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Abstract: A majority automata is a two-state cellular automata, where each cell updates its state
according to the most represented state in its neighborhood. A question that naturally arises in
the study of these dynamical systems asks whether there exists an efficient algorithm that can be
implemented in order to compute the state configuration reached by the system at a given time-step.
This problem is called the prediction problem. In this work, we study the prediction problem for a
more general setting in which the local functions can be different according to their behavior in tie
cases. We define two types of local rules: the stable majority and biased majority. The first one remains
invariant in tie cases, and the second one takes the value 1. We call this class the heterogeneous majority
cellular automata (HMCA). For this latter class, we show that in one dimension, the prediction problem
for HMCA is in NL as a consequence of the dynamics exhibiting a type of bounded change property,
while in two or more dimensions, the problem is P-Complete as a consequence of the capability of
the system of simulating Boolean circuits.
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1. Introduction

Motivation. A majority automata can be defined as a two-state cellular automata (namely
with states −1 and 1) where in each synchronous step, each site takes the most represented
state in its neighborhood. The majority rule is one of the simplest defined rules, and appears
naturally in models from physics, biology, social phenomena, and elections systems [1–6]
For that reason, a common task consists of computationally simulating the dynamics that
arise given an initial finite configuration. A natural question asks what are the most efficient
algorithms that can be implemented in order to compute the state configuration reached at
a given time-step. This problem is known as the prediction problem.

The computational complexity of a computational task can be defined as the amount of
resources, such as time or space, needed to solve it. One fundamental set of computational
decision problems is the class P, which is the class of problems solvable in polynomial time
on a deterministic Turing machine. The class P is informally known as the class of problems
that admit an efficient algorithm.

Evidently, the prediction problem can be solved by simply simulating the dynamics of
the cellular automata for the given number of time-steps. This is called the trivial algorithm.
In [7] Goles et al. showed that the dynamics of the majority automaton reaches an attractor
in a number of time-steps that is linear in the size of the configuration. Moreover, the
reached attractor is either a fixed-point or a limit cycle of period two. This result implies
that the prediction problem can be solved in polynomial time. Therefore, if we aim to
solve the prediction problem more efficiently than the trivial algorithm, we would have to
classify it in a proper subclass of P.

The class of non-deterministic logarithmic space problems NL is the class of decision
task solvable by a non-deterministic logarithmic-space Turing machine. It is known that
NL ⊆ P, and it is a widely believed conjecture that the inclusion is proper. The problems in
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P that are the most likely to not belong to NL are the P-Complete problems, to which any
other problem in P can be reduced by a logarithmic-space reduction. If we could show that
some P-Complete problem belongs to NL, we would deduce that P = NL [8,9].

An example of a P-Complete problem is the circuit value problem (CVP), which
consists of determining the output of a given circuit with a particular configuration. Further,
the monotone circuit value problem (MCVP), i.e., only considering the gates AND and OR,
is also P-Complete. Intuitively, circuits are hard to compute quickly because in order to
compute a given layer of gates, it is necessary to know the state of the previous ones. For a
deeper understanding of circuit complexity, see [10–12].

In [9], Moore studied the computational complexity of the majority automata in a
d-dimensional lattice. He showed that in three or more dimensions, the prediction problem
is as hard as evaluating monotone circuits, which implies that the prediction problem is
P-Complete. Roughly speaking, this means that in order to compute the state in a given site,
the best option is to simulate the dynamics of the automaton until it reaches an attractor.
However, Moore suggested that in two dimensions with von Neumann neighborhood, it
would be possible to predict the dynamics much more efficiently.

The proof of P-completeness given in [9] consists of a series of three dimensional
gadgets used to simulate the different parts of a monotone circuit. While it is easy to
generalize these gadgets to more than three dimensions, the restriction to two dimensions
seems a much more (or even impossible) task. In fact, one of the main difficulties is that the
two-dimensional grid is a planar graph. The planar monotone circuit value problem (PMCVP)
is the restriction of MCVP to planar circuits. In [13], it is shown that PMCVP belongs
to the class NC. This class of problems are widely believed to be properly included in P.
In addition, it contains the class NL. Therefore, intuitively, a proof of P-completeness of
the two-dimensional majority should somehow manage to simulate wire crossings in a
planar topology.

