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Abstract: In this paper, we study the joint optimization problem of the spectrum and power alloca-

tion for multiple vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) users in cellular vehi-

cle-to-everything (C-V2X) communication, aiming to maximize the sum rate of V2I links while sat-

isfying the low latency requirements of V2V links. However, channel state information (CSI) is hard 

to obtain accurately due to the mobility of vehicles. In addition, the effective sensing of state infor-

mation among vehicles becomes difficult in an environment with complex and diverse information, 

which is detrimental to vehicles collaborating for resource allocation. Thus, we propose a frame-

work of multi-agent deep reinforcement learning based on attention mechanism (AMARL) to im-

prove the V2X communication performance. Specifically, for vehicle mobility, we model the prob-

lem as a multi-agent reinforcement learning process, where each V2V link is regarded an agent and 

all agents jointly intercommunicate with the environment. Each agent allocates spectrum and power 

through its deep Q network (DQN). To enhance effective intercommunication and the sense of col-

laboration among vehicles, we introduce an attention mechanism to focus on more relevant infor-

mation, which in turn reduces the signaling overhead and optimizes their communication perfor-

mance more explicitly. Experimental results show that the proposed AMARL-based approach can 

satisfy the requirements of a high rate for V2I links and low latency for V2V links. It also has an 

excellent adaptability to environmental change. 

Keywords: vehicle-to-everything; resource allocation; attention mechanism; multi-agent reinforce-

ment learning; low latency 

MSC: 94-05 

 

1. Introduction 

Vehicle-to-everything (V2X) communications is one of the key technologies in future 
autonomous driving and intelligent transport systems, aiming to enhance user 
experience, improve road safety, and adapt to complex and diverse transmission 
environments [1,2]. Among them, vehicle-to-infrastructure (V2I) mainly satisfies the 
requirements of vehicle users for high throughput, such as video traffic offloading [3]. 
Vehicle-to-vehicle (V2V), which focuses on the requirements of low latency and high 
reliability between vehicles, has become a key technology for cooperative driving and 
improved road safety [4,5]. 

V2X communication supports various use cases by exchanging information between 
infrastructure, vehicles, and pedestrians through various wireless technologies. Some 
candidate wireless technologies have been proposed, including dedicated short-range 
communication (DSRC), cellular vehicular communication, and 5G vehicular 
communication. DSRC technology is based on the IEEE 802.11p standard [6], which 
supports short exchanges between DSRC devices. To implement DSRC technology, the 
US Federal Communications Commission (FCC) has allocated 75 MHz of spectrum in the 
5.9 GHz band. DSRC technology can be used to improve road safety, e.g., collision 
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warning [7]. However, it faces problems such as a limited communication range, large 
channel access delay, and high deployment costs. The cellular network has the advantages 
of high coverage, high network capacity, and supports high mobility. It helps to solve the 
drawbacks of DSRC. The 3rd Generation Partnership Project (3GPP) has completed 
Releases 14 [8] and 15 [9], where LTE-based V2X services are one of the main features. In 
Rel-14, V2X mainly provides data transmission services for road safety. Rel-15 supports 
advanced V2X scenarios, such as vehicle platooning and remote driving. However, one of 
the main challenges of LET-V2X is the requirement that the resources used by vehicular 
users should not conflict with cellular users in dense vehicular traffic scenarios requires. 
To further enhance V2X communication services, 3GPP has been formulated in Release 16 
[10] for 5G-based V2X communication (5G-V2X). The 5G wireless system incorporates 
various emerging technologies, such as massive MIMO and millimeter-wave 
communication. Each of these technologies will bring various challenges to 5G-V2X [11]. 
In order to satisfy the stringent requirement in V2X communication, the V2X technology 
is required to provide both V2I and V2V communication using a shared resource pool. In 
addition, there is an increasing number of vehicular communication users, which will lead 
to a severe shortage of wireless resources. Therefore, how to coordinate interference and 
optimize resource allocation are important challenges in V2X communication. 

1.1. Related Work 

Currently, approaches to solve V2X resource allocation fall into two main categories: 
traditional optimization theory [12–17] and machine learning [18–29]. In traditional 
methods, the design objectives and corresponding constraints are built into an 
optimization problem for resource allocation and interference coordination. In [12], a 
delay expression was obtained by queuing analysis of packets and then resource 
allocation was performed using slowly varying large-scale fading channel information to 
satisfy the requirements of V2X for high capacity and low delay. Similarly, the author in 
[13] introduced the latency violation probability (LVP) as a constraint, which was 
accurately characterized by utilizing effective capacity theory. In [14], a novel scheme was 
proposed to reduce the delay of V2V links, which equated the original problem to the 
maximum weighted independent set problem with associated weights (MWIS-AW), and 
suggested a greedy cellular V2V link selection algorithm to solve the MWIS-AW problem. 
To allocate wireless resources more intelligently and rationally, [15] proposed an adaptive 
strategy based on fuzzy logic, which can dynamically adjust the parameters in the fuzzy 
system to ensure the full utilization of resources and quality-of-service (QoS) according to 
the network state. In [16], an interference hypergraph (IHG) was constructed to model the 
interference relationship among different vehicle users, and a cluster coloring algorithm 
was used to achieve effective and efficient resource allocation. In [17], a graph partitioning 
approach was developed to partition the high interference V2V links into different clusters 
and modeled the spectrum sharing problem as a weighted three-dimensional matching 
problem to solve the performance–complexity tradeoffs. However, in these schemes, it is 
difficult to build an accurate model to obtain accurate channel state information (CSI) due 
to the mobility of the vehicles. In particular, traditional methods are hard to adapt the 
network environment when it becomes more complex. 

