to the mean, causes shrinkage of the adjacent quantization cell (see Figure 3), whereas the
common quantization rule of both quantizers in question that the quantization support
region ranges [−3∆, 3∆] or [−3∆mod, 3∆mod] is preserved. More precisely, the condition

Mathematics 2022, 10, 3435 8 of 21

stated in Equation (23), previously mentioned as the additional specification, is one of
the prerequisites for the MSPTQ design. To completely specify MSPTQ, it is necessary
to determine the quantization step size ∆mod. To do so, we can minimize the distor-
tion of MSPTQ having the support region that ranges [−3∆mod, 3∆mod]. For the given
xmax

MSPTQ = 3∆mod = xmod
2 according to Equations (22) and (23), we can determine the code

book YMSPTQ ≡
{

ymod
−2 , ymod

−1 , ymod
1 , ymod

2
}
⊂ R of our two-bit MSPTQ and the decision

threshold xmod
1 . Let us highlight again that symmetry about zero-mean value holds, so

that by specifying xmod
0 = 0, and identifying that xmod

−i = −xmod
i , i ∈ { 1, 2}, MSPTQ is

completely determined. To clearly distinguish the two NUQ models we have proposed in
this paper, in Table 1 we summarize the main parameters that unambiguously describe our
NUQs, SPTQ (Table 1a)) and MSPTQ (Table 1b)). Note that the representation levels of SPTQ
and MSPTQ follow the same rule y1 = ∆/2, y1

mod = ∆mod/2 and y2 = 2∆, y2
mod = 2∆mod,

where the main difference is in specifying the decision thresholds x1 and xmod
1 .

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 21

prerequisites for the MSPTQ design. To completely specify MSPTQ, it is necessary to de-
termine the quantization step size Δmod. To do so, we can minimize the distortion of
MSPTQ having the support region that ranges [−3Δmod, 3Δmod]. For the given xmaxMSPTQ =
3Δmod = mod

2x according to Equations (22) and (23), we can determine the code book

{ }MSPTQ mod mod mod mod
2 1 1 2, , ,Y y y y y− −≡ ⊂ of our two-bit MSPTQ and the decision threshold mod

1x .
Let us highlight again that symmetry about zero-mean value holds, so that by specifying

mod
0 0=x , and identifying that { }mod mod 1, , 2− = − ∈i i ix x , MSPTQ is completely determined. To

clearly distinguish the two NUQ models we have proposed in this paper, in Table 1 we
summarize the main parameters that unambiguously describe our NUQs, SPTQ (Table
1a)) and MSPTQ (Table 1b)). Note that the representation levels of SPTQ and MSPTQ fol-
low the same rule y1 = Δ/2, y1mod = Δmod/2 and y2 = 2Δ, y2mod = 2Δmod, where the main differ-
ence is in specifying the decision thresholds 1x and mod

1x .
Let us specify the distortion of MSPTQ. By recalling the Equation (14) and applying

the condition specified in Equation (23), we have:

() () { }2MSPTQ mod mod mod mod mod
1 1 2 1 11 2 2 exp 2 = + − − − − D y y y y x (24)

Figure 3. Granular region, ℜ g, and overload region, ℜ o, of the symmetric two-bit MSPTQ.

Table 1. The decision thresholds and representation levels of our two-bit (a) SPTQ and (b)
MSPTQ.

Quantizer type x0 x1 x2 = xmaxSPT y1 y2
SPTQ 0 Δ 3Δ 1/2Δ 2Δ

(a)
Quantizer type x0mod x1mod x2mod= xmaxMSPTQ y1mod y2mod

MSPTQ 0 5/4 Δmod 3Δmod 1/2Δmod 2Δmod
(b)

By further rearranging Equation (24), so that it only depends on Δmod and not on the
representation and decision levels, we can derive the expression for the distortion as:

()2mod mod
MSPTQ mod2 5 21 1 3exp

4 2 4
D

Δ Δ = + − Δ + −

 (25)

By minimizing the distortion, that is by setting the first derivative of obtained distortion
in Equation (25) with respect to Δmod equal to zero:

MSPTQ

mod 0D∂ =
∂Δ

 (26)

we derive:

Figure 3. Granular region, <g, and overload region, < o, of the symmetric two-bit MSPTQ.

Table 1. The decision thresholds and representation levels of our two-bit (a) SPTQ and (b) MSPTQ.

Quantizer type x0 x1 x2 = xmax
SPT y1 y2

SPTQ 0 ∆ 3∆ 1/2∆ 2∆

(a)

Quantizer type x0
mod x1

mod x2
mod= xmax

MSPTQ y1
mod y2

mod

MSPTQ 0 5/4 ∆mod 3∆mod 1/2∆mod 2∆mod

(b)

Let us specify the distortion of MSPTQ. By recalling the Equation (14) and applying
the condition specified in Equation (23), we have:

DMSPTQ = 1 +
(

ymod
1

)2
−
√

2ymod
1 −

[√
2
(

ymod
2 − ymod

1

)]
exp

{
−
√

2xmod
1

}
(24)

By further rearranging Equation (24), so that it only depends on ∆mod and not on the
representation and decision levels, we can derive the expression for the distortion as:

DMSPTQ = 1 +

(
∆mod)2

4
−
√

2
2

∆mod

[
1 + 3 exp

{
−5
√

2∆mod

4

}]
(25)

Mathematics 2022, 10, 3435 9 of 21

By minimizing the distortion, that is by setting the first derivative of obtained distortion in
Equation (25) with respect to ∆mod equal to zero:

∂DMSPTQ

∂∆mod = 0 (26)

we derive:

∆mod
√

2

(
15 + 2 exp

{
5
√

2∆mod

4

})
−
(

6− 2 exp

{
5
√

2∆mod

4

})
= 0 (27)

∆mod can be determined iteratively from:

∆mod(i+1)
=
√

2

1− 9

15 + 2 exp
{

5
√

2∆mod(i)

4

}
 (28)

By determining ∆mod we can calculate the total distortion of the MSPTQ from Equation (25).
Let us determine the second derivative of so obtained distortion, with respect to ∆mod:

∂2DMSPTQ

∂
(
∆mod

)2 =
1
2

[
1 +

(
15− 75

√
2

8

)
exp

{
−5
√

2∆mod

4

}]
(29)

As it holds that 15− 75
√

2/8 > 0 and, therefore, ∂2DMSPTQ/∂
(
∆mod)2 ≥ 1/2, we can

conclude that DMSPTQ is a convex function of ∆mod, which guarantees the existence of the
unique minimum of DMSPTQ. As in the case of SPTQ, to confirm that we end up iteratively
with the unique optimal value for ∆mod, in the numerical result section, we provide the
results of numerical distortion optimization per ∆mod.

5. Application of Two Novel Non-Uniform Quantizers in Post-Training Quantization

The MNIST handwritten digits database [26] was used in [18,19] for the experimental
evaluation of the post-training low-bit UQ performance in weights compression of the
three-layer fully connected (FC) NN model (shortly, our NN model). We chose to work
with the MNIST dataset as it provides a large number of handwritten digit instances, which
is a prerequisite for the highly accurate NNs. We consider that it is interesting to research
whether with QNN this high accuracy can be preserved. More precisely, the MNIST dataset
consists of 70,000 grayscale images, divided as 60,000 training images and 10,000 images in
the test set [26,27], while these sets do not have overlapping instances. All the images used
for training and testing the NN are previously standardized and normalized according
to their mean value and standard deviation so the pixel values, ranging between 0 and
255, are mapped to a range between 0 and 1. Each image contains 28 × 28 pixels with a
size-normalized digit or number (0–9). All digits are positioned in a fixed size with the
intensity at the center.