In the same article, Moore also studied the biased majority automata (called half-or-more
automata [9]), which corresponds to the majority automata where the sites do not consider
their own state in the neighborhood, and privilege state 1 in tie cases. Moore stated that
the prediction problem for non-strict majority automaton is P-Complete in three or more
dimensions, and also conjectured that in two dimensions, the problem should be solved
more efficiently.

Heterogeneous majority. In this article, we study the prediction problem on a non-homogeneous
setting. We ask for the computational complexity the non-homogeneous cellular automata that
combine cells having the majority rule (which in the following we call stable majority rule) and
cells having the biased majority rule. Such automata are called the heterogeneous majority cellular
automata (HMCA). We show that in one dimension, the prediction problem for HMCA is in NL,
while in two or more dimensions, the problem is P-Complete.

Our result is based on two different techniques. For the one-dimensional case, we
show that the HMCA has a property that we call two-composition two-change. This property
means that independently of how we choose the local rules and the initial configuration,
a single cell can only change its state twice when we look only to the even time-steps of
the dynamic. We combine this observation with a result of [14,15], where it is shown that
the prediction problem is in NL for a group of one-dimensional cellular automata having a
property called bounded-change. For these cellular automata, the number of times a node
can change its state does not depend on the total amount of cells. Observe that this group
contains a well-studied class of rules having a property called freezing property in which the
cells update its state according to a partial order defined on the alphabet [15].

In two dimensions, we show that the combination of stable and biased majority rules
allows to simulate logic gates, as well as crossing gadgets that can be used to simulate
non-planar information transmission. This implies that the prediction problem in this case
is P-Complete.
Context. Our results are in line with a series of articles that aim to understand the
computational complexity of the majority rule by studying different variants of the problem.
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The freezing majority . The freezing property means that a site in state 1 remains in
that state in every future time step. Freezing automata model forest fires [16], infection
spreading [17], bootstrap percolation [18] and voting systems [9]. Theoretical facts about
those automata can be seen in [14].

The prediction problem for the freezing stable majority automata was studied by Goles et al.
in [19], where the authors showed that the in two dimensions, the prediction problem for
the freezing majority automata is in NC. At the same time, in three or more dimensions, the
prediction problem is P-Complete. Later, in [20,21], the authors showed an analogous result for
the freezing biased majority automata. In both articles, the efficient algorithms are based in some
topological properties of the set of stable sites, that is to say, the set of nodes initially in−1 that
never switch their state. Unfortunately, these topological properties are not preserved when
the freezing property is lifted. Hence, is unclear how to use the algorithms for freezing cases in
non-freezing cases.

Majority automata networks. Another approach consists of generalizing the majority
cellular automata from grids into an arbitrary graph. In that context, two perspectives have
been taken in order to show the P-completeness. In [22], it was shown that the prediction
problem for the majority rule is P-complete, even when the topology is restricted to planar
graphs where every node has an odd number of neighbors. The result is based in a crossing
gadget that uses a sort of traffic light that restricts the flow of information depending on
the parity of the time-step. Then, in [23], it is shown that the prediction problem for the
majority rule is P-complete when the topology is restricted to regular graphs of degree 3
(i.e., each node has exactly three neighbors). Both results are valid for the stable and biased
majorities, as these rules are equal when the nodes have an odd number of neighbors.

Signed majority. In [24], the authors studied the majority rule in two dimensional grids
where the edges have a sign. The signed majority consists of a modification of the majority
rule, where the most represented state in a neighborhood is computed multiplying the
state of each neighbor by the corresponding sign in the edge. The authors show that when
the configuration of signs is the same on every site (i.e., we have an homogeneous cellular
automata) then the dynamics and complexity of the signed majority is equivalent to the
standard majority. Interestingly, when the configuration of signs may differ from site to
site, the prediction problem is P-Complete.

