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Abstract: Due to the increasing complexity of the entire satellite system and the deteriorating orbital
environment, multiple independent single faults may occur simultaneously in the satellite power
system. However, two stumbling blocks hinder the effective diagnosis of simultaneous-fault, namely,
the difficulty of obtaining the simultaneous-fault data and the extremely complicated mapping of
the simultaneous-fault modes to the sensor data. To tackle the challenges, a fault diagnosis strategy
based on a novel rough set model is proposed. Specifically, a novel rough set model named FNζDTRS
by introducing a concise loss function matrix and fuzzy neighborhood relationship is proposed to
accurately mine and characterize the relationship between fault and data. Furthermore, an attribute
rule-based fault matching strategy is designed without using simultaneous-fault data as training
samples. The numerical experiments demonstrate the effectiveness of the FNζDTRS model, and
the diagnosis experiments performed on a satellite power system illustrate the superiority of the
proposed approach.

Keywords: simultaneous-fault diagnosis; rough set; attribute reduction; satellite power system

MSC: 94C12

1. Introduction

The power system is regarded as the heart of a satellite, whose health management is
critical to the on-orbit operation of the entire satellite. The satellite power system is mainly
composed of a solar array and battery pack. The solar array exposes in the outer space
environment for a long time, and is very vulnerable to external environment intrusion. The
battery pack is in a frequent and long-term working state with the periodic operation of the
satellite. Therefore, with the increasing probability of space junk collisions, intense radiation
of space particles, and striking temperature differences in space, the satellite power system
may have multiple independent single faults occurring at the same time, which is called
simultaneous-fault [1]. Accurate fault diagnosis is the basis for the health management
of a satellite. At present, the research on the diagnosis of single-fault has achieved great
success [2,3]. However, as satellites become more complex in their functional composition
and longer in their mission time, the mode of simultaneous-fault has become the key factor
affecting the normal on-orbit operation of satellites, and the risk and influence caused
by such a fault mode cannot be ignored, because the development speed and destructive
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power of such a fault mode are far more than that of a single-fault mode. Therefore, it is
necessary to diagnose the simultaneous-fault precisely to make sound decisions to enable
satellites to perform their missions smoothly and safely. This is the core motivation of our
work, namely, we try to solve the diagnosis problem of simultaneous-fault, which is more
complex and more harmful than that of single-fault.

With respect to the diagnosis of simultaneous-fault, there are two major challenges that
can be listed as follows: (1) The historical simultaneous-fault data are scarce, which greatly
limits the effectiveness of data-driven models; (2) The simultaneous-faults would involve
multiple sensors, and the mapping between sensor data and fault modes is complicated,
which leads to the uncertainty in the diagnosis process. Therefore, new cognitive methods
and further research are needed for simultaneous-fault cognition and diagnosis. These can
be considered as the technical motivation of our research.

Regarding the first challenge issue, the absence of historical simultaneous-fault data is
a thorny problem that needs to be solved urgently. Unlike the traditional fault diagnosis
studies that require all kinds of samples during the training phase [4–6], some literature has
shown that multi-label classification is expected to achieve simultaneous-fault diagnosis
without historical simultaneous-fault data [1,7–10]. The multi-label classification task
focuses on the problem where each training simple is represented by a single instance with
a single label, and the task is to yield a model that can predict the proper label sets for
unseen instances [11]. Multi-label classification methods can be divided into two categories,
one of which is the problem transformation methods, including Binary Relevance [12],
Classifier Chains [13], Calibrated Label Ranking [14], and other classical methods; the
other includes the algorithm adaptation methods, including multi-label K-nearest neighbor
(ML-KNN) [15], multi-label decision tree (ML-DT) [16], etc. However, in the face of complex
problems, the above methods cannot effectively deal with the problem of insufficient data,
and there is still a need for long-term and in-depth research.

For the second challenge issue, some data mining methods are good solutions. In
terms of the cognition of things, rough set theory provides a perspective of knowledge
and data fusion. This is the main reason why this paper chooses the rough set model
as the basic model. The setting of condition attribute and decision attribute can provide
multiple information for the characterization of fault, which is conducive to extracting the
mapping information between sensor data and fault modes. Rough set theory initiated by
Pawlak [17] provides an authoritative mathematical framework for analyzing and handling
ambiguous and uncertain data, which can be used to attribute reduction [18–22], rule
extraction [23–26], and uncertainty reasoning [22,27–29]. Among kinds of rough set models,
the decision-theoretic rough set (DTRS) model has been proved to be a generalized model
of many other rough set models [30,31]. At present, there have been related studies on
various decision-theoretic rough set models for fault diagnosis, which have proved that the
models can effectively select the fault attributes when the pair of the threshold parameters
is set appropriately [30,31]. Nevertheless, how to determine the appropriate threshold
parameters is the biggest difficulty in the research and application of DTRS. In our previous
work [32], we have presented a single-parameter decision-theoretic rough set (SPDTRS)
model by setting only one parameter named compensation coefficient rather than two or
six, which facilitates the convenient application of the DTRS model. However, the setting
of the compensation coefficient in this model is still not clear enough, and the setting of the
loss function matrix is defective. In addition, this model lacks the consideration of uncertain
information in data description, which makes it unable to deal with continuous data directly.
Therefore, in order to make the rough set model (i.e., SPDTRS) more effective in dealing
with the simultaneous-fault problem, we need to carry out more targeted improvement
work. The details are as follows.

Motivated by the analyses mentioned above, in this work, we propose a fault matching
strategy for simultaneous-fault diagnosis based on a revised DTRS named fuzzy neighbor-
hood ζ-decision-theoretic rough set model (FNζDTRS). Since there is a coupling relationship
of fault characteristics between a single-fault and its associated simultaneous-fault, this
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paper proposes the fault matching strategy based on this principle. The main idea of the
proposed strategy is that when an unknown simultaneous-fault occurs, its fault attributes
are first selected by the FNζDTRS and then classified according to the correlation between
the obtained fault attributes and the fault attributes of each single-fault selected by the
FNζDTRS model beforehand. Therefore, the main novelties and contributions of this study
can be listed as follows.

(1) A novel and concise data-driven loss function matrix is designed for DTRS.
(2) A fuzzy neighborhood ζ-decision-theoretic rough set model is proposed with the help

of the fuzzy neighborhood relationship and the proposed loss function matrix, which
can deal with hybrid data common in engineering.

(3) The proposed FNζDTRS model, used for attribute reduction, has a significant advan-
tage in classification accuracy compared with other existing rough sets. This proves
that it is more suitable for real fault diagnosis.

(4) A diagnosis strategy of simultaneous-fault is put forward based on a coupling map-
ping relationship between single-fault and its associated simultaneous-fault. This
ensures that our strategy can handle both single-fault and simultaneous-fault.

(5) The proposed strategy is successfully applied to the simultaneous-fault diagnosis of
the satellite power system and only requires single-fault samples in the training phase,
which is highly feasible for practical applications.