Recently, machine learning methods have been extensively applied to wireless com-

munications to address the challenges faced by traditional optimization methods [18,19]. 

Especially, reinforcement learning has made significant progress in wireless resource 

management by interfacing with the environment and sensing environment changes to 

make decisions accordingly. In [20], a hybrid architecture of centralized decision-making 

and distributed resource sharing is proposed. A neural network first compressed CSI to 

reduce the signaling overhead and feedback to the central processor at the base station 

(BS). Then, a deep Q-network was used to allocate resources and sent the decision results 

to all vehicles. In [21], a dual time-scale federal deep reinforcement learning algorithm 

was proposed to solve the joint optimization problem of C-V2X transmission mode selec-

tion and resource allocation. In [22], the age of information (AoI) was considered to study 

the delay problem of V2V links. To cope with the variation of vehicle mobility and 



Mathematics 2022, 10, 3415 3 of 20 
 

 

information arrival time, the original MDP was decomposed into a series of MDPs for 

V2V pairs. An LSTM-based DRL algorithm was proposed to solve the local observability 

and high-dimensional disasters of V2V pairs. The authors of [23] introduced a centralized 

resource allocation architecture, and the base station uses a double deep Q network 

(DDQN) to allocation resources intelligently based on partial CSI to reduce the signaling 

overhead. Unlike [20–23], [24–29] modeled the V2X resource allocation problem as a 

multi-agent reinforcement learning (MARL) problem, where each V2V link was consid-

ered as an agent. In [24], a fingerprint-based deep Q-network was proposed to handle the 

non-smoothness problem in multi-agent reinforcement learning [25]. A centralized train-

ing and distributed execution framework were constructed for resource allocation. In the 

literature [26], both V2I link and V2V link latencies were considered in order to reduce the 

overall V2X latency. Moreover, proximal policy optimization (PPO)-based multi-agent re-

inforcement learning was proposed to optimize the objectives. To adapt to the changing 

environment more effectively, [27] proposed meta-reinforcement learning for V2X re-

source allocation. Firstly, spectrum resources and power are allocated using DQN and 

deep deterministic policy gradient (DDPG), respectively. Then, meta-learning was intro-

duced to enhance the adaptability of the allocation algorithm to the dynamic environ-

ment. In [28], the congestion problem of wireless resources was under consideration, 

multi-agent reinforcement learning (DIRAL) based on unique state representation was 

proposed, and the nonstationary problem was solved by designing a view-based location. 

In addition, considering the topological relationship of vehicle users, [29] proposed a 

graph neural network (GNN)-based reinforcement learning method to learn the low-di-

mensional features of V2V link states by GNN and use RL for spectrum allocation. Alt-

hough, the RL method has achieved satisfactory results in the problem of V2X resource 

allocation. It still faces two problems: firstly, there are difficulties in making effective sens-

ing between each agent; secondly, the process of interfacing the agent with the environ-

ment will indiscriminately receive state information from all other agents, which will lead 

to a high computational overhead and signaling overhead. 

1.2. Contribution and Organization 

In this paper, we consider the resource management in partial CSI cases to match the 

realistic situation. In addition, a multi-agent reinforcement learning algorithm is utilized 

for adaption to the dynamic vehicle environment. We regard the V2V link as an agent and 

make corresponding decisions based on local observations. Furthermore, the agents have 

competitive and cooperative relationships in a multi-agent environment. In the case of 

competitive relationships, the V2V links tend to be egoistic, which ultimately affects the 

communication performance of the whole system. Hence, under the cooperative relation-

ship setting, we build a reinforcement learning architecture and design the reward func-

tion to be a common reward for all agents. Considering the information exchange between 

agents, inspired by [30,31], we introduce an attention mechanism [32] for information ex-

change between V2V links. Through the attention mechanism, each agent can focus on 

more relevant information and optimize itself more explicitly. The main contributions of 

this paper are summarized as follows: 

 Due to the mobility of vehicular users, it is not easy to obtain CSI accurately. We 

propose the framework of MARL to adapt to the changing environment and use only 

partial CSI for wireless resource allocation to ensure the high rate of V2I links and 

low latency of V2V links 

 To make each agent more effective in acquiring the state information of other agents 

in the environment and to establish collaborative relationships, we propose an algo-

rithm of multi-agent deep reinforcement learning with attention mechanism (AM-

ARL) to enhance the sense of collaboration among agents. It also enables agents to 

obtain more useful information, reduce the signaling overhead, and allocate re-

sources more clearly. 
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 Experimental results demonstrate that, compared to other baseline schemes, the pro-

posed AMARL-based algorithm can satisfy the requirement of low latency for V2V 

links and significantly increase the total rate of V2I links. It also has better adaptabil-

ity to environmental changes. 