Figure 4 illustrates the process of our experiments: MNIST training and testing datasets
are loaded and then reshaped (flattened) into 1-dimensional vectors of 784 (28*28) elements.
Each component of the vector is a binary value, which specifies the intensity of the pixel.
Our NN model architecture is the same as those specified in [18,19] for comparison reasons
and it consists of three FC (Dense) layers. First two FC layers consist of 512 nodes, where the
first layer accepts an input shape of (784). These layers are called the hidden layers, as we
do not directly consider their outputs. After both hidden layers ReLU activation function is
applied. To reduce overfitting, we introduced dropout regularization that randomly sets
outputs of 20% of the total nodes in the layer to zero. Output of the second hidden layer is
fed to the output layer, which consists of ten neurons that determine the input digit in the
range from 0 to 9. Since the output layer uses SoftMax as an activation function, it classifies

Mathematics 2022, 10, 3435 10 of 21

the output digit according to the highest probability value of the SoftMax function at the
output layer [28].

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 21

Figure 4. Post-training procedure by applying two novel two-bit quantizers.

Training and accuracy evaluation of our NN model is implemented in TensorFlow
framework with Keras API, version 2.5.0 [28]. Our MLP model consists of 669,706 traina-
ble parameters, which are quantized by using the two-bit novel NUQs after training.
Training is conducted in 10 epochs, with a batch size of 128, resulting in 469 iterations per
epoch to complete the training over 60,000 training examples. The validation set accuracy
after the training amounts to 0.981, meaning that the MLP model made accurate predic-
tions for 98.1% of the images in the validation set. It is well-known that different sizes of
the fully connected layers would result in different accuracies obtained. Although NN
with a large number of layers and a lot of hidden neurons per layer can achieve better
accuracy, smaller NNs run much faster. As already mentioned in this paper, we use the
same three-layer FC MLP model as in [18,19]. Our goal is to test the performance of two
novel NUQs in post-training quantization and to provide a fair comparison with the re-
sults from [18,19].

For the specified NN model, training, accuracy analysis and quantization have been
implemented in Python programming language [28]. In our QNN model, all trained
weights have been quantized using one of the proposed novel NUQs (SPTQ or MSPTQ)
and our QNN model’s accuracy, as well as SQNR, has been evaluated for com-
pressed/quantized weights to represent post-training two-bit NUQ (SPTQ or MSPTQ)
performance (see Algorithm 1). We can evaluate the experimental performance of SPTQ
and MSPTQ by determining the distortion or SQNR, defined similarly as in [19]:

() () ()T2 2* * * **
ex 2 1

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ
W

j j
j

D W W W W W W
W W

w
W

w
=

= − = − − = − (30)

2

1*
ex 10 *

ex

1

SQNR 10 log

W

j
j

w
W

D
=

 =

(31)

where * refers to the application of SPTQ or MSPTQ. Dex* and SQNRex* are experimentally
determined distortion and SQNR, Ŵ = {wj}j = 1, 2, …, W denotes the vector of weights repre-
sented in FP32 format and Ŵ* = {wj*}j = 1, 2, …, W denotes the vector of weights to be loaded in
QNN. In brief, at the very beginning of the post-training quantization, NN weights are
normalized to zero mean and unit variance, forming the vector ŴN = {wjN}j = 1, 2, …, W. After
all normalized weights are quantized by applying SPTQ or MSPTQ and denormalized to
the original range, Ŵ* = {wj*}j = 1, 2, …, W is loaded into the QNN model (see Algorithm 1).

Algorithm 1: Weights compression by means of post-training quantization using
SPTQ/MSPTQ.
Notation: wj—pretrained weight, wjSPTQ—quantized weight using SPTQ, wjMSPTQ—
quantized weight using MSPTQ
Input: Ŵ = {wj}j = 1, 2, …, W, weights represented in FP32 format, εmin = 10−4

Figure 4. Post-training procedure by applying two novel two-bit quantizers.

Training and accuracy evaluation of our NN model is implemented in TensorFlow
framework with Keras API, version 2.5.0 [28]. Our MLP model consists of 669,706 trainable
parameters, which are quantized by using the two-bit novel NUQs after training. Training
is conducted in 10 epochs, with a batch size of 128, resulting in 469 iterations per epoch
to complete the training over 60,000 training examples. The validation set accuracy after
the training amounts to 0.981, meaning that the MLP model made accurate predictions for
98.1% of the images in the validation set. It is well-known that different sizes of the fully
connected layers would result in different accuracies obtained. Although NN with a large
number of layers and a lot of hidden neurons per layer can achieve better accuracy, smaller
NNs run much faster. As already mentioned in this paper, we use the same three-layer
FC MLP model as in [18,19]. Our goal is to test the performance of two novel NUQs in
post-training quantization and to provide a fair comparison with the results from [18,19].

For the specified NN model, training, accuracy analysis and quantization have been
implemented in Python programming language [28]. In our QNN model, all trained
weights have been quantized using one of the proposed novel NUQs (SPTQ or MSPTQ) and
our QNN model’s accuracy, as well as SQNR, has been evaluated for compressed/quantized
weights to represent post-training two-bit NUQ (SPTQ or MSPTQ) performance (see
Algorithm 1). We can evaluate the experimental performance of SPTQ and MSPTQ by
determining the distortion or SQNR, defined similarly as in [19]:

D∗ex =
1

W
∥∥Ŵ − Ŵ∗

∥∥2
2 =

1
W
(
Ŵ − Ŵ∗

)T(Ŵ − Ŵ∗
)
=

1
W

W

∑
j=1

(
wj − w∗j

)2
(30)

SQNR∗ex = 10 log10

1

W

W
∑

j=1
w2

j

D∗ex

 (31)

where * refers to the application of SPTQ or MSPTQ. Dex
* and SQNRex

* are experimentally
determined distortion and SQNR, Ŵ = {wj}j = 1, 2, . . . , W denotes the vector of weights repre-
sented in FP32 format and Ŵ*= {wj

*}j = 1, 2, . . . , W denotes the vector of weights to be loaded
in QNN. In brief, at the very beginning of the post-training quantization, NN weights are
normalized to zero mean and unit variance, forming the vector ŴN= {wj

N}j = 1, 2, . . . , W . Af-
ter all normalized weights are quantized by applying SPTQ or MSPTQ and denormalized to
the original range, Ŵ* = {wj

*}j = 1, 2, . . . , W is loaded into the QNN model (see Algorithm 1).

Mathematics 2022, 10, 3435 11 of 21

Algorithm 1: Weights compression by means of post-training quantization using SPTQ/MSPTQ

Notation: wj—pretrained weight, wj
SPTQ—quantized weight using SPTQ, wj

MSPTQ—quantized
weight using MSPTQ
Input: Ŵ = {wj}j = 1, 2, . . . , W, weights represented in FP32 format, εmin = 10−4

Output: Quantized weights for SPTQ—ŴSPTQ = {wj
SPTQ}j = 1, 2, . . . , W , Quantized weights for

MSPTQ—ŴMSPTQ = {wj
MSPTQ}j = 1, 2, . . . , W , SQNRSPTQ

th , SQNRSPTQ
ex , SQNRMSPTQ

th , SQNRMSPTQ
ex ,

AccuracySPTQ, AccuracyMSPTQ

Algorithm steps:
1: load initial pretrained and stored weights Ŵ = {wj}j = 1, 2, . . . , W