The remainder of this paper starts with some preliminaries and related work, then
puts forward the presentation of the FNζDTRS model in Section 2 and presents the basic
framework of simultaneous-fault diagnosis in Section 3. The effectiveness and superiority
of the FNζDTRS model is verified through some numerical experiments in Section 4,
and further demonstrated by a comparative analysis with several baseline algorithms
for simultaneous-fault diagnosis in Section 5. The paper closes with main conclusions
in Section 6.

2. Preliminaries and Related Work

This subsection will review some notions about rough sets that are relevant to the
development of our theory.

Definition 1. (Decision system) A binary group: DS = (U, C ∪ D) can describe a decision system.
Among them, U = {x1, x2, · · · , xm} is called the universe, which is a finite and nonempty set. D
is the set of decision attributes which is a nonempty set. C is the collection of conditional attributes,
C ∩ D = ∅, D 6= ∅ 31. Therefore, the relationship between each element in a decision system
can be represented as shown in Figure 1. To better understand the above definition, we describe
the above-mentioned elements in combination with the fault diagnosis problem. C represents the
parameters output by the sensor or the extracted feature attributes, D represents the category of the
failure mode, and U denotes the collected data.

Figure 1. The illustration of a decision system.
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The decision-theoretic rough set (DTRS) presented by Yao et al. [33]. provides a concise
semantic interpretation through a loss function matrix. The loss function matrix is described
in Table 1.

Table 1. The detailed information of a loss function matrix.

Q Qc

aP λPP λPN
aB λBP λBN
aN λNP λNN

Consider that X is the subset of samples with the same label dk. The state Q suggests
that a related sample defined as x is in X, and the state Qc suggests that x is not in X.
The set of actions aP, aB, and aN indicate the classification of x into three regions, which
are x ∈ POS(X), x ∈ BND(X), x ∈ NEG(X). POS(X) denotes the acceptance of the
event x ∈ X. BND(X) denotes the deferment of the event x ∈ X, also considers BND(X)
denotes the non-commitment of the event x ∈ X. NEG(X) denotes the rejection of x ∈ X.
Furthermore, λ•P denotes the loss caused by taking actions (aP, aB, aN) while x ∈ X. λ•N
is the loss caused by taking actions (aP, aB, aN) while x /∈ X.

Consider this scenario: the risk of delaying the execution of the correct action is increased
compared to that of the correct action, and both are less than the loss of taking the wrong
action, the DTRS model therefore made a reasonable assumption: 0 ≤ λPP ≤ λBP < λNP and
0 ≤ λNN ≤ λBN < λPN , which is the basis for generating this rough set model.

Thanks to the above assumption, a pair of threshold parameters is used to define the
positive region POS(X), the boundary region BND(X) and the negative region NEG(X)
to construct the DTRS model, which is guided by the Bayesian risk minimization principle
and the three-way decision theory. Thus, we have the form of a DTRS model as follows 31:

POS(α,β)(X) = {x ∈ U|P(X|[x]) ≥ α}, (1)

BND(α,β)(X) = {x ∈ U|β < P(X[x]) < α}, (2)

NEG(α,β)(X) = {x ∈ U|P(X|[x]) ≤ β}. (3)

The following equations represent the relationship between the two threshold param-
eters and the six loss functions:

α =
(λPN − λBN)

(λPN − λBN) + (λBP − λPP)
, (4)

β =
(λBN − λNN)

(λBN − λNN) + (λNP − λBP)
. (5)

The key parts of the DTRS model are the loss function or threshold parameter (α, β).
To study and employ the DTRS model, an important issue is how to determine these
parameters. Inspired by the idea of being data-driven, our previous work proposed a
single-parameter decision-theoretic rough set (SPDTRS) model [32] that simplifies the
traditional DTRS model. Specifically, the model requires only one parameter to be preset
rather than the pair of (α, β) or the six parameters in the loss function matrix. However, the
solution of employing two truncation functions utilized in the model calculation makes the
model relatively complex. Moreover, the interpretability of the loss function matrix in the
SPDTRS model is slightly insufficient. The above two disadvantages are the focus of this
paper in proposing a new rough set model.
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3. Fuzzy Neighborhood ζ-Decision-Theoretic Rough Set
3.1. Granular Computing Based on Fuzzy Neighborhood Relationship

In order to be more applicable to practical problems, rough set models need to be able
to handle a hybrid dataset, including continuous and discrete data. Fuzzy relationship and
neighborhood relationship are two effective means to deal with the spatial relationship of
samples. Their combined form is used by a variety of models [34]. The fuzzy neighborhood
relationship can analyze the relationship between the entities in the decision system more
precisely. Therefore, to overcome the inability of the SPDTRS model to handle the hybrid
dataset, we introduce this fuzzy neighborhood relationship.

Definition 2. (Fuzzy neighborhood relationship) Given a decision system DS = (U, C ∪ D), for
an arbitrary sample x ∈ U, the fuzzy neighborhood subset of x is defined as:

[x]δ = {y ∈ U|r(x, y) ≥ δ}, (6)

where δ is fuzzy neighborhood radius. The range of δ is 0 ≤ δ ≤ 1. If x and y are continuous data,

we have r(x, y) = 1− 1
n

√(
∑n

i=1(xi − yi)
2
)

. While the two elements x and y are discrete data,

we have

r(x, y) =
{

1, if xi = yi
0, if xi 6= yi

, (7)

Thus, the fuzzy neighborhood subset is also called equivalence class. On this basis,
the fuzzy conditional probability of x could be described as:

P̃
(

X|[x]δ
)
=

∑
{

r(x, y)|y ∈
(

X ∩ [x]δ
)}

∑
{

r(x, z)|z ∈ [x]δ
} , (8)

where X is the subset of samples with the same label dk. Under the assumption of the fuzzy
neighborhood subset [x]δ ∩ X 6= ∅, we have 0 < P̃

(
X|[x]δ

)
≤ 1, while P̃

(
X|[x]δ

)
= 1 if

and only if [x]δ ⊆ X. ∑ {} represents the sum of all elements in its set.

3.2. Determination of the Two Threshold Parameters

Considering the disadvantage of the SPDTRS model, a new loss function matrix is
proposed, which is under fuzzy neighborhood relationship by a concise loss function
relationship to avoid introducing the truncation functions. The novel SPDTRS model
avoids the discussion of multiple situations and reduces the computational complexity of
the SPDTRS model.