The remainder of this paper is organized as follows. Section 2 presents the system 
model and problem formulation. Section 3 presents the details of the proposed attention 
mechanism-based MARL algorithm for solving V2X resource allocation. The simulation 
results and analysis are presented in Section 4. Section 5 presents the conclusions. 

2. System Model 

As shown in Figure 1, we consider cellular V2X communications in an urban road 

traffic scenario, including a base station and multiple vehicle users. In particular, we focus 

on mode 4 in the cellular V2X architecture [33], in which each vehicle can choose its com-

munication resources without relying on the base station for resource allocation. Accord-

ing to the different service requirements of V2X communications, the vehicle users are 

divided into V2I and V2V links. Specifically, V2I links support higher-throughput tasks 

while V2V links can provide secure and reliable information to vehicle users through in-

formation sharing. In this paper, we consider the uplink for V2I communication and as-

sume that all vehicle users have a single antenna for their transceivers. Meanwhile, to 

improve spectrum utilization and to guarantee the high-rate requirements of the V2I link, 

we assume that each V2I is pre-allocated an orthogonal sub-band with a fixed transmit 

power and shares this sub-band resource with multiple V2V links. In addition, each V2V 

pair can only select one sub-band for communication. 

Interference 
link

V2I link

V2V link

 

Figure 1. V2X communication scenarios. 

We denote the V2I links and V2V links as the sets ℳ = {1, ⋯ , �} and � = {1, ⋯ , �}, 
respectively, where �  and �  denote the number of V2I and V2V, respectively. In 
addition, we assume that the number of sub-bands equals to the number of V2I links. 

In this paper, the channel power gain considered includes the large-scale fading com-

ponent and the small scale-fading component. The channel gain can be expressed as � =

 ��, where � and � denote the large-scale fading and the small-scale fading, including 

the path loss and shadowing for each communication link, respectively. We define the 

channel power gains of the �-th V2I link and the �-th V2V link on the �-th sub-band 

as ���,� and ��[�], respectively. The interfering channel gains received at the receiver of 

the �-th V2V link from the transmitter of the �-th V2I link and the ��-th V2V link over 

the �-th sub-band are given by ���,� and ���,�. The interfering channel gain for the �-

th V2I link from the �-th V2V link over the �-th sub-band is ��,�[�]. For simplicity, 

the notations adopted in this paper are listed in Table 1. 
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Table 1. Key mathematical symbols. 

Symbols Definition 

ℳ, � Set of V2I links and V2V links 

�, � Numbers of V2I links and V2V links 

���,� Channel gain from the �-th V2I link to BS 

��[�] Channel gain between the �-th V2V link 

���,� The interfering channel gain from �-th V2I link to �-�ℎ V2V link 

���,� The interfering channel gain from ��-th V2V link to �-th V2V link 

��,�[�] The interfering channel gain from �-th V2V link to �-th V2V link 

��[�] Indicator of the �-th V2V link reuse the spectrum of the �-th V2I link 

��
���[�] The SINR of �-th V2I link 

��
���[�] The SINR of �-th V2V link 

��, � Noise power and bandwidth 

��
���, ��

���[�] Transmit power of the �-th V2I link and the �-th V2V link 

∆� The coherence time of the channel 

��,� The attention weight of �2�� to �2�� 

�� Reward function 

��(�, �, �) Q-network of the �-th V2V link 

� Parameter of the Q-network 

��(��, ��; ����) Target Q-network of �-th V2V link 

�� Mini-batch of experiences 

� Exploration rate 

� Discount factor 

The received signal to interference plus noise (SINR) of the �-th V2I link and the �-

th V2V link over the �-th sub-band can be expressed as: 

��
���[�] =

���,� ∙ ��
���

∑ ��[�] ∙ ��,�[�] ∙ ��
���[�] + ���

���

(1) 

and: 

��
���[�] =

��[�] ∙ ��
���[�]

��[�] + ��
(2) 

where ��
��� and ��

���[�] denote the transmit power of the �-th V2I link and the �-th 

V2V link at the �-th sub-band, �� denotes the noise power, and: 

��[�] = ���,� ∙ ��
��� + � ���[�] ∙ ���,�[�] ∙ ���

���[�]