2: normalize weights and form ŴN = {wj
N}j = 1, 2, . . . , W,

3: wmin←minimal value of the normalized weights from ŴN

4: wmax ←maximal value of the normalized weights from ŴN

5: select SPTQ model to quantize normalized weights
6: initialize εSPTQ ← 1, ∆(0) = ∆SPTQ ← 1 (or some other given value), i← 1
7: while εSPTQ ≥ εmin do
8: calculate ∆(i + 1) by using (18)
9: calculate εSPTQ =abs (∆(i + 1)-∆SPTQ)
10: ∆SPTQ ← ∆(i + 1)

11: i← i + 1
12: end while
13: ∆← ∆SPTQ

14: xmax
SPTQ ← 3 ∆

15: calculate {x-2, x-1, x0, x1, x2} by using (7) for xmax
SPTQ

16: form codebook YSPTQ = {y-2, y-1, y1, y2} by using (8) or Table 1a)
17: quantize normalized weights by using codebook YSPTQ

18: denormalize quantized weights and form vector ŴSPTQ = {wj
SPTQ}j = 1, 2, . . . , W

19: select MSPTQmodel to quantize normalized weights
20: initialize εMSPTQ ← 1, ∆mod(0) = ∆MSPTQ ← ∆SPTQ, i← 1
21: while εMSPTQ ≥ εmin do
22: calculate ∆mod(i + 1) by using (28)
23: calculate εMSPTQ =abs (∆mod(i + 1)-∆MSPTQ)
24: ∆MSPTQ ← ∆mod(i + 1)

25: i← i + 1
26: end while
27: ∆mod ← ∆MSPTQ

28: xmax
MSPTQ ← 3 ∆MSPTQ

29: calculate {x-2
mod, x-1

mod, x0
mod, x1

mod, x2
mod} by using Table 1b) for xmax

MSPTQ

30: form codebook YMSPTQ ≡ {y-2
mod, y-1

mod, y1
mod, y2

mod} by using Table 1b)
31: quantize normalized weights by using codebook YMSPTQ

32: denormalize quantized weights and form vector ŴMSPTQ = {wj
MSPTQ}j = 1, 2, . . . , W

33: calculate SQNRSPTQ
ex , SQNRSPTQ

th , SQNRMSPTQ
ex , SQNRMSPTQ

th by using Equations (15), (25),
(30)–(33), estimate accuracies of QNNs.

Let us finally define the theoretical SQNR as:

SQNRSPTQ
th = 10 log10

(
1

DSPTQ

)
(32)

SQNRMSPTQ
th = 10 log10

(
1

DMSPTQ

)
(33)

which will also be calculated and compared with the experimentally determined SQNR.
Recall that DSPTQ and DMSPTQ are specified by Equations (15) and (25), respectively.

Additional results are also provided in the paper for specified NN trained on the
Fashion-MNIST dataset [29]. Fashion-MNIST is a dataset comprising of 28 × 28 grayscale
images of 70,000 fashion products from 10 categories, with 7000 images per category [29].
The training set has 60,000 images and the test set has 10,000 images. Fashion-MNIST

Mathematics 2022, 10, 3435 12 of 21

shares the same image size, data format and the structure of training and testing splits with
the MNIST. It has been highlighted in [30] that although Fashion-MNIST dataset poses
a more challenging classification task, compared to MNIST dataset, the usage of MNIST
dataset does not seem to be decreasing. Moreover, it has been pointed out at the fact that
the reason MNIST dataset is still widely utilized comes from its size, allowing deep learning
researchers to quickly check and prototype their algorithms.

The CNN model, also considered in the paper, consists of one convolutional layer,
followed by ReLU activation, max pooling and flatten layer, whose output is fed to the
previously described MLP with two hidden FC layers and the output layer. The images for
MLP are being flattened into 1-dimensional vectors of 784 (28 × 28) elements to match the
shape accepted by our first NN, while for a proper CNN input, one additional dimension
is being added to represent the channel. Convolutional layer contains 16 filters with kernel
size set to 3 × 3, while the max pooling layer utilizes a pooling window of size 2 × 2. The
output of the pooling layer is further flattened into a one-dimensional vector for feeding it
forward to the FC dense layer. The only difference between the previously described MLP
and the dense layers utilized in CNN is in the dropout percentage, which is in the case of
CNN set to 0.5, to further prevent overfitting of the FC layers. Therefore, the CNN model
consists of three hidden layers and the output layer with the total of 1,652,906 trainable
parameters. The training is performed for the Fashion-MNIST, in the same manner as for
the MLP, with the total of 10 epochs, while the batch size is equal to 128 training samples.

6. Numerical Results and Analysis

Referencing Algorithm 1 for both previously described novel NUQs, we firstly analyze
the number of necessary iterations for iterative determination of ∆ and ∆mod, or equally,
for determining xmax

SPTQ and xmax
MSPTQ. To initialize Algorithm 1 for determining ∆, we

use different values of ∆(0), specified in Table 2. To determine ∆mod, we use the result of the
first iterative process, that is, we assume ∆mod(0) = ∆. The same condition as in [22], that
two adjacent iterations differ by less than 10−4 is used as the output criterion of algorithm.
By observing statistics of the trained and normalized NN weights, we have found that
the minimum and maximum weights in original FP32 amount to wmin = ™7.063787 and
wmax = 4.8371024. Following a predefined rule for specifying the support region of SPTQ
ranging in [−3∆, 3∆], we use ∆(0) = |wmax|/3 = 1.61237 and ∆(0) = |wmin|/3 = 2.3546
to initialize Algorithm 1 for SPTQ. Moreover, we assume that ∆(0) = xmax[H]/3 = 0.6536
and ∆(0) = xmax[J]/3 = 0.7249, where xmax[H] and xmax[J] are optimal and asymptotically
optimal xmax values for UQ given by Hui [23] and Jayant [20] (see Table 2). It is worthy
highlighting that different initializations require around 40 iterations (see Table 2 and
Figure 5). Moreover, we should highlight that all the observed initializations lead to
the unique final value of ∆ (∆ = 0.8504) and xmax

SPTQ = 3∆ = 2.5512. If we further use
∆mod(0) = ∆ = 0.8504 for iteratively determining ∆mod, given the same output algorithm
criterion, we only need seven iterations. As a result of the second iterative process, we
determine ∆mod = 0.9021, as well as xmax

MSPTQ = 3∆mod = 2.7063. To additionally confirm
that with the output criterion of Algorithm 1 we ended up with the optimal values for ∆
and ∆mod; one can observe in Figure 6, the depiction of the dependences of the distortion
of the applied quantizers on the corresponding basic step sizes. Iteratively obtained values
for ∆ and ∆mod are marked with asterisks in Figure 6 and are indeed optimal as they give
the minimum of DSPTQ and DMSPTQ.

Table 2. Number of iterations for determining xmax
SPTQ for different initializations.

SPTQ ∆(0) = 1 ∆(0) = |wmax|/3 ∆(0) = |wmin|/3 ∆(0) = xmax[H]/3 ∆(0) = xmax[J]/3

number of
iterations 40 39 40 41 41

Mathematics 2022, 10, 3435 13 of 21

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 21

Table 2. Number of iterations for determining xmaxSPTQ for different initializations.

SPTQ Δ(0) = 1 Δ(0) = |wmax|/3 Δ(0) = |wmin|/3 Δ(0) = xmax[H] /3 Δ(0) = xmax[J] /3
number of iterations 40 39 40 41 41

0 5 10 15 20 25 30 35 40 45
0.6

0.7

0.8

0.9

1.0

1.1

1.2

 Δ(0)=1
 Δ(0)=xmax[H]/3

 Δ(0)=xmax[J]/3

Δ(
i)

number of iterations

0 5 10 15 20 25 30 35 40 45

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 Δ(0)= abs(wmax)/3

 Δ(0)= abs(wmin)/3

Δ(
i)

number of iterations

(a) (b)

Figure 5. Algorithm convergence ilustration: (a) Δ(0) = 1, Δ(0) = xmax[H]/3, Δ(0) = xmax[J] /3; (b) Δ(0) =

|wmax|/3, Δ(0) = |wmin|/3.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1

0.2

0.3

0.4

0.5

0.6

 Δ

 Δ* = 0.8504

D
SP
TQ

Δ
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.1

0.2

0.3

0.4

0.5

0.6

 Δmod

 Δmod * = 0.9021

D
M
SP
TQ

Δmod

(a) (b)

Figure 6. Distortion dependance on the corresponding basic step size for (a) SPTQ and (b) MSPTQ.