In the new loss function matrix, the data-driven loss functions under fuzzy neigh-
borhood relationship is shown in Table 2. Besides, P̃

(
X|[x]δ

)
is the fuzzy neighborhood

conditional probability, which can be calculated by Equation (8). The compensation coeffi-
cient is ζ with 0 ≤ ζ < 1. S̃

(
X|[x]δ

)
and S̃c

(
X|[x]δ

)
are the significance coefficients, which

can be described as follows:

S̃
(

X|[x]δ
)
=

∑
{

P̃
(

X|[y]δ
)
|y ∈

(
X ∩ [x]δ

)}
∑
{

P̃
(

X|[z]δ
)
|z ∈ X

} , (9)

S̃c
(

X|[x]δ
)
=

∑
{

P̃
(

Xc|[y]δ
)
|y ∈

(
Xc ∩ [x]δ

)}
∑
{

P̃
(

X|[z]δ
)
|z ∈ X

} . (10)
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where ∑ {} represents the sum of all elements in its set.
Under the assumption of the equivalence class [x]δ ∩ X 6= ∅, the relationships

S̃
(

X|[x]δ
)
> 0 and S̃c

(
X|[x]δ

)
≥ 0 hold, and S̃c

(
X|[x]δ

)
= 0 if and only if [x]δ ⊆ X.

Table 2. The fuzzy neighborhood data-driven loss function matrix.

Q Qc

ap λPP = 0 λPN = S̃c
(

X|[x]δ
)

aB λBP = S̃
(

X|[x]δ
)

P̃
(

X|[x]δ
)

ζ λBN = S̃c
(

X|[x]δ
)(

1− P̃
(

X|[x]δ
))

ζ

aN λNP = S̃
(

X|[x]δ
)

λNN = 0

Subsequently, we can conclude the pair of threshold parameters according to the
fuzzy neighborhood data-driven loss function matrix, which can be represented as follows.
In addition, we rewrite S̃

(
X|[x]δ

)
= S,S̃c

(
X|[x]δ

)
= Sc,P̃

(
X|[x]δ

)
= P for the sake

of convenience.

α f n = (λPN−λBN)
(λPN−λBN)+(λBP−λPP)

=
(SC−SC(1−P)ζ)

(SC−SC(1−P)ζ)+(SPζ−0)

= SC(1−ζ+Pζ)
SC(1−ζ+Pζ)+SPζ

, (11)

β f n = (λBN−λNN)
(λBN−λNN)+(λNP−λBP)

=
(SC(1−P)ζ−0)

(SC(1−P)ζ−0)+(S−SPζ)

= SC(1−P)ζ
SC(1−P)ζ+S(1−Pζ)

. (12)

Subsequently, we can set up three-way decision rules as follows:
Rule (P): Decide x ∈ POS(X) while P̃

(
X|[x]δ

)
≥ α f n;

Rule (B): Decide x ∈ BND(X) while β f n < P̃
(

X|[x]δ
)
< α f n;

Rule (N): Decide x ∈ NEG(X) while P̃
(

X|[x]δ
)
≤ β f n.

According to the decision rules, the following roots about α f n and β f n can be described
in the following two cases.

Case 1: 0 < ζ < 1

From the rule (P), we can obtain

P ≤
(
2ζSC − SC)−√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
,

P ≥
(
2ζSC − SC)+√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
. (13)

From the rule (N), we can obtain

P ≤
(
2ζSC + S

)
−
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

,

P ≥
(
2ζSC + S

)
+
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

. (14)
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From these results, we can only accept two roots because of the relationship 0 < P ≤ 1.
Thus, we can rewrite these two roots:

α
f n
1 =

(
2ζSC − SC)+√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
, (15)

β
f n
1 =

(
2ζSC + S

)
−
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

. (16)

Case 2: ζ = 0

The values of these two parameters are as follows:

α
f n
2 = 1, (17)

β
f n
2 = 0. (18)

The model arising from this case corresponds to the Pawlak model. Both boundary loss
functions are equal to 0. Therefore the model clearly exhibits a two-way decision-making
characteristic. Thus, the Pawlak model is one of the specific examples of our model, and
ζ = 0 is a necessary non-sufficient condition for it.

Theorem 1. For the fuzzy neighborhood data-driven loss function matrix, assuming the equivalence
class [x]δ ∩ X 6= ∅, when [x]δ * X holds, namely, the concerned equivalence class is not a
consistent class, then we have:

(a1) λPP ≤ λBP < λNP,
(a2) λNN ≤ λBN < λPN .
When [x]δ ⊆ X holds, i.e., the concerned equivalence class is a consistent class, then we have:
(b1) λPP ≤ λBP < λNP
(b2) λNN = λBN = λPN = 0

Proof.
(a1) If [x]δ * X, then S̃

(
X|[x]δ

)
> 0, 0 < P̃

(
X|[x]δ

)
< 1. Since 0 ≤ ζ < 1,

λBP = S̃
(

X|[x]δ
)

P̃
(

X|[x]δ
)

ζ , then 0 ≤ λBP < S̃
(

X|[x]δ
)

. Due to λPP = 0 and

λNP = S̃
(

X|[x]δ
)

, hence λPP ≤ λBP < λNP.

(a2) If [x]δ * X, then S̃c
(

X|[x]δ
)

> 0, 0 < P̃
(

X|[x]δ
)

< 1. Since 0 ≤ ζ < 1,

λBN = S̃c
(

X|[x]δ
)(

1− P̃
(

X|[x]δ
))

ζ, then 0 ≤ λBN < S̃c
(

X|[x]δ
)

. Due to λNN = 0 and

λPN = S̃c
(

X|[x]δ
)

, hence λNN ≤ λBN < λPN .

(b1) If [x]δ ⊆ X, then S̃
(

X|[x]δ
)

> 0, P̃
(

X|[x]δ
)

= 1. Since 0 ≤ ζ < 1, λBP =

S̃
(

X|[x]δ
)

P̃
(

X|[x]δ
)

ζ, then 0 ≤ λBP < S̃
(

X|[x]δ
)

. Due to λPP = 0 and λNP = S̃
(

X|[x]δ
)

,
hence λPP ≤ λBP < λNP.

(b2) If [x]δ ⊆ X, then S̃c
(

X|[x]δ
)
= 0, and P̃

(
X|[x]δ

)
= 1. Since 0 ≤ ζ < 1, λBN =

S̃c
(

X|[x]δ
)(

1− P̃
(

X|[x]δ
))

ζ, then λBN = 0. Due to λNN = 0 and λPN = S̃c
(

X|[x]δ
)

,
hence λNN = λBN = λPN = 0. QED. �

3.3. Establishment of FNζDTRS

Reasoning by Section 3.2, the expressions of these two threshold functions lead to the
following results:α f n = f (S, Sc, ζ) and β f n = f (S, Sc, ζ) under the above two conditions,
where α f n =

{
α

f n
1 , α

f n
2

}
and β f n =

{
β

f n
1 , β

f n
2

}
. Based on Equations (9) and (10), it is easily

to obtain S and Sc by confirming the parameter δ and analyzing the distribution information
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of the original data. In summary, we can change these two threshold parameters to
α f n = f (δ, ζ), β f n = f (δ, ζ). The rough set model below, which is including parameters δ
and ζ is defined as fuzzy neighborhood ζ-decision-theoretic rough set (FNζDTRS):

P̃OS =
{

x ∈ U|P̃
(

X|[x]δ
)
≥ α f n

}
, (19)

B̃ND =
{

x ∈ U|β f n < P̃
(

X|[x]δ
)
< α f n

}
, (20)

ÑEG =
{

x ∈ U|P̃
(

X|[x]δ
)
≤ β f n

}
, (21)

where both threshold parameters have different descriptions under the following two
conditions:

Case 1: 0 < ζ < 1, then

α
f n
1 =

(
2ζSC − SC)+√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
, (22)

β
f n
1 =

(
2ζSC + S

)
−
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

. (23)

Case 2: ζ = 0, then
α

f n
2 = 1, (24)

β
f n
2 = 0. (25)

In the above FNζDTRS model, there are only two cases to discuss, in contrast to the
SPDTRS model that requires four cases to discuss, which greatly reduces the computational
complexity of the SPDTRS model due to the concise setting of loss functions.