�

����

(3) 

denotes the total interference power of the �-th V2V link in the �-th sub-band. The bi-

nary variable ��[�] ∈ {0,1}  denotes the spectrum allocation indicator, if ��[�] = 1 

means the �-th V2V link uses the �-th sub-band. Otherwise, ��[�] = 0. We assume 

that a V2V link only accesses one sub-band, ∑ ��[�]�
��� ≤ 1 is satisfied. Then, the capac-

ity of the �-th V2I link and the �-th V2V link is: 

 ��
��� = � log(1 + ��

���[�]) (4) 

and: 

 ��
���[�] = � ��[�] ∙ � log(1 + ��

���[�])

�

���

(5) 

where � is the bandwidth of the sub-band. 
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This paper aims to maximize the V2I link capacity to provide high-quality entertain-

ment services while satisfying the low latency and high reliability requirements of V2V 

links to provide realistic and reliable information to vehicle users in road traffic. To satisfy 

the first requirement, the sum rate of V2I links needs to be maximized. To satisfy the sec-

ond requirement, we require V2V users to successfully transmit packets of size � in finite 

time ���� with the following probabilistic model: 

�� � � ��
���[�, �]

����

���

≥
�

∆�
� (6) 

where ∆� is the coherence time of the channel, and the index � is added in ��
���[�, �] to 

indicate the capacity of the �-th V2V link at different coherence time slots. Thus, the prob-

lem of V2X resource allocation can be formulated as an optimization problem as follows: 

���
�,����

 � ��
���

�

���

(7) 

�. �. � ��[�]

�

���

≤ 1 (8) 

 ��
���[�] ∈ �, ∀�, � (9) 

where � denotes the discrete power set of V2V link. Constraint (8) denotes that each V2V 

pair can occupy only one sub-band, and constraint (9) denotes the power condition is sat-

isfied. 

Problem (7) is a combinatorial optimization problem, and a limitation of traditional 

optimization methods is the high requirement for model accuracy. However, due to vehi-

cle mobility, the environment is constantly changing, leading to uncertainty in the model 

parameters, and the complete CSI is difficult to obtain and solve by traditional methods. 

Therefore, we propose to address this problem through a deep reinforcement learning 

approach. In Section 4, we validate the effectiveness of the proposed method. 

3. Resource Allocation Based on Multi-Agent Reinforcement Learning with Attention 

Mechanism Algorithm 

In this section, we briefly introduce the basic concepts of attentional mechanism and 

multi-agent reinforcement learning and then describe how the algorithmic framework can 

be used to solve the problem of V2X resource allocation. Before presenting the algorithm 

in detail, we first introduce the three elements in reinforcement learning: the observation 

space, the action space, and the reward function. 

3.1. Design of Three Elements 

3.1.1. Observation Space 

Due to the existence of vehicle mobility, it is more difficult to obtain a complete CSI. 

Therefore, we consider partial CSI as part of the observation space, which, on the one 

hand, is more in line with the real scenario; on the other hand, it is also beneficial to reduce 

the signaling overhead of CSI feedback. In mode 4, the vehicle performs wireless resource 

allocation by sensing channel measurements, in which it will inevitably receive interfer-

ence information. Considering the need for low latency in V2V links, the state observation 

space of the V2V agent should also contain the remaining payload and time. Thus, the 

state of the V2V agent at the time � includes the received interference information, the 

remaining payload, and the remaining time. 

We denote the observation space as: � = {��
�, ⋯ , ��

�, ⋯ , ��
�}, which is the set of all 

agents’ states at moment �. ��
� is the observation of the �-th agent at each time slot �. 
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The remaining payload and remaining time are defined as ��
�, ��

�, respectively. Therefore, 

��
� can be expressed as: 

 ��
� = {{����

� [�]}�∈�, ��
�, ��

�} (10) 

3.1.2. Action Space 

Based on the observed state, each V2V agent will make a decision on sub-band selec-

tion and power allocation. We define the action space for all V2V agents as � = {��}���
� , 

where �� = {��, ��} is the action space of the �-th V2V agent. �� and �� denote the set 

of possible sub-band selection and power allocation for the �-th V2V agent. Thus, the set 

of possible sub-band assignment decisions for the �-th V2V agent at the time slot � can 

be defined as: 

��
� = {��

�[1], ⋯ , ��
�[�], ⋯ , ��

�[�]} (11) 

In problem (7), we carry out a discrete power allocation scheme [34]. The set of pos-

sible power selection of the �-th V2V agent at time slot � can be expressed as: 

��
� ∈ �0,

1

� − 1
����,

2

� − 1
����, ⋯ , ����� (12) 

where � is the number of power levels. 