Asynchronous prediction. A last variant considers the prediction problem under a
sequential updating scheme. More precisely, the asynchronous prediction problem asks for
the existence of a permutation of the cells that produces a change in the state of a given cell
in a given time-step. In fact, in [9], Moore suggested in this case it holds a similar dichotomy
than in the synchronous case: namely, the complexity in the two-dimensional case is lower
than in three or more dimensions. This conjecture was proven in [25], where it was shown
that the asyncrhonous prediction in two dimension is in NC, while it is NP-Complete in
three or more dimensions.

Organization of the Article

The article is organized as follows. In Section 2, we begin with the main formal
definitions used in the rest of the article. In Section 3, we show that in the one-dimensional
case, the heterogeneous majority rule is in NL. Then, in Section 4, we give the proof of the
P-completeness of the two-dimensional case. Finally, in Section 5, we give a discussion and
research perspectives.

2. Preliminaries

In this section, we give the formal definitions used along the article. We begin by defin-
ing the topologies that we consider, namely the one-dimensional, and the two-dimensional
grids. We continue defining the stable majority, biased majority and heterogeneous majority
cellular automata. We then formally define the Prediction problem.
Cellular Automata and Grids. Cellular automata are discrete dynamical systems defined
on a regular grid of cells, where each cell changes its state by the action of a local function
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or automata rule, which depends on the state of the cell and the state of its neighbors. In
this work, we will consider mainly two classes of grids.

First, we will consider the one-dimensional grid, where the cells are arranged in a line.
The neighborhoods in this case are defined by the adjacent cells, that is to say, the left and
right neighbors.

Second, we will consider the two-dimensional grid, where the cells are arranged in
a rectangle of square cells, and the neighbors of each cell are simply given by the nearest
cells. Thus, each cell has 4 neighbors. This definition of neighborhood is known in the
literature as a Von Neumann neighborhood. This notion can be generalized to three or
more dimensions in the obvious way.

In this model, each cell can only have a finite number of states. In this work, we
consider only cellular automata of two states, namely −1 and 1.

A configuration of the grid is a function x that assigns values in {−1, 1} to a region
in the d dimensional grid. For instance, if d = 2, a configuration of the two-dimensional
grid is given by a square area of n× n cells. The value of the cell u in the configuration x is
denoted as xu.

If u ∈ Zd, we will refer as N(u) to the neighborhood of the cell u. Depending on
the dimensions, a configuration x is considered to be defined over a cycle graph (one-
dimensional) or a torus (two-dimensional) by identifying each cell in the boundary of x as
a neighbor of the cells placed in the opposite boundary of x. In addition, for a cell u ∈ Zd,
we call xN(u) the restriction of x to the neighborhood of u. For a cellular automaton, the
size of the neighborhood of a cell is uniform, i.e., |N(u)| is the same for each cell. Morever,
we have that N(u) = N(0) + u.

Formally, a cellular automaton (CA) with states Q and local function f : Q|N(u)| → Q
is a map F : Qnd → Qnd

such that F(x)u = f (xN(u)). We call F the global function or the
global rule of the CA. The dynamic is defined by assigning to the configuration x a new state
given by the synchronous update of the local function on x. In addition, it is also possible
to define a function F by assigning to each cell a local function. In this case, it is possible
to assign different rules to each cell. We will focus, during this paper, on this particular case.

Stable and Biased Majorities. In this article, we focus on the majority cellular automata. In
this cellular automaton, each cell has one of two possible internal states (usually represented
by {−1, 1}). Each cell will change its state according to a majority local rule. In each time
step, this local rule forces each cell to take the most represented state in its neighborhood.
Since in this work we focus only on the case in which the amount of neighbors is even
(the Von Neumann neighborhood), there are some cases in which exactly one half of the
neighbors are in one state and the other half are in the other. In this tie case scenario, the
rule is not a priori defined. However, in the literature, different approaches are considered
to define transitions in tie case scenarios.

The first case is the one known as stable majority, in which, in the tie case scenario, the
rule preserves the original state of the cell. Thus, for example, if a cell is in state 1 and there
is a tie case scenario, it will remain in the state 1. Formally, the stable majority local rule is
defined by:

f (x)i =



1 if ∑
j∈N(i)

xj > 0,

xi if ∑
j∈N(i)

xj = 0,

−1 if ∑
j∈N(i)

xj < 0.