Theorem 2. In the FNζDTRS model, given two compensation coefficients ζ1 and ζ2 with
0 ≤ ζ1 < 1 and 0 ≤ ζ2 < 1, and the parameter δ is fixed, if there exists ζ1 ≥ ζ2, then
α f n(ζ1) ≤ α f n(ζ2) and β f n(ζ1) ≥ β f n(ζ2) hold.

Proof. If the equivalence class [x]δ ⊆ X, then SC = 0, according to Equations (22)–(25),
when 0 < ζ < 1, α f n(ζ1) = α f n(ζ2) = 0, β f n(ζ1) = β f n(ζ2) = 0, when ζ = 0,
α f n(ζ1) = α f n(ζ2) = 1, β f n(ζ1) = β f n(ζ2) = 0. If the equivalence class [x]δ * X, then
its monotonicity relations will be proved by the following derivations.

Part I: For ζ1 ≥ ζ2 ⇒ α f n(ζ1) ≤ α f n(ζ2) , two cases need to be considered.

Case 1: 0 < ζ < 1

Since α
f n
1 =

(2ζSC−SC)+
√

SC(−4ζ2S+4ζS+SC)
2ζ(S+SC)

, we set η = 1/ζ, due to 0 < ζ < 1, then

η > 1 and α
f n
1 =

(2SC−ηSC)+
√

η2(SC)
2
+4ηSSC−4SSC

2(S+SC)
. Due to S > 0, SC > 0, we can set

α
f n
1 =

(
2SC − ηSC)+√η2(SC)

2
+ 4ηSSC − 4SSC for simplicity of derivation. We can find

the partial derivative of it, denoted as f 1
α , which is

f 1
α =

∂α
f n
1

∂η
= −SC +

η
(
SC)2

+ 2SSC√
η2(SC)

2
+ 4ηSSC − 4SSC

.
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Its second-order partial derivative is denoted as f 2
α :

f 2
α =

∂2α
f n
1

∂2η
=

−4S
(
SC)2(S + SC)(

η2(SC)
2
+ 4ηSSC − 4SSC

)3/2 < 0.

Because f 2
α is less than 0, f 1

α is monotonically decreasing. Since η > 1, f 1
α → 2S > 0(1← η) ,

f 1
α → 0(η → +∞) , then f 1

α > 0. Therefore, α
f n
1 grows monotonically with respect to η.

Hence, α
f n
1 decreases monotonically with respect to ζ, that is ζ1 ≥ ζ2 ⇒ α

f n
1 (ζ1) ≤ α

f n
1 (ζ2) .

Case 2: ζ = 0
In this case, we have α

f n
2 = 1. Thus, for ζ1 ≥ ζ2, we have α

f n
2 (ζ1) = α

f n
2 (ζ2).

Part II: For ζ1 ≥ ζ2 ⇒ β f n(ζ1) ≥ β f n(ζ2) , two cases need to be considered as well.

Case 1: 0 < ζ < 1

Since β
f n
1 =

(2ζSC+S)−
√

S(−4ζ2SC+4ζSC+S)
2ζ(S+SC)

, we also set η = 1/ζ, due to 0 < ζ < 1,

then η > 1 and β
f n
1 =

(2SC+ηS)−
√

η2S2+4ηSSC−4SSC

2(S+SC)
. Due to S > 0, SC > 0, we have the

simple form β
f n
1 =

(
2SC + ηS

)
−
√

η2S2 + 4ηSSC − 4SSC. We describe partial derivatives

of β
f n
1 like:

f 1
β =

∂β
f n
1

∂η = S− ηS2+2SSC√
η2S2+4ηSSC−4SSC

,

f 2
β =

∂2β
f n
1

∂2η
=

4S2SC(S+SC)

(η2S2+4ηSSC−4SSC)
3/2 > 0.

From f 2
β > 0, we know that f 1

β increases monotonously along with η. Since η > 1,

f 1
β → −2SC < 0(1← η) , f 1

β → 0(η → +∞) , then f 1
α < 0, and β

f n
1 is monotonously de-

creasing with regard to η. Therefore, β
f n
1 is monotonously increasing with ζ, that is

ζ1 ≥ ζ2 ⇒ β
f n
1 (ζ1) ≥ β

f n
1 (ζ2) . QED. �

Theorem 3. In the FNζDTRS model, the relationship 0 ≤ β f n ≤ α f n ≤ 1 holds.

Proof. If the equivalence class [x]δ ⊆ X, then SC = 0, according to Equations (22)–(25),
when 0 < ζ < 1, α f n = β f n = 0, when ζ = 0, α f n = 0, β f n = 1, satisfying the inequality
0 ≤ β f n ≤ α f n ≤ 1. If the equivalence class [x]δ * X, then in following three parts we
intend to prove the inequality.

Part I: Proof of 0 ≤ β f n under two cases.

Case 1: 0 < ζ < 1

According to Equation (23), we could get β
f n
1 =

(
2ζSC+S

)
−ψ

2ζ(S+SC)
, ψ =

√
(S + 2ζSC)2 − 4ζ2SC(S + SC),

and then we only need to prove 4ζ 2 SC(S + SC) > 0. Since S > 0, SC > 0, then

4ζ 2 SC(S + SC) > 0, so β
f n
1 > 0.

Case 2: ζ = 0

In this case, we have β
f n
2 = 0.

Part II: Proof of the inequality β f n ≤ α f n in two cases.

Case 1: 0 < ζ < 1
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According to Equations (22) and (23), we could get

α
f n
1 − β

f n
1 =

−SC − S +
√

SC(−4ζ2S + 4ζS + SC) +
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

.

Since S > 0, SC ≥ 0, then√
SC(−4ζ2S + 4ζS + SC) =

√
4ζSSC(1− ζ) + (SC)

2
>
√
(SC)

2
= SC,√

S(−4ζ2SC + 4ζSC + S) =
√

4ζSSC(1− ζ) + S2 >
√

S2 = S,

so α
f n
1 − β

f n
1 > 0, that is β

f n
1 < α

f n
1 .

Case 2: ζ = 0

In this case, we have α
f n
2 = 1, β

f n
2 = 0, so β

f n
2 < α

f n
2 .

Part III: Proof of the inequality α f n ≤ 1 in two cases.