3.1.3. Rewards Function 

The design of the rewards function is closely related to the problem (7). Our objective 

is to maximize the total throughput of the V2I links while satisfying the latency and relia-

bility requirements of the V2V links. In order to satisfy the requirement of the low latency 

of the V2V links, we set the following reward function: 

 ��
� = �

��
���(�), ��

� ≥ 0

�, ��
� < 0

 (13)

This means that we want the V2V link to complete the data transfer as quickly as 

possible. When there is a remaining load, the transmission is carried out at the effective 

rate of the V2V link until the load is fully transmitted. � is a hyperparameter, which is 

greater than the maximum possible V2V links rate, and the faster the remaining load is 

sent, the greater the reward. In addition, we want the transmission time to be as short as 

possible, which means that the probability of successful packet transmission within a 

given time constraint will increase. Therefore, the final reward function is set as follows: 

 �� = �� � ��
���(�)

�

���

+ �� � ��
�

�

���

− ��(���� − ��
�) (14) 

where {��}���,�,� is a weighting factor, which reflects the degree of requirement for differ-

ent QoS. 

3.2. Algorithmic Framework 

3.2.1. Overview of Attentional Mechanism 

We consider that in the problem of V2X resource allocation, the interaction between 

V2V pairs affects their respective communication performance. If each V2V pair receives 

the state information of all other V2V pairs, it will lead to two problems. Firstly, mixing 

valuable and useless information would lead to problematic performance optimization; 

secondly, processing global information by V2V pair would require a large number of 

computational resources and a high signaling overhead, which is unacceptable. Therefore, 

to solve the above two problems, we introduced the attention mechanism based on rein-

forcement learning, which evaluates the importance of state information through atten-

tion weights and enables V2V pairs to obtain helpful information better.  
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We define the state information of the �-th V2V pair as ��(� ∈ �), and the corre-

sponding query ��, key ��, and value ��, and then define several basic parameter matri-

ces used to describe the attention mechanism, namely the query matrix ��, the key ma-

trix ��, and the value matrix ��. Thus, the attention weight of �2�� to �2�� is: 

��,� = ������� �
�� ∙ ��

�

���

� (15) 

where �� denotes the key dimension of each component. 

The state information after passing the attention mechanism is then obtained by cal-

culating a weighted sum of the values of the other V2V pairs, which is represented as: 

��
� = � ��,�

���

∙ �� (16) 

3.2.2. Multi-Agent Reinforcement Learning 

In multi-agent reinforcement learning, multiple agents are in the same environment. 

Each agent independently intersects with the environment to motivate it and uses the re-

ward of feedback to improve its policy for higher rewards continuously. Furthermore, an 

agent’s policy not only depends on its state and actions but also considers the states and 

actions of other agents, as shown in Figure 2. 

Environment

1a 1 1,s r 2a 2 2,s r na ,n ns r



 

Figure 2. MARL framework. 

3.2.3. AMARL Algorithm 

In this section, we develop an attentional DRL-based algorithmic framework to solve 

the problem (7). As shown in Figure 3, we consider each V2V link as an agent body and 

model the resource management problem as an MDP, where all vehicles are in the same 

wireless environment. Each agent independently intersects with the environment to ob-

tain its local observations and obtains information from other agents through the attention 

mechanism to allocate spectrum and power based on its observations. 
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Figure 3. The basic AMARL for V2X communications. 

To achieve the goal of maximizing the rate of V2I links and satisfying the low latency 

of V2V links, we construct an algorithmic framework with a Deep Q Network (DQN) as 

the backbone network and use a distributed architecture to solve the problem (7), where 

each agent has its Q network and optimizes its policy in this way. We consider the alloca-

tion of wireless resources within time and the introduction of an attention mechanism to 

sense changes in vehicle state information due to environmental changes. 

With the introduction of the attention mechanism, the V2V links pay more attention 

to helpful information and integrate this information into its action value estimation func-

tion, i.e., the Q function, which can be expressed as: 

��(�, �, �) = ������(��
�, ��)� (17) 

The calculation process is shown in Figure 4, where ���(��
�, ��) = ��

� + ��, �� is a 

three-layer multi-layer perceptron (MLP), �� is the output state of the agent after the at-

tention network, and � is a parameter of the network. 

MLP

Attention
Head

Concatenate heads
per agent

1, , , ,n Ns s s 

Scaled Dot
Product

Softmax

Dot Product

QW KW V

A
ns

ns n
s 

ns

 ,nQ s a 1 , , ,A A A
n Ns s s 

 

Figure 4. Calculating the Q value for agent n. 

To obtain the optimal policy π, the optimal action value function is defined: 

�∗(�, �) =  max
�

��(�, �) (18) 

From the Bellman optimality equation [35], Equation (16) can be written as 

 �∗(��, ��) =  �����~��∙���, ��� ��� +  � max
���

�∗(����, �)| �� = �, �� = �� (19) 

where � is the discount factor. From the Monte Carlo approximation, (17) can be trans-

formed into: 
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�∗(��, ��) ≈  �� + � ���
�∈�

�∗(����, �) (20) 

approximating the value of � in (20) with the � network yields: 

�(��, ��; �) ≈  �� + � ���
�∈�

�(����, �; �) (21) 

where the left-hand side of Equation (19) is the prediction of the Q network at moment � 

and the TD target [36] on the right-hand side is the prediction of the Q network at moment 

� + 1, denoted as �� = �� + � max
�∈�

�(����, �; �). Thus, the loss function can be defined as: 

���� = [�(��, ��; �) − ��]� (22) 

The training of DQN can be divided into two parts: collecting the training data and 

updating the parameters �. 