The support region in our Case 1 is defined as [−min(|wmin|,|wmax|),
min(|wmin|,|wmax|)], which is in our experiment simply [−wmax, wmax]. Therefore, in Case 1,
the support region depends on the maximum value of the normalized trained model
weights in full precision, which for the observed trained weights (for MNIST dataset)
amounts to wmax = 4.8371024. By setting the support region of SPTQ and MSPTQ as stated,
it includes 99.988% of all the normalized weights. One can notice from Table 3 that thus
defined Case 1 provides the highest QNN model’s accuracy of all the observed cases,
amounting to 97.61% of correctly classified validation samples of MNIST dataset. By com-
paring it to the application of simple UQ, we can conclude that with the applied SPTQ,
we provide an increase in the accuracy of 0.64% (see Table 4). This represents a significant
increase in accuracy, especially taking into account that the only difference is in the ap-

Figure 5. Algorithm convergence llustration: (a) ∆(0) = 1, ∆(0) = xmax[H]/3, ∆(0) = xmax[J]/3;
(b) ∆(0) = |wmax|/3, ∆(0) = |wmin|/3.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 21

Table 2. Number of iterations for determining xmaxSPTQ for different initializations.

SPTQ Δ(0) = 1 Δ(0) = |wmax|/3 Δ(0) = |wmin|/3 Δ(0) = xmax[H] /3 Δ(0) = xmax[J] /3
number of iterations 40 39 40 41 41

0 5 10 15 20 25 30 35 40 45
0.6

0.7

0.8

0.9

1.0

1.1

1.2

 Δ(0)=1
 Δ(0)=xmax[H]/3

 Δ(0)=xmax[J]/3

Δ(
i)

number of iterations

0 5 10 15 20 25 30 35 40 45

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 Δ(0)= abs(wmax)/3

 Δ(0)= abs(wmin)/3

Δ(
i)

number of iterations

(a) (b)

Figure 5. Algorithm convergence ilustration: (a) Δ(0) = 1, Δ(0) = xmax[H]/3, Δ(0) = xmax[J] /3; (b) Δ(0) =

|wmax|/3, Δ(0) = |wmin|/3.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1

0.2

0.3

0.4

0.5

0.6

 Δ

 Δ* = 0.8504

D
SP
TQ

Δ
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.1

0.2

0.3

0.4

0.5

0.6

 Δmod

 Δmod * = 0.9021

D
M
SP
TQ

Δmod

(a) (b)

Figure 6. Distortion dependance on the corresponding basic step size for (a) SPTQ and (b) MSPTQ.

The support region in our Case 1 is defined as [−min(|wmin|,|wmax|),
min(|wmin|,|wmax|)], which is in our experiment simply [−wmax, wmax]. Therefore, in Case 1,
the support region depends on the maximum value of the normalized trained model
weights in full precision, which for the observed trained weights (for MNIST dataset)
amounts to wmax = 4.8371024. By setting the support region of SPTQ and MSPTQ as stated,
it includes 99.988% of all the normalized weights. One can notice from Table 3 that thus
defined Case 1 provides the highest QNN model’s accuracy of all the observed cases,
amounting to 97.61% of correctly classified validation samples of MNIST dataset. By com-
paring it to the application of simple UQ, we can conclude that with the applied SPTQ,
we provide an increase in the accuracy of 0.64% (see Table 4). This represents a significant
increase in accuracy, especially taking into account that the only difference is in the ap-

Figure 6. Distortion dependance on the corresponding basic step size for (a) SPTQ and (b) MSPTQ.

Further in this section, we present experimentally obtained results of applying both
SPTQ and MSPTQ in post-training quantization of NN model’s weights. As mentioned,
we utilize the same NN model as in [18,19] with the same weights stored in FP32 format.
Therefore, by conducting experiments with the novel NUQs, we can fairly compare the
performance with the case of applying two-bit UQ under the same circumstances. To
analyze the performance of the proposed quantizers in NN quantization, we conduct
experiments for multiple specific choices of the support region threshold of NUQs. These
experiments aim to provide insights on the impact of different support region thresholds
on both NUQs performance and QNN accuracy.

The support region in our Case 1 is defined as [−min(|wmin|,|wmax|), min(|wmin|,|wmax|)],
which is in our experiment simply [−wmax, wmax]. Therefore, in Case 1, the support region
depends on the maximum value of the normalized trained model weights in full precision,
which for the observed trained weights (for MNIST dataset) amounts to wmax = 4.8371024.
By setting the support region of SPTQ and MSPTQ as stated, it includes 99.988% of all the
normalized weights. One can notice from Table 3 that thus defined Case 1 provides the
highest QNN model’s accuracy of all the observed cases, amounting to 97.61% of correctly

Mathematics 2022, 10, 3435 14 of 21

classified validation samples of MNIST dataset. By comparing it to the application of
simple UQ, we can conclude that with the applied SPTQ, we provide an increase in the
accuracy of 0.64% (see Table 4). This represents a significant increase in accuracy, especially
taking into account that the only difference is in the applied quantizers, while the same
bit rate is assumed and we are very close to the full precision accuracy of the baseline NN.
Similarly, the experimental and theoretically obtained SQNR of SPTQ is higher, compared
to UQ, providing gain in SQNR of 1.8078 dB and 2.5078 dB, respectively. We can notice
that theoretically determined SQNR has lower values than experimentally determined
SQNR. As explained in [18,19], the reason is that in the experimental analysis, the weights
originating from the Laplacian-like distribution being quantized are from the limited set
of possible values [−7.063787, 4.8371024] (see Figure 7), while in the theoretical analysis,
the quantization of values from the unrestricted Laplacian source is assumed, causing an
increase in the amount of distortion, that is, the decrease in the theoretical SQNR value. In
summary, Case 1 already shows the benefits of implementing SPTQ over the UQ providing
increase in all significant performance indicators observed.

Table 3. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset: different SPTQ
designs for R = 2 bit/sample.

wmin = −7.063787,
wmax = 4.8371024,

3∆ = 2.5512
xmax[H] = 1.9605, xmax[J] = 2.1748

Case 1 <g
[−wmax, wmax]

Case 2 <g
[wmin, −wmin]

Case 3 <g
[−3∆, 3∆]

Case 4 <g
[−xmax[H],
xmax[H]]

Case 5 <g
[−xmax[J], xmax[J]]

SQNRex
SPTQ(dB) 4.6899 2.5745 7.8099 7.9051 8.0068

SQNRth
SPTQ(dB) 4.4438 1.6044 6.9790 6.5437 6.8086

Accuracy (%) 97.61 97.42 95.75 93.77 94.52
Within <g (%) 99.988 100 98.567 94.787 96.691

Table 4. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset with the application
of different UQ designs for bit rate of R = 2 bit/sample (part of the results are from [18]).

wmin = −7.063787,
wmax = 4.8371024,

3∆ = 2.5512
xmax[H] = 1.9605, xmax[J] = 2.1748

Case 1 <g
[−wmax, wmax]

Case 2 <g
[wmin, −wmin]

Case 3 <g
[−3∆, 3∆]

Case 4 <g
[−xmax[H],
xmax[H]]

Case 5 <g
[−xmax[J], xmax[J]]

SQNRex
UQ(dB) 2.8821 ™1.2402 8.2325 8.7676 8.7639

SQNRth
UQ(dB) 1.9360 ™2.0066 6.8237 6.9787 7.0707

Accuracy (%) 96.97 94.58 97.12 96.34 96.74
Within <g (%) 99.988 100 98.567 94.787 96.691

In Case 2, the support region is [−max(|wmin|, |wmax|), max(|wmin|, |wmax|)], and
it is defined as it is in [31]. In our experiment, it can be expressed as [−|wmin|, |wmin|],
which in practice becomes [wmin, −wmin], forming the support region (in case of MNIST
dataset) as [−7.063787, 7.063787]. It can be observed that the support region in Case 2
includes 100% of the weights and even goes beyond the maximum value of the normalized
weights, which makes it unnecessarily wide and representative of an unfavorable choice
of <g.