Case 1: 0 < ζ < 1

According to Equation (22), if we want to prove α
f n
1 ≤ 1, then we need to

prove
√

SC(−4ζ2S + 4ζS + SC) −
(
2ζS + SC) < 0, which means we need to prove

SC(−4ζ2S + 4ζS + SC)− (2ζS + SC)
2
< 0. Since S > 0, SC ≥ 0, then

SC
(
−4ζ2S + 4ζS + SC

)
− (2ζS + SC)

2
= −4ζ2SSC − 4ζ2S2 = −4ζ2S

(
SC + S

)
< 0.

Therefore, we have α
f n
1 < 1.

Case 2: ζ = 0

In this case, we have α
f n
2 = 1. QED. �

Theorem 4. For a decision system, which is described as DS = (U, C ∪ D) with a fixed parameter
δ, and two parameters ζ1 and ζ2 with 0 ≤ ζ1 ≤ ζ2 < 1, we have P̃OS1 ⊆ P̃OS2, ÑEG1 ⊆ ÑEG2,
B̃ND1 ⊇ B̃ND2.

Proof. At the very beginning of the proof, we assume an arbitrary sample y to facilitate the
proof of the theorem. While y ∈ P̃OS1, we have P(X|[y]) ≥ α f n(ζ1). Since 0 ≤ ζ1 ≤ ζ2 < 1,
the relation α f n(ζ1) ≥ α f n(ζ2) holds according to Theorem 2. Thus, P(X|[y]) ≥ α f n(ζ2)

and y ∈ P̃OS2 hold. Hence, we conclude that P̃OS1 ⊆ P̃OS2.

Likewise, to conclude that ÑEG1 ⊆ ÑEG2 and B̃ND1 ⊇ B̃ND2 is easy via Theorem 2.
From the above, we can find that ζ is inversely correlated with the range of neutrality

and positively correlated with the uncertainty of the decision. QED. �

3.4. FNζDTRS-Based Attribute Reduction Algorithm

Jia et al. [35] presented a reduction principle in response to the problem of attribute
reduction by using the DTRS model. The core idea of it is minimizing the risk of the
reduction subset. On this principle, our previous work has designed an attribute reduction
algorithm based on the SPDTRS model [32,34]. It is built on minimizing the risk of overall
decisions, which can be utilized for the attribute reduction in our proposed FNζDTRS
model. Therefore, the detailed attribute reduction algorithm is not repeated in this paper.
For details, the readers could refer to our previous work [32,34].
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4. Strategy of Simultaneous-Fault Diagnosis

Under the assumption that the data in all single-fault modes are fully available, when
an unknown fault occurs, we use the FNζDTRS model to mine the fault attributes of
the unknown fault. If the fault attributes of the unknown fault are different from the
fault attributes of the existing single-fault, then the unknown fault can be considered as
a simultaneous-fault. Furthermore, we can use the attribute reduction results obtained
from the FNζDTRS model to analyze and identify the corresponding fault modes of the
simultaneous-fault. Finally, a strategy of simultaneous-fault diagnosis called fault matching
strategy is formed, as shown in Figure 2.

The proposed fault matching strategy consists of two main parts, prior knowledge
acquisition and rule matching. In the first part, the single-fault data with abnormal labels
and normal data with normal labels are sent into the FNζDTRS model as the training data
set, and the optimal fault attribute subsets of each single-fault are obtained by attribute
reduction, used as the prior knowledge for subsequent diagnosis. In the second part, the
simultaneous-fault data with abnormal labels and normal data with normal labels are
combined to form the data to be diagnosed, and then the data are fed into the FNζDTRS
model to obtain the optimal fault attribute subset. The optimal fault attribute subset is then
obtained here and the optimal fault attribute subsets obtained in the first part are measured
by using the Jaccard similarity coeffective. It is worth noting that there may be some single
faults with the same fault attributes, therefore we set some rules based on the differences
between attribute data to subdivide the faults and complete the fault matching, which can
be seen in the subsequent experiments based on the satellite power system.

Figure 2. The procedure of fault diagnosis strategy for simultaneous-fault.

Based on the above description, we can write the core pseudo code in the above
process, as shown in Table 3.
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Table 3. The core pseudo code of the diagnosis strategy.

Input: Raw data of each single fault and normal state

Output: Fault mode

Part I Prior Knowledge Acquisition
For each DS regarding to single fault or state

Initialized: red = ∅, Cl = C, Rred = H, //H is a large positive number.
While Cl 6= ∅

For c ∈ Cl
a = c ∪ red, //a is a temporary set.
Compute the risk generated by a.

End For
Find such a subset a = c ∪ red with the minimum risk, i.e., Ra.
If Ra < Rred

The subset a is the selected set
End If

End While
End For, return the reduction red set of each state.

Part II Rule Matching
Utilize the above code to obtain the reduction set r of the given fault data to be diagnosed.
For each red

Compute the similarity between red and r.
End For
Find such a red with the maximum similarity, which could be considered as the similar fault mode f.
Return f

5. Numerical Experiment of Attribute Reduction

The effectiveness and advantage of the proposed FNζDTRS model is verified on
several hybrid decision systems from the UCI (http://archive.ics.uci.edu/ml/index.php,
accessed on 21 July 2021) and KEEL (https://sci2s.ugr.es/keel/datasets.php, accessed on
21 July 2021) datasets. As shown in Table 4, the test datasets include both discrete and
continuous data. Specific comparative experiments regarding parameters test and attribute
reduction are conducted on the same hard and soft platforms. Ten baseline classifiers,
including NaiveBayes, REPTree, LogitBoost, SMO, Filtered, Bagging, PART, IBk, J48 and
JRip, are employed with a 10-fold cross-validation in Weka (https://waikato.github.io/
weka-wiki/downloading_weka/, accessed on 21 July 2021) software to demonstrate the
accuracy of attribute selection. The input data are normalized into the range of [0, 1] during
preprocessing.

Table 4. The information of the employed datasets.

ID Full Name Name Samples Attribute Discrete Continuous Class Source

1 Mutagenesis-Atoms Atoms 1618 10 8 2 2 KEEL
2 Australian Credit Approval Australian 690 14 8 6 2 UCI
3 Breast Cancer Breast 277 9 6 3 2 UCI
4 Heart Disease Cleveland Cleve 296 13 7 6 2 UCI
5 Statlog Heart Heart 270 13 6 7 2 UCI
6 Iris Iris 150 4 0 4 3 UCI
7 Website Phishing Phishing 1353 10 10 0 3 UCI
8 South African Hearth Saheart 462 9 1 8 2 UCI
9 Seismic-Bumps Seismic 2584 18 12 6 2 UCI

10 Congressional Voting Records Vote 435 16 16 0 2 UCI

http://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
https://waikato.github.io/weka-wiki/downloading_weka/
https://waikato.github.io/weka-wiki/downloading_weka/
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5.1. Parameters Test for FNζDTRS

For the FNζDTRS model, two parameters ζ and δ need to be set in advance. As
described in Section 2, the theoretic value field of ζ is [0, 1), and δ is [0, 1]. Therefore, ζ is
sampled with an interval of 0.05, and end at 0.99. δ is also sampled with an interval of 0.05,
but end at 1. Figure 3 shows the experimental results.