The second case that is considered in this work is the one of the biased majority, in
which, in a tie case scenario, a cell changes to a fixed state. Formally, for s ∈ {−1, 1}, the
1-biased majority local rule (or simply biased majority rule) is defined by:
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f s(x)i =



1 if ∑
j∈N(i)

xj > 0,

s if ∑
j∈N(i)

xj = 0,

−1 if ∑
j∈N(i)

xj < 0.

Finally, a d-dimensional heterogeneous majority automata corresponds to a function
F : {−1, 1}Zd 7→ {−1, 1}Zd

such that for every i ∈ Zd, F(x)i is either the stable or the biased
majority rule.

The prediction problem. In this paper, we focus on the prediction problem, which is a
decision problem such that one asks if the state of a given cell will change after t-time steps
for a given time. We provide hereunder a precise definition:

Prediction

• Input:

– A periodic configuration x ∈ {−1, 1}[n]d with d ≥ 1;
– An assignation of local rules for each cell ( fi)i∈[n]d , defining a global rule F;
– A time t ∈ N;
– A cell i ∈ Zd.

• Question: Ft(x)i 6= xi?

Bounded change cellular automata. A CA is k-change if the number of state changes of
any cell in any orbit is upper bounded by k, formally:

∀x ∈ {−1, 1}n, ∀i ≤ N : |t ∈ N : Ft+1(x)i 6= Ft(x)i| ≤ k.

A CA is bounded-change if it is k-change for some k. It has been proven in [15] that
for any one-dimensional bounded-change CA, the prediction problem is in the NL class.

3. One-Dimensional Case

In this section, we show that when restricted to one-dimension, the heterogeneous ma-
jority cellular automata can be efficiently predicted. Indeed, we show that when restricted
to d = 1, the problem Prediction belongs to NL. In fact, we show a stronger result: we
show that if we consider the dynamics given by two consecutive iterations of an arbitrary
one-dimensional HMCA, i.e., if we study the dynamics given by F2, where F is the global
rule of the HMCA, then we have that it defines a bounded-change cellular automata.

Proposition 1 ([15]). Restricted to one-dimensional bounded-change cellular automata, problem
Prediction is in NL.

Obviously, an HMCA is not bounded-change. For instance, if we take d = 1, n is even
and we define the configuration x that spatially alternates 1 and−1, we have that it induces
a limit cycle of period two, independently of the local rule (biased or stable) that we choose.
More precisely, if d = 1 and n is even, we can define for i ∈ {1, . . . , n}:

xi =

{
−1 if i is even

1 otherwise

We have that Ft+2(x) = Ft(x) for all t ≥ 0. Nevertheless, the situation is different
when we look at the evolution of the rule every two time-steps. More precisely, let F be the
global function of a one-dimensional HMCA, and let us call F2 = F ◦ F. In the following,
we show that F2 is bounded-change.
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Lemma 1. Let F be a one-dimensional HMCA. Then F2 is a two-change one-dimensional cellu-
lar automata.

Proof. For simplicity, in the following, we identify state −1 with 0. Our proof consists of
showing that, if a cell has a state transition from 0 to 1 under F2, then this cell will remain
fixed in state 1 on every following iteration of F2. This means that, in total, a cell can have
at most two state transitions under F2.

Let us denote by u an arbitrary cell such that there exists an even time-step t so that
xt

u = 0 and xt+2
u = 1. We claim that xt+2k

u = 1 for every k > 1. We separate the proof of our
claim in five cases, depending on the local functions of the cells adjacent to u. Let us call `
and r, respectively, the left and right neighbors of u.

In our figures, cell u is highlighted, and the local rules of the cells are specified by a “b”
or an “s”, meaning “biased” and “stable” majorities, respectively. For instance, the case bbs
is the case where u and ` have the biased majority, and r has the stable majority.

In our cases, we repeatedly use the following observations. First, if in a given time-step,
two adjacent cells are in state 1, then they will remain in state 1 in every future time-step
independently of the local functions. Second, if, in a given time-step, two adjacent cells are
in state 0, and the local function of both cells have is stable majority, then both cells will
remain in state 0 in every future time-step. Now we are ready to tackle the cases.