1) Collecting training data:  

The �-th V2V link needs to intersect with the environment using some kind of strat-

egy π, which we for call a behavioral policy. The ϵ-greed policy is generally used [37]: 

� = �
���max

�∈�
��(��, �; �) , ���ℎ ����������� 1 − �

������ ������, ���ℎ ����������� � 
(23) 

the V2V link performs an action that leads to a change in the environment, which we refer 

to as a the trajectory of episode, is written as: ��
�, ��

�, ��
�, ⋯ , ��

�, ��
�, ��

� ⋯, and is stored in an 

array as a four-tuple (��
�, ��

�, ��
�, ����

� ), called the experience replay array �. 

2) Updating parameters: 

A mini-batch of experiences �� are uniformly sampled from the experience replay 

array � to update parameter � using stochastic gradient descent. The TD algorithm is 

used to train the DQN network; however, maximization in the TD algorithm leads to an 

overestimation problem, where the TD target overestimates the true value. To alleviate 

this problem, a target network [38] is used to calculate the TD target, i.e., 

��
� = �� + � ���

��
��(��, ��; ����) (24) 

Therefore, the loss function is:  

��(�) =
1

2��
� [��

� − ��(�, �, �)]�

�∈��

(25) 

Notation: 

�� = ��
� − ��(�, �, �) (26) 

is the TD error. Perform gradient descent to update the network parameters: 

� ← � − � ∙ � �� ∙

�∈��

∇� ��
�(�, �, �) (27) 

where ���� is the target network parameter, which is periodically updated by the Q-net-

work parameter � to improve the stability of the network. The training process is sum-

marized in Algorithm 1. 
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Algorithm 1 Training Process 

1: Input: V2X environment simulator, Attention network model, DQN model, payload 

size, and maximum tolerant latency 

2: Output: AMARL network’s weight 

3: Initialize: experience replay array, the parameters of DQN and target DQN 

4: for each episode � = 1,2, ⋯ do 

5:    Update environment; 

6:    Reset remaining payload ��
� and remaining time ��

�; 

7:    for each step � = 1,2, ⋯ do 

8:       Observed state of all V2V agents: �� = {��
�}���,⋯; 

9:       Through the attention network: ��
� = {��

�,�}���,⋯; 

10:       for each V2V agent � = 1,2, ⋯ do 

12:           Based on add(��
�,�, ��) select action ��

� according to the ϵ-greed policy; 

13:       end for 

14:       All agents take actions and gain shared reward ��; 

15:       Update environment; 

16:       for each V2V agent � = 1,2, ⋯ do 

17:          Gain the next moment of observation: ����
� ; 

18:          Store (��
�, ��

�, ��
�, ����

� ) in the experience replay array; 

19:       end for 

20:  end for 

21:  for each V2V agent � = 1,2, ⋯ do 

22:     Sample a mini-batch experiences �� from experience replay array �; 

23:     Update DQN parameter � according to (25); 

24:     Update the target DQN every � steps: ���� = �; 

25:  end for 

26: end for 

In the test phase, at each time step �, each V2V agent compiles the observed states. 

Then, it selects an action with the maximum Q value based on the trained Q-network. 

After that, all V2V links determine the power and sub-band for transmission by the se-

lected actions. The testing procedure is summarized in Algorithm 2. 
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Algorithm 2 Testing Process 

1: Input: V2X environment simulator, AMARL network model 

2: Output: All V2V agents actions 

3: Start: Load AMARL network model, Start V2X environment simulator 

4: for each episode � = 1,2, ⋯ do 

5:    Update environment; 

6:    Reset remaining payload ��
� and remaining time ��

�; 

7:    for each step � = 1,2, ⋯ do 

8:       Observed state of all V2V agents: �� = {��
�}���,⋯; 

9:       Through the attention network: ��
� = {��

�,�}���,⋯; 

10:      for each V2V agent � = 1,2, ⋯ do 

12:         Compile the state observation space ��
�,� and select the action with the max-

imum Q value based on the trained Q network; 

13:      end for 

14:  end for 

15: end for 

4. Simulation Results 

In this section, we verify the feasibility of the proposed algorithm in V2X resource 

allocation through simulation experiments. We follow the city case simulation in 3GPP 

TR36.885 [39] (including density, speed, vehicle channel, V2V data traffic, etc.) and follow 

the set values of the main parameters in [24] to train the model. According to [39,40], we 

generate V2X communication scenarios and datasets by Python. The main simulation pa-

rameters are given in Table 2, and the channel models for the V2V link and V2I link are 

given in Table 3. 