Figure 3. Cont.
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Figure 3. The accuracy results of ζ and δ with respect to FNζDTRS.

The results show that the appropriate settings of ζ and δ range in [0.3, 0.99] and
[0.85, 0.95], respectively. It could be explained by the fact that a smaller ζ will result in a
larger boundary region, marking more samples as uncertain state. It means setting a smaller
ζ for the FNζDTRS decision system will lead to greater uncertainty. When applied in real
world, ζ should be adjusted appropriately according to the risk of wrong decision. When
the danger of making a bad decision is low, ζ can be set larger, and vice versa. On the other
hand, with the fuzzy neighborhood threshold δ closer to 1, the fuzzy neighborhood granules
will be finer, allowing for the samples to be classified accurately into the appropriate regions.
The above two parameters are the core parameters of the model proposed in this paper,
and their setting values directly affect the test results. Therefore, when setting the above
parameters, the values of the two parameters need to be adjusted according to the actual
needs with the above principles.

5.2. Comparison Experiments on Attribute Reduction

In this part, seven related models, DTRS-EF [36], DTRS-SMDNS [37], SPDTRS-EF [32],
SPDTRS-SMDNS [32], NDTRS [38], FDTRS [39] and FN3WD [34], are introduced into
a contrastive analysis on the attribute reduction to demonstrate the superiority of the
proposed FNζDTRS. The settings of the relevant parameters in these comparison models
are the same as those of the corresponding models. The number of reduction attributes
and the classification accuracy are the common evaluation indicators of the comparison
experiment of attribute reduction [40,41]. The standard deviations of ten trials are also
calculated, and the results are shown in Tables 5 and 6.
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Table 5. The classification accuracy of the reduction subset.

ID Name DTRS-EF DTRS-
SMDNS

SPDTRS-
EF

SPDTRS-
SMDNS NDTRS FDTRS FN3WD FNζDTRS

1 Atoms 69.65 ± 2.38 71.08 ± 1.66 70.94 ± 1.20 71.27 ± 1.14 70.42 ± 1.61 70.87 ± 2.07 71.71 ± 1.00 72.08 ± 1.13

2 Australian 81.34 ± 5.09 82.39 ± 5.64 82.27 ± 2.87 83.46 ± 0.85 83.31 ± 2.76 72.06 ± 12.31 84.56 ± 0.39 84.97 ± 0.42

3 Breast 72.31 ± 1.06 72.53 ± 0.82 72.67 ± 0.70 72.65 ± 0.72 72.72 ± 0.67 70.38 ± 0.75 73.21 ± 0.29 74.01 ± 0.81

4 Cleve 79.13 ± 1.09 78.34 ± 5.02 78.99 ± 1.01 79.37 ± 0.61 77.69 ± 6.68 66.64 ± 11.29 80.13 ± 0.78 81.34 ± 0.37

5 Heart 78.34 ± 3.38 78.72 ± 5.20 79.99 ± 1.87 79.95 ± 0.88 76.31 ± 7.16 68.37 ± 10.42 80.27 ± 2.25 80.99 ± 1.23

6 Iris 94.85 ± 0.50 94.85 ± 0.62 94.93 ± 0.47 94.87 ± 0.55 94.95 ± 0.41 62.96 ± 17.98 94.82 ± 0.40 95.27 ± 0.33

7 Phishing 84.23 ± 9.62 86.05 ± 6.11 87.08 ± 1.10 87.08 ± 1.10 86.40 ± 5.08 69.93 ± 14.06 87.15 ± 1.06 87.14 ± 1.07

8 Saheart 69.23 ± 0.99 69.01 ± 1.29 69.49 ± 0.38 69.51 ± 0.43 69.35 ± 0.40 67.93 ± 1.99 69.63 ± 1.61 70.35 ± 1.06

9 Seismic 92.64 ± 0.80 92.33 ± 0.90 92.53 ± 0.46 91.94 ± 0.69 91.91 ± 0.70 92.01 ± 0.76 92.56 ± 0.48 93.21 ± 0.15

10 Vote 94.66 ± 0.38 94.67 ± 0.38 94.63 ± 0.36 94.63 ± 0.36 94.65 ± 0.38 83.86 ± 15.36 94.63 ± 0.36 94.65 ± 0.31

Average 81.64 ± 2.53 82.00 ± 2.76 82.35 ± 1.04 82.47 ± 0.73 81.77 ± 2.59 72.50 ± 8.70 82.87 ± 0.86 83.40 ± 0.69

* Bolded indicates that the model achieves the best performance on this dataset.

Table 6. The number of reduction attributes.

ID Name DTRS-EF DTRS-
SMDNS

SPDTRS-
EF

SPDTRS-
SMDNS NDTRS FDTRS FN3WD FNζDTRS

1 Atoms 5.5 ± 1.8 6.4 ± 1.8 6.8 ± 0.4 7.8 ± 0.4 5.2 ± 1.2 4.5 ± 1.3 1.2 ± 0.4 2.0 ± 0.0
2 Australian 11.2 ± 1.9 12.2 ± 3.0 11.3 ± 0.6 13.0 ± 0.1 12.7 ± 1.4 4.7 ± 2.7 10.8 ± 0.6 8.4 ± 0.5
3 Breast 7.7 ± 2.7 8.5 ± 2.0 9.0 ± 0.0 9.0 ± 0.1 9.0 ± 0.2 3.6 ± 1.0 8.0 ± 0.0 6.9 ± 0.6
4 Cleve 9.8 ± 0.5 12.5 ± 2.4 9.9 ± 0.5 13.0 ± 0.2 10.2 ± 2.6 4.1 ± 2.7 7.1 ± 1.6 3.0 ± 0.0
5 Heart 7.1 ± 2.0 12.1 ± 2.6 7.9 ± 0.6 12.7 ± 0.4 10.0 ± 3.0 4.8 ± 3.1 6.8 ± 1.3 3.0 ± 0.0
6 Iris 3.8 ± 0.7 3.6 ± 0.8 3.6 ± 0.5 4.0 ± 0.1 4.0 ± 0.0 1.7 ± 1.3 2.6 ± 0.5 1.0 ± 0.0
7 Phishing 8.3 ± 2.3 8.8 ± 1.4 9.0 ± 0.0 9.0 ± 0.0 8.8 ± 1.4 1.1 ± 0.2 9.0 ± 0.0 9.0 ± 0.0
8 Saheart 8.7 ± 1.6 8.5 ± 1.9 9.0 ± 0.0 9.0 ± 0.0 9.0 ± 0.0 6.4 ± 2.8 4.8 ± 0.4 2.6 ± 0.3
9 Seismic 6.6 ± 4.8 10.9 ± 6.3 4.0 ± 0.2 13.4 ± 0.9 13.8 ± 0.5 8.3 ± 0.7 2.0 ± 0.0 1.0 ± 0.0

10 Vote 8.5 ± 0.6 8.5 ± 0.6 8.5 ± 0.5 8.5 ± 0.5 8.5 ± 0.8 1.1 ± 0.3 8.5 ± 0.5 8.1 ± 0.3
Average 7.7 ± 1.9 9.2 ± 2.3 7.9 ± 0.3 9.9 ± 0.3 9.1 ± 1.1 4.0 ± 1.6 6.1 ± 0.5 4.5 ± 0.2

* Bolded indicates that the model achieves the best performance on this dataset.