Therefore, in this case we obtain the lowest observed SQNR value among all cases,
while being significantly higher than the one obtained by UQ, which reaches negative
values. Unlike the low SQNR value, the accuracy in Case 2 is very high with 97.42%
achieved, especially taking into consideration that for UQ observed in the same case, the
accuracy amounts to only 94.58%. This highlights the benefits of utilizing non-uniform
quantization, which provides better QNN performance even in the case of choosing an
overly wide support region.

Mathematics 2022, 10, 3435 15 of 21
Mathematics 2022, 10, x FOR PEER REVIEW 15 of 21

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y
of

 o
cc

ur
en

ce
 [%

]

w
Figure 7. Normalized histogram of weights (FP32) for MLP trained on MNIST dataset.

Therefore, in this case we obtain the lowest observed SQNR value among all cases,
while being significantly higher than the one obtained by UQ, which reaches negative
values. Unlike the low SQNR value, the accuracy in Case 2 is very high with 97.42%
achieved, especially taking into consideration that for UQ observed in the same case, the
accuracy amounts to only 94.58%. This highlights the benefits of utilizing non-uniform
quantization, which provides better QNN performance even in the case of choosing an
overly wide support region.

In Case 3, the support region, ℜg, is determined for the iteratively calculated optimal
quantization step, Δ = 0.8504. The support region threshold of SPTQ is defined as follows:
xmaxSPTQ = 3Δ, and xmaxSPTQ amounts to 2.5512. This value represents the theoretically opti-
mal support region threshold value, therefore, providing the maximal theoretical SQNR
value for this case. Although Case 3 yields the highest theoretical and higher experimental
SQNR, compared to the previous cases, the QNN model’s accuracy is significantly lower.
This further confirms the premise that the quantizer that provides the highest SQNR does
not necessarily provide the highest accuracy of the QNN, which highly depends on the ℜg
choice as well.

Cases 4 and 5 utilize well-known, optimal and asymptotically optimal support region
thresholds from the literature, which are determined for UQ by Hui [23] and Jayant [20].
Although these values are not optimal for our SPTQ, we include them into our analysis to
obtain a better insight on the influence of the ℜg choice to both SQNR and QNN perfor-
mance. One can notice that although not optimal for SPTQ, support region thresholds
specified in Cases 4 and 5 provide the highest experimental SQNR values, with theoretical
SQNR being relatively close to the optimal value with the maximum difference from it of
about 0.4 dB. Unlike SQNR, in these two cases we obtain the lowest QNN model’s accu-
racy. The maximum accuracy difference in these two cases is about 4%, compared to the
best performing Case 1, which represents a significant NN performance degradation.
Lower accuracy is a direct result of overly narrow support region threshold, with 94.787%
and 96.691% of the weights being within the ℜg for the Cases 4 and 5, respectively.

By analyzing all the observed cases, one can conclude that ℜg has a very strong influ-
ence on the QNN accuracy and obtained SQNR. Moreover, it has been shown that SPTQ
performs much better than UQ for the case of using wider ℜg, which we intuitively ex-
pected, and it is generally known for non-uniform quantization [20]. In contrast, it can be
observed that the accuracy of the QNN with the application of UQ outperforms the QNN
with SPTQ in Cases 3–5, with Case 3 being the most significant one, as it represents the
optimal solution for the theoretical SQNR of the SPTQ. Based on the SQNR analysis of

Figure 7. Normalized histogram of weights (FP32) for MLP trained on MNIST dataset.

In Case 3, the support region, <g, is determined for the iteratively calculated optimal
quantization step, ∆ = 0.8504. The support region threshold of SPTQ is defined as follows:

xmax
SPTQ = 3∆, and xmax

SPTQ amounts to 2.5512. This value represents the theoretically
optimal support region threshold value, therefore, providing the maximal theoretical SQNR
value for this case. Although Case 3 yields the highest theoretical and higher experimental
SQNR, compared to the previous cases, the QNN model’s accuracy is significantly lower.
This further confirms the premise that the quantizer that provides the highest SQNR does
not necessarily provide the highest accuracy of the QNN, which highly depends on the <g
choice as well.

Cases 4 and 5 utilize well-known, optimal and asymptotically optimal support region
thresholds from the literature, which are determined for UQ by Hui [23] and Jayant [20].
Although these values are not optimal for our SPTQ, we include them into our analysis
to obtain a better insight on the influence of the <g choice to both SQNR and QNN
performance. One can notice that although not optimal for SPTQ, support region thresholds
specified in Cases 4 and 5 provide the highest experimental SQNR values, with theoretical
SQNR being relatively close to the optimal value with the maximum difference from it of
about 0.4 dB. Unlike SQNR, in these two cases we obtain the lowest QNN model’s accuracy.
The maximum accuracy difference in these two cases is about 4%, compared to the best
performing Case 1, which represents a significant NN performance degradation. Lower
accuracy is a direct result of overly narrow support region threshold, with 94.787% and
96.691% of the weights being within the <g for the Cases 4 and 5, respectively.

By analyzing all the observed cases, one can conclude that <g has a very strong
influence on the QNN accuracy and obtained SQNR. Moreover, it has been shown that
SPTQ performs much better than UQ for the case of using wider <g, which we intuitively
expected, and it is generally known for non-uniform quantization [20]. In contrast, it can
be observed that the accuracy of the QNN with the application of UQ outperforms the
QNN with SPTQ in Cases 3–5, with Case 3 being the most significant one, as it represents
the optimal solution for the theoretical SQNR of the SPTQ. Based on the SQNR analysis
of SPTQ, we can conclude that SPTQ designed in Case 3 could be greatly applicable in
traditional quantization tasks. To overcome the mentioned imperfection of SPTQ in post-
training quantization, in this paper, we have introduced a simple, yet efficient modification
and optimization of the SPTQ, denoted by MSPTQ, which performance is presented and
analyzed in the following.