In building the DQN for each agent, we constructed three fully connected layers con-

taining 250, 180, and 100 neurons, respectively. The activation function of the hidden layer 

in the DQN used the ReLu �(�) = max(0, �), the RMSProp optimizer was used to update 

the network parameters, and the learning rate � = 0.001. In the training phase, similar to 

[24], we fix the payload of V2V pairs to be 2 × 1060 bytes, train a total of 3000 episodes of 

Q-network for each agent, and the exploration rate � is linearly annealed from 1 to 0.2. 

In the testing phase, we vary the payload and speed of V2V pairs to verify the adaptability 

of the proposed scheme to the environment. 

In order to verify the validity of the proposed method, we compared it with the fol-

lowing four methods: 

1) Meta-reinforcement learning [27]: In this scheme, DQN is used to solve the problem 

of spectrum allocation, deep deterministic policy gradient (DDPG) is used to solve 

the problem of continuous power allocation, and meta-learning is introduced to 

make the agent adapt to the changes in the environment. 

2) Proposed RL (no attention): This scheme does not incorporate an attention mecha-

nism, and the agent will obtain the state information of other agents without any 

difference and then allocate wireless resources. 

3) Brute-Force: This scheme is implemented in a centralized manner and requires accu-

rate CSI. It focuses only on improving the performance of V2Vs, ignoring the need 

for V2I links, and performs an exhaustive search of the action space of all V2V pairs 

to maximize V2Vs and rates. 

4) Random: randomizes spectrum and power allocation. 
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Table 2. The main simulation parameters. 

Parameters Values 

Carrier frequency 2 GHz 

Sub-channel bandwidth 1 MHz 

BS antenna height 25 m 

BS antenna gain 8 dBi 

BS receiver noise figure 5 dB 

Vehicle antenna height 1.5 m 

Vehicle receiver gain 3 dBi 

Vehicle receiver noise figure 9 dB 

Vehicle speed [10, 15] m/s 

V2I transmission power 35 dBm 

V2V Maximum transmission power 33 dBm 

Noise power �� −114 dBm 

Maximum tolerant latency of V2V links 100 ms 

V2V payload size B [1,2,⋯,6] × 1060 bytes 

Number of V2I links 4 

Number of V2V links 4 

Discount factor � 0.9 

Reward weights {��}���,�,� {0.1, 0.9, 1.0} 

Power levels �� 5 

Table 3. The channel models for the V2V link and V2I link. 

Parameters V2I Link V2V Link 

Path loss model 128.1 + 37log�� �, � in km 
LOS in WINNER + B1 

Manhattan [40] 

Shadowing distribute Log-normal Log-normal 

Shadowing standard deviation 8 dB 3 dB 

Decorrelation distance 50 m 10 m 

Fast fading Rayleigh fading Rayleigh fading 

Fast fading updata Every 1 ms Every 1 ms 

4.1. Impact of Payload Size on Network Performance 

Figure 5 shows the change in the sum rate of the V2I links, and the probability of 

successful transmission of the V2V links as the payload changes. In particular, based on 

the maximum V2V links transmission power of 23 dBm set in [24], we use this power as a 

lower limit for this paper’s transmission power. As can be seen from Figure 5, the sum 

rate of the V2I link and the probability of successful transmission of the V2V link decrease 

for all schemes (except Brute-Force) as the V2V links payload increases. This is because, 

when the payload increases, the V2V links require more transmission time and higher 

transmission power, which causes more interference in the V2I and V2V links, resulting 

in a decreased communication performance. Compared to the meta-reinforcement learn-

ing scheme, Figure 5a shows that the proposed scheme maintains the higher sum rate of 

the V2I links as the payload increases and is close to the Brute-Force scheme. Even when 

the transmission power of the V2V links is set to a minimum of 23 dBm, the proposed 

scheme still has a much better V2I links sum rate than the meta-reinforcement learning 

scheme. In Figure 5b, the successful transmission probability of V2V links for different 

methods are compared. The performance of the proposed method is close to that of the 

meta-reinforcement learning method using full CSI when partial CSI is utilized. This in-

dicates that the proposed algorithm can achieve the expected requirements of V2V link 
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delay with a low signaling overhead. Figure 5 also shows the robustness of the proposed 

algorithm to the variation of the payload of V2V links. 

 

Figure 5. The performance for different payload sizes: (a) Sum rate of V2I links. (b) Successful trans-

mission probability of V2V links. 

Furthermore, we observe the proposed algorithm’s performance before and after the 

introduction of the attention mechanism. The communication performance is substan-

tially improved after the attention mechanism’s introduction. Before the attention mech-

anism, V2V links indiscriminately obtained the state information of other V2V links, en-

hancing the interference level and increasing the signaling overhead. Moreover, with the 

introduction of the attention mechanism, a collaborative relationship is built between V2V 

links, allowing better use of information from other V2V links for more effective interfer-

ence coordination, thus improving the communication performance. 