According to the results in Tables 4 and 5, the following analysis can be obtained:

(a) The analysis based on the classification accuracy indicates that the FNζDTRS model is
superior to other rough set models. The main reason may lie in the different methods
to describe spatial granules. Discretization methods such as EF and SMDNS are
commonly introduced to process continuous data in the traditional DTRS models,
which results in the destruction of the spatial structure of granules. Using special
measures (such as fuzzy relationship, neighborhood relationship, etc.) can avoid the
distortion of the discretization method, but it also has some disadvantages, such as
simple measurement, insufficient description ability, etc. The proposed FNζDTRS
model utilizes fuzzy neighborhood relationships to overcome the above shortcomings.
Compared with other DTRS models, the description of spatial granules is more precise
in our model and results in the higher classification accuracy.

(b) With respect to the number of reduction attributes, the FDTRS model has the least
number of reduction attributes, but it fails to achieve a desired classification accuracy,
whereas the FNζDTRS model can maintain high classification accuracy while keeping
the number of reduction attributes small. The results show that the classification ability
can be maintained or improved only when the reduction attributes are accurately
selected. The above conclusion also conforms to the basic principle of attribute
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reduction, that is, in the operation of reduction, we want to get a relatively concise
set, which can ensure that the original classification accuracy is not reduced, and the
purpose is to improve the operation efficiency.

(c) The standard deviation is used to measure the robustness of models. It is obvious
that the standard deviation of the FNζDTRS model is the smallest regardless of the
classification accuracy or the number of reduced attributes, which directly proves that
the robustness of the FNζDTRS model is the highest compared to other models. The
above robustness characteristics also show that we have a large selection range when
setting our two parameters, which is conducive to the wide application of the model
in practical projects.

6. Simultaneous-Fault Diagnosis of Satellite Power System

In-orbit faults of the power system should be avoided to the maximum extent for
satellites. Therefore, simulation is the best platform to mine fault diagnosis knowledge.
In this section, the effectiveness of the proposed simultaneous-fault diagnosis scheme is
verified with the simulation model of a geosynchronous (GEO) satellite power system [3].
As shown in Figure 4, the power system works in a direct energy transfer mode during the
simulation, and ten telemetry parameters can be measured in the marked position. The
information of the telemetry parameters is shown in Table 7.

Figure 4. The schematic diagram of the power system.

Table 7. Information of the telemetry parameters.

ID Attribute Rate Range Data Type Unit

a1 Duty cycle 0–1 Continuous -
a2 Bus current 13.5–17.3 Continuous A
a3 Shunt current 5.3–12.4 Continuous A
a4 Battery current 3.6–19.4 Continuous A
a5 Output power 1070–1090 Continuous W
a6 Battery pressure 2.0–5.4 Continuous MPa
a7 Battery quantity 54.3–71.2 Continuous Ah
a8 Status word −1 0 1 Discrete -
a9 Bus voltage 40.5–43.1 Continuous V
a10 Battery voltage 33.0–40.5 Continuous V

The raw data used for simultaneous-fault diagnosis is composed of the above-mentioned
ten kinds of attributes, and all the data are selected in the stationary period. The dataset is
stored in a time-series format, with each subset representing one of the scenarios shown in
Table 8. There are a total of 12 scenarios, where scenario 0 represents the system without
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any fault. F1 represents open-circuit failure in solar array. F2 represents the short-circuit
failure in the battery. F3 represents shunt regulator failure without shunt. F4 represents
shunt regulator failure with constant shunt. The remaining 7 scenarios are concurrent
failures composed of the above 4 single failures occurring at the same time, where F3 and
F4 cannot occur simultaneously.

Table 8. Different scenarios for faults in satellite power system.

Scenario Fault Name Scenario Fault Name

0 —- 6 F1-F3
1 F1 7 F1-F4
2 F2 8 F2-F3
3 F3 9 F2-F4
4 F4 10 F1-F2-F3
5 F1-F2 11 F1-F2-F4

It can be seen that this means can effectively solve the problem of insufficient data
in the simultaneous-fault diagnosis, which also responds to one the difficulties in the
simultaneous-fault diagnosis introduced at the beginning of this paper.

6.1. Simultaneous-Fault Diagnosis Based on the Fault Matching Strategy

The two main parts of the simultaneous-fault diagnosis strategy, namely prior knowl-
edge acquisition and rule matching, are equivalent to the training and testing process.
We choose 4 kinds of single-fault data as the training set and the remaining 7 kinds of
simultaneous-fault data as the testing set. The results obtained through the first step of
prior knowledge acquisition are shown in Table 9. It can be found that the results of the
output attribute subset of F3 and F4 are the same. Therefore, in order to distinguish F3 and
F4, further information needs to be excavated. For attribute a3, its corresponding shunt
current data can directly distinguish F3 from F4. The shunt current value of F3 fluctuates
between 6.42–8.67 and that of F4 is between 12.45–14.77. Therefore, F3 and F4 can be
distinguished by setting the threshold value of the shunt current average.

Table 9. The results of the training process.

Fault Name The Output Attribute Subset Average Value of the Data
for Attribute a3

F1 a5 -
F2 a7 -
F3 a2, a3, a9 7.46
F4 a2, a3, a9 13.47

The results obtained through the second step of rule matching are shown in Table 10.
For a simultaneous-fault, the Jaccard similarity coefficient between its output attribute
subset and the output attribute subset of each single-fault obtained in the training process
can be calculated in turn. If the Jaccard similarity coefficient is 0, the corresponding single
fault can be eliminated preliminarily. Since F3 and F4 cannot be distinguished by the Jaccard
similarity coefficient, it is necessary to further distinguish F3 and F4 through the set shunt
current threshold and to finally obtain the matching result. Through the final matching
result, it can be found that the diagnostic accuracy of the fault matching strategy is 100%.
The above fault matching process comprehensively utilizes the similarity of attributes and
expert knowledge, which can ensure that the obtained diagnosis results are more accurate.
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Table 10. The results of the testing process.