Mathematics 2022, 10, 3435 16 of 21

As previously described, MSPTQ introduces a simple modification in specifying
one decision threshold to improve the performance of SPTQ for the cases of narrower
<g, including the one constructed with the optimal support region threshold value. The
performances of the modified SPTQ and MSPTQ are presented in Table 5 for slightly
different Cases of the support region threshold, as previously defined Cases 4 and 5
are not relevant to the non-uniform quantization. Cases 1 to 3 are the same as in the
previous analysis, so that we can conduct a direct comparison of performance. One can
notice that MSPTQ outperforms both SPTQ and UQ in all the observed performance
indicators for Cases 1 and 3, while QNN with the application of SPTQ obtains a higher
accuracy with the margin of 0.44% for Case 2. Moreover, MSPTQ provides the gain in both
theoretical and experimental SNQR values for all comparable cases over the QNN with
the implementation of UQ. Case 2 is a specific one, being an example of an unfavorable
choice of <g, and QNN with SPTQ performs better, compared to its modified counterpart.
On the other hand, for carefully designed <g, by applying the modified SPTQ and MSPTQ,
we obtain a significant increase in both SQNR and QNN accuracy, compared to the SPTQ.
The gain in the accuracy is specifically large in Case 3, which utilizes the support region
threshold, optimally determined for SPTQ, and it amounts to 1.42%. For the <g specified in
Case 3, MSPTQ obtains the highest experimental SQNR value, with an increase of 0.874 dB,
compared to SPTQ and 0.4514 dB, in comparison to UQ. Case 4 implements the numerically
optimized <g width for the MSPTQ, with the support region threshold value being close
to the one obtained for SPTQ. Expectedly, theoretically obtained SQNR is highest for
this case, while experimentally obtained SQNR, as well as the accuracy, take the second
highest value among all the cases by having 99.001% of the normalized weights within
the <g. As the degradation of the accuracy in Case 4 amounts to about 0.9%, compared to
the full precession case (98.1% − 97.23% = 0.87%), we can conclude that with the simple
modification we have managed not only to improve SQNR, but also to increase the accuracy
of the QNN, compared to the case where UQ and SPTQ are implemented.

Table 5. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset: the application of
MSPTQ designs for bit rate of R = 2 bit/sample.

wmin = −7.063787, wmax = 4.8371024,
xmax

SPTQ =3∆ = 2.5512
xmax

MSPTQ = 3∆mod = 2.7063

Case 1 <g
[−wmax, wmax]

Case 2 <g
[wmin, −wmin]

Case 3 <g
[−3∆, 3∆]

Case 4 <g

[−3∆mod, 3∆mod]

SQNRex
MSPTQ(dB) 5.5741 2.9114 8.6839 8.5608

SQNRth
MSPTQ(dB) 5.0581 1.9158 7.4890 7.5165

Accuracy (%) 97.91 96.98 97.17 97.23
Within <g (%) 99.988 100 98.567 99.001

We can additionally compare our results with the ones from [16]. In particular, in [16],
2-bit logarithmic quantization of neural network weights has been addressed, where MLP
(multilayer perceptron) has also been trained for the MNIST dataset. Specifically, paper [16]
addressed a two-bit µ-law logarithmic quantizer, parameterized to achieve increased
robustness, which is particularly important for the variance-mismatched scenario, where
the designed for and applied to variance of data being quantized do not match. However,
by performing normalization, which is commonly applied in NNs, this problem reduces to
optimization of the quantizer models, typically for the zero mean and unit variance, as with
the ones we address in this paper. Although the robustness of the logarithmic quantizer
has been recognized as the main advantage, it has been shown in [16] that the higher
robustness causes the lower SQNR, compared to the uniform quantizer in the zero mean
and unit variance case (see Figure 13 from [16] for σ = σref, that is, for 20 log10(σ/σref) = 0).
In [16], SQNR was calculated for different representative values of parameter, µ, in wide
dynamic range of variances. By comparing achieved SQNR values from Table I given in [16]
(SQNR = 4.44 dB for µ =255) and SQNR values from our Tables 3 and 5 (SQNR = 7.8099 dB
for SPTQ Case 3 and SQNR = 8.5608 dB for MSPTQ Case 4), we can conclude that with

Mathematics 2022, 10, 3435 17 of 21

SPTQ and MSPTQ, we have achieved higher SQNR values, compared to µ-law logarithmic
quantizer from [16]. This confirms that the advantages of the logarithmic quantizer do not
come to the forefront in the case of lower bit rates.

In [32], ternary uniform quantization is considered, where binary coding is used,
which we also used in this paper, while in [33], ternary coding is applied. Unlike our
previous research [18], in which the design of UQ is optimized for the Laplacian pdf of zero
mean and unit variance; in [32], the support region threshold of the ternary quantizer is not
optimized. However, by introducing the scale factor, α, in [33], a kind of optimization of the
considered ternary quantizer model is performed. In order to provide a fair comparison of
our results with those from [32] and [33], we assume the same weights for quantization, the
same NN, as well as the same support region threshold settings, as in the case of SPTQ and
UQ given in Tables 3 and 4, where we apply the ternary quantization from [32]. Since the
number of cells into which the support region is divided in the case of the ternary quantizer
is smaller by one (N = 3) than the case of dividing the same support region in the case of the
two-bit UQ (N = 22 = 4), our anticipation was that the ternary quantizer will provide a lower
SQNR value, as well as a lower accuracy, compared to UQ, which the numerical results
shown in Table 6 confirm. Namely, Table 6 shows the results of the application of ternary
quantization to the NN weights of the considered previously trained MLP, where part of
the results, shown in part (a) assumes the same support region, as in the case of optimal
UQ (Case 5), asymptotically optimal UQ (Case 4) and optimal SPTQ (Case 3), while part (b)
illustrates the importance of choosing the value of the scale factor, α, which serves to scale
the entire model of the ternary quantizer with the aim to perform its adaptation. In [20],
the optimal support region threshold value for the ternary quantizer is given, which for
the assumed Laplace pdf is 3/sqrt(2). By setting α = 1, we indeed determined the highest
theoretical value of SQNR for the ternary quantizer. However, as it has been shown in [18],
the highest SQNR does not always guarantee the highest accuracy; we have varied the
value of the scale factor from 1/4 to 7/4 with steps of 1/4, and we have ended up with the
conclusion that, for the observed values of α, the highest accuracy is achieved for α = 3/2,
providing the accuracy of the observed QNN that amounts to 97.51%. In short, both of our
new models of non-uniform quantizers (SPTQ and MSPTQ) have superior performance
(higher SQNR and accuracy), compared to the quantizer models from [32] and [33], which
is not only a consequence of the fact that the number of cells in our quantizers is greater by
one but also that with the wise distribution of the cell width, as well as the optimization
of the support region threshold, we really provided significant step forward in the field
of quantization.

Table 7 provides additional results for specified NNs trained on the Fashion-MNIST
dataset, for the case of applying the proposed two novel NUQs (SPTQ and MSPTQ).
As our MLP model achieves the accuracy of 88.96% on the Fashion-MNIST validation
set, obtained after 10 epochs of training, we can conclude that similar to the case of the
MNIST dataset, with the application of MSPTQ, we have managed to achieve closer to the
accuracy obtained in the full precession case. Moreover, we have managed to preserve the
original accuracy to a great extent. In addition, as with the results discussed for MNIST
dataset, in quantization of weights of MLP trained on Fashion-MNIST dataset, we have
ascertained that the theoretically and experimentally obtained SQNR values achieved with
the application of MSPTQ are higher than ones obtained with the application of SPTQ.

Compared to MLP, the CNN model achieves a higher accuracy of 91.53%, obtained on
the Fashion-MNIST validation set, with weights also represented in FP32 format. Normal-
ized histogram of weights that are being quantized for CNN trained on Fashion-MNIST
dataset is shown in Figure 8. It has been shown in [19] that with the application of optimal
three-bit UQ, the accuracy degradation of the quantized CNN model amounts to about 3.5%
(91.53% − 87.97% = 3.56%). In the case of applying the two-bit UQ to the same weights
of the CNN (trained on Fashion-MNIST), we have calculated an even higher accuracy
degradation that amounts to about 9.5% (91.53% − 82.039% = 9.491%). As one can observe
from Table 7, for the two novel NUQs, we have ascertained the accuracy of 83.69% and

Mathematics 2022, 10, 3435 18 of 21

83.72%, respectively. In other words, we have again overperformed UQ in terms of accuracy,
and the mentioned accuracy increased amounts to about 1.7%.