Case 1: bbb, bbs and sbb. Let us consider the case where u and ` have the biased majority
rule (case sbb is symmetric to bbs). Since u is in state 1 at time-step (t + 2), then at time-step
t + 3, cell ` will be in state 1, making u stay in state 1 in time-step t + 4. Inductively, we
conclude that xt+2k

u = 1 for every k > 1.

` u r
b b b/s

t · 0 ·
t + 1 · · ·
t + 2 · 1 ·
t + 3 1 · ·
t + 4 · 1 ·

Case 2: bsb. This case is similar to Case 1. If cell u reaches state 1 at time-step (t + 2), then
both neighbors will be in state 1 on time-step t + 3, which turns u into 1 in time-step t + 4.
Inductively, we conclude that xt+2k

u = 1 for every k > 1.

` u r
b s b

t · 0 ·
t + 1 · · ·
t + 2 · 1 ·
t + 3 1 · 1
t + 4 · 1 ·

Case 3: sbs. First notice that if r and ` are in state 0 on t, then the three cells will remain
fixed in state 0 in every future time-step, which contradicts the choice of u and t. Then, at
least one neighbor of u is in state 1 on t.

Without loss of generality, let us suppose that xt
` = 1. This implies that xt+1

u = 1, since
u has the biased majority rule. Moreover, since xt+2

u = 1, necessarily one neighbor of u is in
state 1 at time-step t + 1. This implies that in time-step t + 1, cell u and one of its neighbors
are simultaneously in state 1. This implies that xt+k

u = 1 for every k > 0.
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` u r
s b s

t 1 0 ·
t + 1 1 1 ·
t + 2 1 1 ·

` u r
s b s

t 1 0 ·
t + 1 · 1 1
t + 2 · 1 1

Case 4: sss. If the three cells are ruled by the stable majority, and at least one neighbor is in
state 0 at time-step t, then u will get fixed in 0, contradicting the choice of u and t. Then, we
assume that xt

` = xt
r = 1. This implies that xt+1

u = 1. Since xt+2
u = 1, then at least one of the

neighbors of u is in state 1 at time-step (t + 1) (in our figure below, we assume without loss
of generality that xt+1

r = 1). Then, we have two adjacent cells in state 1, making xt+k
u = 1

for every k > 0.

` u r
s s s

t 1 0 1
t + 1 · 1 1
t + 2 · 1 1

Case 5: bss and ssb. Let us study the case bss (the case ssb is symmetric). Observe that
xt

r = 1, because otherwise we will have two adjacent stable cells in 0 in the same time-step,
fixing them in every future time-step, contradicting the choice of t and u. Since xt+2

u = 1, at
least one of the neighbors of u has to be in 1 in time-step t + 1.

` u r
b s s

t · 0 1
t + 1 · · 1
t + 2 · 1 ·

` u r
b s s

t · 0 1
t + 1 1 · ·
t + 2 · 1 ·

If xt+1
u = 1, then we have that u and one of its neighbors are in state 1 in t+ 1, implying

that u and that neighbor get fixed in state 1 on every future time-step.

` u r
b s s

t 1 0 1
t + 1 · 1 1
t + 2 1 1 1

` u r
b s s

t 1 0 1
t + 1 1 1 ·
t + 2 1 1 ·

If xt+1
u = 0, then necessarily ` and r are in state 1 at time-step (t + 1). Since r has a

stable-majority local rule and xt
u = 0, then necessarily the right neighbor of r, namely w, is

in state 1 at time-step t. This means that xt+k
r = xt+k

w = 1 for every k > 0. This implies that
u and r are in state 1 at time-step t + 2, meaning that xt+1+k

u = 1 for every k > 0.

` u r w
b s s

t 0 0 1 1
t + 1 1 0 1 1
t + 2 · 1 1 1
t + 3 1 1 1 1

On all cases, we conclude that xt+2k
u = 1 for every k > 1. Therefore, the cellular

automata given by global function F2 is 2-change.