Fault Name
The Output

Attribute Subset
Jaccard Similarity Coefficient Average Value of

the Data for
Attribute a3

Matching
ResultF1 F2 F3 F4

F1-F2 a5, a7 0.50 0.50 0 0 - F1-F2
F1-F3 a2, a3, a5, a9 0.25 0 0.75 0.75 6.63 F1-F3
F1-F4 a2, a3, a5, a9 0.25 0 0.75 0.75 12.62 F1-F4
F2-F3 a2, a3, a7, a9 0 0.25 0.75 0.75 7.47 F2-F3
F2-F4 a2, a3, a7, a9 0 0.25 0.75 0.75 13.46 F2-F4

F1-F2-F3 a2, a3, a5, a7, a9 0.20 0.20 0.60 0.60 6.63 F1-F2-F3
F1-F2-F4 a2, a3, a5, a6, a7, a9 0.17 0.17 0.50 0.50 12.63 F1-F2-F4

6.2. Comparison Experiment on Simultaneous-Fault Diagnosis
6.2.1. Experimental Setup

The superiority of the proposed fault matching strategy is demonstrated through com-
parison experiments of simultaneous-fault diagnosis with several multi-label classification
algorithms (Binary Relevance, Classifier Chain, Calibrated Label Ranking, ML-KNN, and
ML-DT). In these comparison algorithms, the classifiers of the first three algorithms are all
set to Random Forest, which is the best classifier after the pretest, and the value of k for
ML-KNN is 12. Subset accuracy, hamming loss, precision, recall, and F1 are introduced as
the metrics of the multi-label classification performance [11].

Subset Accuracy =
1
n

n

∑
i=1

I(yi = ŷi)., (26)

Hamming Loss =
1

nL

n

∑
i=1

L

∑
j=1

I
(

yj
i 6= ŷj

i

)
, (27)

Precision =
1
n

n

∑
i=1

∣∣∣yj
i = 1∩ ŷj

i = 1
∣∣∣∣∣∣yj

i = 1
∣∣∣ , (28)

Recall =
1
n

n

∑
i=1

∣∣∣yj
i = 1∩ ŷj

i = 1
∣∣∣∣∣∣ŷj

i = 1
∣∣∣ , (29)

F1 =
1
n

n

∑
i=1

2
∣∣∣yj

i = 1∩ ŷj
i = 1

∣∣∣∣∣∣yj
i = 1

∣∣∣+ ∣∣∣ŷj
i = 1

∣∣∣ , (30)

where yi represents the ground-truth label vector of the i sample, ŷi represents the predicted
label vector, yj

i represents the ground-truth label of j position in i sample, ŷj
i represents the

predicted label of j position in i sample. Intuitively, subset accuracy, precision, recall, F1
perform as the multi-label counterparts of traditional metrics. Hamming lose performs as a
special metric of multi-label.

The training set of all algorithms uses single-fault data, while the test set uses simultaneous-
fault data. Ten-fold cross validation is also employed in this part.

6.2.2. Experimental Results and Analysis

The results are shown in Table 11. It is obvious that the proposed method outperforms
other methods in the simultaneous-faults diagnosis of a satellite power system, which
benefits from both the FNζDTRS model and the fault matching strategy (FNζDTRS-FMS).
Fundamentally, on the one hand, the attribute reduction results obtained from the FNζDTRS
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model can accurately represent the fault information, and on the other hand, the proposed
matching rules are reasonable and reliable.

Table 11. The results of the simultaneous-fault diagnosis.

Algorithm Accuracy/Subset
Accuracy Hamming Loss Precision Recall F1

FNζDTRS–FMS 100.0 ± 0.0 - 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Binary Relevance 82.34 ± 5.39 4.43 ± 1.35 100.0 ± 0.0 93.88 ± 1.87 96.28 ± 1.14
Classifier Chain 65.78 ± 8.93 9.30 ± 2.63 100.0 ± 0.0 86.42 ± 4.45 91.31 ± 3.07

Calibrated Label Ranking 0.0 ± 0.0 32.14 ± 7.11 100.0 ± 0.0 45.24 ± 0.0 61.90 ± 0.0
ML-KNN 0.0 ± 0.0 32.15 ± 0.0 99.98 ± 0.0 45.23 ± 7.11 61.89 ± 0.0

ML-DT 0.0 ± 0.0 32.35 ± 0.31 99.59 ± 0.62 45.03 ± 0.31 61.63 ± 0.42

* Bolded indicates that the model achieves the best performance on this metric.

In addition to the results of our method, as for multi-label classification methods, the
false alarm rate performs satisfactorily, while the missed diagnosis rate performs poorly.
It can be seen that the recall rates have been lower than 50%, which is unacceptable in
engineering applications. At the same time, the results of the F1 index generated by
the multi-label classification methods are relatively low, only slightly higher than 60%.
Similarly, the results obtained by the Calibrated Label Ranking method are similar to those
of ML-KNN and ML-DT. The results obtained by the Classifier Chain method are in the
middle level. In addition, Binary Relevance has the best performance among the multi-label
classification methods, which means that there are no relevant dependencies between the
single faults.

7. Conclusions

In this work, a novel DTRS model called FNζDTRS is proposed and the fault match
strategy (FMS) based on the FNζDTRS model is designed to overcome three fundamental
hurdles faced by simultaneous-fault diagnosis. The effectiveness and superiority of our
methodology is demonstrated by both numerical experiments conducted on several stan-
dard datasets and comparison analysis of simultaneous-fault diagnosis performed on a
simulation model of a satellite power system. Consequently, two main conclusions can be
drawn, as follows.

(1) The proposed FNζDTRS model performs attribute reduction more effectively com-
pared with other models, and it has strong generalization ability. This benefits from
the concise loss functions and the introduction of the fuzzy neighborhood relation-
ships. The advantages of our model can greatly promote the smooth implementation
of the model in simultaneous-fault diagnosis, which reflects the effectiveness and
superiority of our selection of this model.

(2) The proposed FNζDTRS–FMS does not require simultaneous-fault samples to accom-
plish training and performs excellently in simultaneous-fault diagnosis compared
to classic multi-label classification algorithms. This is completely consistent with
the real situation, that is, the existing data cannot completely cover all the imagined
failure modes. Therefore, the diagnostic strategy proposed in this paper has stronger
application value.

Although the model we proposed has the above advantages, it still has the problem of
low computational efficiency compared with the classical rough set because of the use of
fuzzy neighborhood computing. This is one of our future research directions. Furthermore,
our future work will also focus on fusing rough set models and multi-label learning
algorithms to make the simultaneous-fault diagnosis framework more general.
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Nomenclature

U = {x1, x2, · · · , xm} the universe, which is a finite and nonempty set.
D the set of decision attributes that is a nonempty set.
C the collection of conditional attributes.
X the subset of samples with the same label dk.
aP, aB, and aN the classification of x into three regions, which are x ∈ POS(X),

x ∈ BND(X), x ∈ NEG(X).
POS(X) the acceptance of the event x ∈ X.
BND(X) the non-commitment of the event x ∈ X, denotes the deferment

of the event x ∈ X.
NEG(X) the rejection of x ∈ X.
λ•P the loss caused by taking actions (aP, aB, aN) while x ∈ X.
λ•N the loss caused by taking actions (aP, aB, aN) while x /∈ X.
α, β the threshold parameters of the DTRS model.
δ fuzzy neighborhood radius.
ζ the compensation coefficient.
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