Table 6. SQNR and QNN model’s accuracy for MLP trained on MNIST dataset: (a) the application of
different ternary quantizer designs (b) adaptation of ternary quantizer with the scale factor α.

wmin = −7.063787,
wmax = 4.8371024,

3∆ = 2.5512
xmax[H] = 1.9605,
xmax[J] = 2.1748

Case 1 <g
[−wmax,
wmax]

Case 2 <g
[wmin, −wmin]

Case 3 <g
[−3∆, 3∆]

Case 4 <g
[−xmax[H], xmax[H]]

Case 5 <g
[−xmax[J],
xmax[J]]

SQNRex(dB) 1.6988 0.43 5.7178 6.7273 6.47
SQNRth(dB) 2.7275 1.1827 5.5681 5.7436 5.7762
Accuracy (%) 90.56 24.02 96.58 94.1 95.01
Within <g (%) 99.988 100 98.567 94.787 96.691

(a)

xmax = 3/sqrt(2) α
<g[−xmax, xmax]

Case 1 <g
α = 1/4

Case 2 <g
α = 1/2

Case 3 <g
α = 3/4

Case 4 <g
α = 1

Case 5 <g
α = 5/4

Case 6 <g
α = 3/2

Case 7 <g
α = 7/4

SQNRex(dB) 2.52 5.01 6.6 6.552 5.49 4.28 3.23
SQNRth(dB) 2.1424 4.0509 5.3544 5.7800 5.4708 4.8068 4.0695
Accuracy (%) 22.01 94.37 94.81 94.68 96.49 97.51 97.33
Within <g (%) 41.142 72.968 89.17 96.283 98.869 99.648 99.887

(b)

Table 7. SQNR and QNN model’s accuracy (MLP and CNN trained on Fashion-MNIST dataset) with
the application of (a) SPTQ (b) MSPTQ, designed for bit rate of R = 2 bit/sample.

xmax
SPTQ =3∆ = 2.5512

MLP
[−3∆, 3∆]

CNN
[−3∆, 3∆]

SQNRex
SPTQ(dB) 7.3242 7.51

SQNRth
SPTQ(dB) 6.9790 6.9790

Accuracy (%) 86.05 83.69
Within <g (%) 98.112 97.696

(a)

xmax
SPTQ =3∆ = 2.5512

xmax
MSPTQ = 3∆mod = 2.7063

MLP
[−3∆, 3∆]

MLP
[−3∆mod, 3∆mod]

CNN
[−3∆, 3∆]

CNN
[−3∆mod, 3∆mod]

SQNRex
MSPTQ(dB) 8.13 8.082 8.12 8.13

SQNRth
MSPTQ(dB) 7.4890 7.5165 7.4890 7.5165

Accuracy (%) 87.95 87.42 83 83.72
Within <g (%) 98.118 98.552 97.696 98.232

(b)

Mathematics 2022, 10, 3435 19 of 21Mathematics 2022, 10, x FOR PEER REVIEW 19 of 21

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fr
eq

ue
nc

y
of

 o
cc

ur
en

ce
 [%

]

w
Figure 8. Normalized histogram of weights (FP32) for CNN trained on Fashion-MNIST dataset.

7. Summary and Conclusions
In this paper, we have proposed two novel two-bit NUQs, SPTQ and MSPTQ, which

prudently utilize one of the two properties of the simplest UQ, and we have examined
whether they are more suitable for application in post-training quantization than UQ. By
optimizing the distortion of the proposed NUQs to achieve the highest theoretical SQNR,
we have derived formulas for iteratively determining the basic step sizes of both NUQs,
Δ and Δmod, which is of the utmost importance in traditional quantization. We have proved
that the iterative algorithms utilized output the values of Δ and Δmod that are indeed opti-
mal, as they match with the corresponding results of numerical distortion optimization
per basic step sizes and give the minimum of distortion of SPTQ and MSPTQ. Moreover,
the main benefits of this paper are meaningful conclusions that specify the manner in
which the performance of the proposed quantizers, as well as the performance of QNNs
that have implemented novel NUQs, behave with the basic step sizes. We have also con-
firmed the premise that the quantizer that provides the highest SQNR does not necessarily
provide the highest accuracy of QNN. Finally, with the introduction of MSPTQ model we
have managed not only to improve the SQNR, but also to increase the accuracy of the
QNN, compared to the case where UQ and SPTQ are implemented. Although UQ is a
highly exploited quantizer model due to its intriguing nature and its possibility to be mod-
ified to some extent, it is natural to expect that research and development of some modi-
fied quantization models will continue to attract the attention of the scientific community.

Author Contributions: Conceptualization and methodology, Z.P. and J.N.; software and validation,
J.N., S.T. and D.A.; formal analysis, D.A., J.N.; writing—original draft preparation, D.A., J.N.; writ-
ing—review and editing, S.T.; visualization, D.A., J.N. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research was supported by the Science Fund of the Republic of Serbia, 6527104, AI-
Com-in-AI.

Data Availability Statement: The data used to support the findings of this study are available at
http://yann.lecun.com/exdb/mnist/ and at https://github.com/zalandoresearch/fashion-mnist (ac-
cessed on 20 August 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results.

Figure 8. Normalized histogram of weights (FP32) for CNN trained on Fashion-MNIST dataset.

7. Summary and Conclusions

In this paper, we have proposed two novel two-bit NUQs, SPTQ and MSPTQ, which
prudently utilize one of the two properties of the simplest UQ, and we have examined
whether they are more suitable for application in post-training quantization than UQ. By
optimizing the distortion of the proposed NUQs to achieve the highest theoretical SQNR,
we have derived formulas for iteratively determining the basic step sizes of both NUQs, ∆
and ∆mod, which is of the utmost importance in traditional quantization. We have proved
that the iterative algorithms utilized output the values of ∆ and ∆mod that are indeed
optimal, as they match with the corresponding results of numerical distortion optimization
per basic step sizes and give the minimum of distortion of SPTQ and MSPTQ. Moreover,
the main benefits of this paper are meaningful conclusions that specify the manner in which
the performance of the proposed quantizers, as well as the performance of QNNs that have
implemented novel NUQs, behave with the basic step sizes. We have also confirmed the
premise that the quantizer that provides the highest SQNR does not necessarily provide
the highest accuracy of QNN. Finally, with the introduction of MSPTQ model we have
managed not only to improve the SQNR, but also to increase the accuracy of the QNN,
compared to the case where UQ and SPTQ are implemented. Although UQ is a highly
exploited quantizer model due to its intriguing nature and its possibility to be modified
to some extent, it is natural to expect that research and development of some modified
quantization models will continue to attract the attention of the scientific community.

Author Contributions: Conceptualization and methodology, Z.P. and J.N.; software and valida-
tion, J.N., S.T. and D.A.; formal analysis, D.A., J.N.; writing—original draft preparation, D.A., J.N.;
writing—review and editing, S.T.; visualization, D.A., J.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Science Fund of the Republic of Serbia, 6527104,
AI-Com-in-AI.

Mathematics 2022, 10, 3435 20 of 21

Data Availability Statement: The data used to support the findings of this study are available at
http://yann.lecun.com/exdb/mnist/ and at https://github.com/zalandoresearch/fashion-mnist
(accessed on 20 August 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Number of Internet of Things (IoT) Connected Devices Worldwide in 2018, 2025 and 2030. Available online: https://www.statista.

com/statistics/802690/worldwide-connected-devices-by-accesstechnology (accessed on 1 November 2021).
2. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Distributed deep neural networks over the cloud, the edge and end devices. In

Proceedings of the 37th IEEE International Conference on Distributed Computing Systems (ICDCS), GA, Atlanta, USA, 5–8 June
2017; pp. 328–339.