4.2. Impact of V2V Links Transmission Power on Network Performance 

In this subsection, we investigate the impact of the V2V links’ power variations on the 

network performance to find a low-power design solution that satisfies the performance 

requirements. As shown in Figure 6, we set the maximum transmission power of the V2V 

links to {23, 25, 27, 29, 31, 33, 35} dBm. As the payload increases, the performance at all set 

powers decreases. Figure 6a shows that with the same load, the sum rate of the V2I links 
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increases as the transmission power of the V2V links increases, and the performance at all 

powers is relatively similar. Similarly, Figure 6b shows that the probability of successful 

transmission of the V2V links also increases with increasing power, which is due to the fact 

that as the power of the V2V link increases, the rate of the V2V links becomes larger as the 

transmission time decreases. In addition, we found that when the power of the V2V links is 

set to 35 dB, the probability of successful transmission of the V2V links decreases by 5.25% 

with the payload increase, although the network performance will still improve. Moreover, 

when the maximum power is 33 dBm, the decline in the successful transmission probability 

is 4.25% and approaches the performance of a maximum power of 35 dBm. Compared with 

other power settings, the performance of a maximum power of 33 dBm still has an ad-

vantage. This provides some reference for practical engineering design. If only the high 

throughput of the V2I link is required, setting the maximum power of the V2V links to 23 

dBm is sufficient and reduces power consumption. 

 

Figure 6. The performance comparisons for different V2V links transmission power: (a) Sum rate of 

V2I links. (b) Successful transmission probability of V2V links. 
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proposed algorithm. As shown in Figure 7, the performance of the proposed algorithm 

decreases with increasing speed for the same payload. This is because the environment 

changes more significantly as the vehicle speed increases, increasing the difficulty of ob-

taining state information and the uncertainty of the state information. However, the pro-

posed scheme can still maintain a high throughput of the V2I links, and the probability of 

successful transmission of the V2V links, which indicates that the proposed algorithm can 

adapt to the changes in the environment. 

Further, we investigated the effectiveness of the proposed AMARL algorithm. As 

shown in Figure 8, we fixed a payload of 2 × 1060 Bytes and compared the network per-

formance of the AMARL algorithm with the MARL algorithm (no attention). Figure 8a 

shows that the sum rate of the V2I links using the AMARL algorithm is higher than that 

of the MARL algorithm in a low-speed environment. As the speed increases, the proposed 

algorithm is slightly higher than the MARL algorithm. For practical design reasons, the 

proposed algorithm will be chosen over the MARL algorithm in low-speed environments 

where higher throughput of the V2I links is required. In high-speed environments, the 

MARL algorithm may be better; its network performance can satisfy the throughput re-

quirements of some V2I links with a lower computational overhead than the proposed 

algorithm. Overall, the network performance of the proposed algorithm is better than the 

MARL algorithm. 

 

 

Figure 7. The performance comparison different velocity: (a) Sum rate of V2I links. (b) Successful 

transmission probability of V2V links. 
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Figure 8b shows the effect of the vehicle speed variation on the successful transmission 

probability of the V2V link. It can be seen from the figure that the proposed algorithm 

outperforms the MARL algorithm. Even at the highest vehicle speed, the minimum suc-

cessful transmission probability of the proposed algorithm is close to the highest success-

ful transmission probability of the MARL algorithm. This is due to the introduction of the 

attention mechanism. Specifically, introducing the attention mechanism will promote the 

cooperative relationship of V2V links and reduce unnecessary communication interfer-

ence by obtaining valid information, thus improving the throughput of V2V links and 

reducing the data transmission time. 

 

 

Figure 8. The performance comparison between AMARL and MARL: (a) Sum rate of V2I links. (b) 

Successful transmission probability of V2V links. 
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high throughput for V2I links and low latency for V2V links. Meanwhile, we used partial 

CSI for training to reduce the signaling overhead. The attention mechanism’s introduction 

enables more efficient information exchange between V2V links and more explicit optimi-

zation of their own policies. The simulation results demonstrate the effectiveness of the 

proposed scheme, and our model can achieve the expected network performance and 

adapt better to environmental changes. We also explored the impact of power variation 

on network performance, which provides a reference for practical engineering design. 

However, our work also has shortcomings. We did not further consider effective interac-

tions between vehicles and the environment. In this way, it may be impossible to ensure 

that the strategies trained by reinforcement learning satisfy the practical needs. Therefore, 

in future work, it is hoped that the process of vehicle–environment intercommunication 

will consider the expert knowledge of the environment (e.g., Channel Knowledge Map 

(CKM) [41]). CKM is a site-specific database tagged with the transmitter/receiver loca-

tions, which contains useful CSI to help enhance environmental awareness and avoid 

complex real-time CSI acquisition. In addition, the use of the proposed scheme for MIMO-

V2X is a worthwhile research direction in order to further satisfy the high spectral effi-

ciency gain and high data rate requirements. 
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