3. Vestias, M.; Duarte, R.; Sousa, J.; Neto, H. Moving Deep Learning to the Edge. Algorithms 2020, 13, 125. [CrossRef]
4. Liu, D.; Kong, H.; Luo, X.; Liu, W.; Subramaniam, R. Bringing AI to edge: From Deep Learning’s Perspective. arXiv 2020,

arXiv:2011.14808. [CrossRef]
5. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A Survey of Quantization Methods for Efficient Neural

Network Inference. arXiv 2021, arXiv:2103.13630.
6. Guo, Y. A Survey on Methods and Theories of Quantized Neural Networks. arXiv 2018, arXiv:1808.04752.
7. Fung, J.; Shafiee, A.; Abdel-Aziz, H.; Thorsley, D.; Georgiadis, G.; Hassoun, J. Post-Training Piecewise Linear Quantization for

Deep Neural Networks. In Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 69–86.
8. Lin, D.; Talathi, S.; Soudry, D.; Annapureddy, S. Fixed Point Quantization of Deep Convolutional Networks. In Proceedings of the

33rd International Conference on Machine Learning Conference on Neural Information Processing Systems, New York, NY, USA,
8–14 June 2016; pp. 2849–2858.

9. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations. J. Mach. Learn. Res. 2017, 18, 6869–6898.

10. Huang, K.; Ni, B.; Yang, D. Efficient Quantization for Neural Networks with Binary Weights and Low Bit Width Activations. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
pp. 3854–3861.

11. Yang, Z.; Wang, Y.; Han, K.; Xu, C.; Xu, C.; Tao, D.; Xu, C. Searching for Low-Bit Weights in Quantized Neural Networks. In
Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC, Canada, 6–12
December 2020.

12. Banner, R.; Nahshan, Y.; Hoffer, E.; Soudry, D. ACIQ: Analytical Clipping for Integer Quantization of Neural Networks. arXiv
2018, arXiv:1810.05723.

13. Sanghyun, S.; Juntae, K. Efficient Weights Quantization of Convolutional Neural Networks Using Kernel Density Estimation
Based Non-Uniform Quantizer. Appl. Sci. 2019, 9, 2559. [CrossRef]

14. Nikolić, J.; Perić, Z.; Aleksić, D.; Tomić, S. On Different Criteria for Optimizing the Two-bit Uniform Quantizer. In Proceedings of
the 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 16–18 March
2022; pp. 1–4. [CrossRef]

15. Na, S.; Neuhoff, D. Monotonicity of Step Sizes of MSE-Optimal Symmetric Uniform Scalar Quantizers. IEEE Trans. Inf. Theory
2019, 65, 1782–1792. [CrossRef]

16. Perić, Z.; Denić, B.; Dinčić, M.; Nikolić, J. Robust 2-bit Quantization of Weights in Neural Network Modeled by Laplacian
Distribution. Adv. Electr. Comput. Eng. 2021, 21, 3–10. [CrossRef]

17. Hubara, I.; Courbariaux, M.; Soudry, D.; Ran, E.Y.; Bengio, Y. Binarized Neural Networks. In Proceedings of the 30th Conference
on Neural Information Processing Systems (NeurIPS 2016), Barcelona, Spain, 1–9 December 2016.

18. Tomić, S.; Nikolić, J.; Perić, Z.; Aleksić, D. Performance of Post-training Two-bits Uniform and Layer-wise Uniform Quantization
for MNIST Dataset from the Perspective of Support Region Choice, Math. Probl. Eng. 2022, 2022, 1463094. [CrossRef]

19. Nikolić, J.; Perić, Z.; Aleksić, D.; Tomić, S.; Jovanović, A. Whether the Support Region of Three-bit Uniform Quantizer has a
Strong Impact on Post-training Quantization for MNIST Dataset? Entropy 2021, 23, 1699. [CrossRef] [PubMed]

20. Jayant, S.; Noll, P. Digital Coding of Waveforms; Prentice Hall: Hoboken, NJ, USA, 1984.
21. Uhlich, S.; Mauch, L.; Cardinaux, F.; Yoshiyama, K. Mixed precision DNNs: All you Need is a Good Parametrization. In

Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
22. Nikolić, J.; Aleksić, D.; Perić, Z.; Dinčić, M. Iterative Algorithm for Parameterization of Two-Region Piecewise Uniform Quantizer

for the Laplacian Source. Mathematics 2021, 9, 3091. [CrossRef]
23. Hui, D.; Neuhoff, D.L. Asymptotic Analysis of Optimal Fixed-Rate Uniform Scalar Quantization. IEEE Trans. Inf. Theory 2001, 47,

957–977. [CrossRef]
24. Zhao, J.; Xu, S.; Wang, R.; Zhang, B.; Guo, G.; Doermann, D.; Sun, D. Data-adaptive Binary Neural Networks for Efficient Object

Detection and Recognition. Pattern Recognit. Lett. 2022, 153, 239–245. [CrossRef]

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-accesstechnology
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-accesstechnology
http://doi.org/10.3390/a13050125
http://doi.org/10.1016/j.neucom.2021.04.141
http://doi.org/10.3390/app9122559
http://doi.org/10.1109/INFOTEH53737.2022.9751268
http://doi.org/10.1109/TIT.2018.2867182
http://doi.org/10.4316/AECE.2021.03001
http://doi.org/10.1155/2022/1463094
http://doi.org/10.3390/e23121699
http://www.ncbi.nlm.nih.gov/pubmed/34946005
http://doi.org/10.3390/math9233091
http://doi.org/10.1109/18.915652
http://doi.org/10.1016/j.patrec.2021.12.012

Mathematics 2022, 10, 3435 21 of 21

25. Gong, R.; Liu, X.; Jiang, S.; Li, T.; Hu, P.; Lin, J.; Yu, F.; Yan, J. Differentiable Soft Quantization: Bridging Full-Precision and Low-Bit
Neural Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
27 October–2 November 2019; pp. 4851–4860. [CrossRef]

26. Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process.
Mag. 2012, 29, 141–142. [CrossRef]

27. Velichko, A. Neural Network for Low-Memory IoT Devices and MNIST Image Recognition Using Kernels Based on Logistic Map.
Electronics 2020, 9, 1432. [CrossRef]

28. Python Software Foundation. Python Language Reference, Version 2.7. Available online: http://www.python.org. (accessed on
1 December 2021).

29. Available online: https://github.com/zalandoresearch/fashion-mnist (accessed on 20 August 2022).
30. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
31. Soufleri, E.; Roy, K. Network Compression via Mixed Precision Quantization Using a Multi-Layer Perceptron for the Bit-Width

Allocation. IEEE Access 2021, 9, 135059–135068. [CrossRef]
32. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision

Weights. arXiv 2017, arXiv:1702.03044.
33. Wang, P.; Chen, Q.; He, X.; Cheng, J. Towards Accurate Post-Training Network Quantization via Bit-Split and Stitching. In

Proceedings of the 37th International Conference on Machine learning (ICML’20), online, 12–18 July 2020; pp. 9847–9856.

http://doi.org/10.1109/ICCV.2019.00495
http://doi.org/10.1109/MSP.2012.2211477
http://doi.org/10.3390/electronics9091432
http://www.python.org.
https://github.com/zalandoresearch/fashion-mnist
http://doi.org/10.1109/ACCESS.2021.3116418

	Introduction
	Related Work and Motivation
	Symmetric SPTQ Design for the Laplacian Source
	Symmetric MSPTQ Design for the Laplacian Source
	Application of Two Novel Non-Uniform Quantizers in Post-Training Quantization
	Numerical Results and Analysis
	Summary and Conclusions
	References