Theorem 1. Prediction is in NL for every one-dimensional HMCA.
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Proof. Let (F, x, t, i) be an input of the Prediction problem, where F is defined by some
assignation of local rules F . Let us denote G the global function F2. Observe that as a
consequence of Proposition 1, there exists a nondeterministic logarithmic-space algorithm
A solving the Prediction problem. Suppose first that t is even. In this case, we simply run A
on input (G, x, t/2, i). Observe that Gt/2(x)i = Ft(x)i. This implies that the output of A on
input (G, x, t/2, i) is the answer of Prediction on input (F, x, t, i).

Suppose now that t is odd. In this case, we run A on inputs

(G, x, (t− 1)/2, i− 1), (G, x, (t− 1)/2, i) and (G, x, (t− 1)/2, i + 1).

From the outputs given byA, we can deduce the values of G(t−1)/2(x)i−1, G(t−1)/2(x)i
and G(t−1)/2(x)i+1. These values correspond to the states of cells i− 1, i and i+ 1 in Ft−1(x).
Finally, using the local function of i, we can compute Ft

i (x) and decide the output. We
deduce that Prediction is in NL.

4. Two-Dimensional Case

In this section, we give evidence that Prediction is harder to compute in the two-
dimensional case than in the one-dimensional case. More precisely, we show that with the
right combination of local functions and cell states, it is possible to simulate any monotone
Boolean circuit in the two-dimensional grid. Hence, the prediction problem for the two-
dimensional HMCA is P-Complete.

Theorem 2. When restricted to two-dimensional HMCA with the von Neumann neighborhood,
the Prediction problem is P-Complete.

Proof. To show that PRE is P-complete we reduce the monotone circuit value problem to it.
To do so, we simulate the input and the different parts of a Boolean circuit using a certain
combination of biased and stable rules on a certain initial configuration.

In fact, according to [24], it is enough to construct a series of gadgets, namely wires,
conjunction and disjunction gates, together with a cross-over and signal multipliers. These
gadgets have to be of constant size and have to have two inputs and two outputs consistently
fulfilling that the inputs are in the west and north side and the outputs are in the east and
south side of the gadget. Furthermore, any rotation of these orientation constraints is valid.
Additionally, inputs and outputs have to be placed in such a way that when two gadgets
are put together, one of the outputs of one matches one of the inputs of the other. We follow
this approach and build gadgets satisfying these conditions.

First, we explain how to simulate wires, i.e., gadgets that allow us to propagate signals
through the grid. Wires are made by three rows (columns) of cells with the biased majority
rule, two of them fully in the state +1, while the other one remains in the state −1. To have
a TRUE signal, turn the first two cells of one side of the wire to +1. An example of a wire is
depicted in Figure 1.

Figure 1. Examples of the functioning of wires. On the (left), we have wire initialized as a FALSE
signal. In the (middle), we have a wire initialized as a TRUE signal. On the (right), we have a wire
with a TRUE signal after four time steps.

In all our figures, we use the colors black ( ) and white ( ) to represent states −1 and
+1 of the cells with the stable majority rule, while cyan ( ) and orange ( ) represent states
−1 and +1 for the cells with the biased majority rule. Notice that for a wire to work, it
needs a background of stable cells in state −1.

Next, we show how to simulate logic gates. Since we only simulate monotone circuits,
we need to simulate conjunction and disjunciton gates with fan-in 2 and fan-out 2. Our
gadgets, which we call logic gadgets, are depicted in Figure 2.
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(a) (b)

Figure 2. Logic gadgets that simulate conjunction gates (a) and disjunction gates (b).

Conjunction gates output TRUE only when both inputs are TRUE. In Figure 3, we
show the evolution of a conjunction gadget in different combinations of input values. The
disjunction gate construction is similar (see Figure 2b), but its outputs are TRUE with at
least one TRUE input.

t = 0 t = 12 t = 38

t = 0 t = 12 t = 13

t = 0 t = 12 t = 13

Figure 3. Behavior of the conjunction gadget when two inputs are TRUE (top), when the left input is
TRUE (middle) and when only the top input is TRUE (bottom).
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To simulate any circuit, we need to cross signals, but since the HMCA space is a planar
graph, it is not evident that we can do it. In order to do so, we created a cross-over gadget
(Figure 4) that can distinguish one signal from the other by using the oscillating behavior
of the HMCA as “traffic lights”, letting the west signal go through its east output only and
the north signal through the south output only. For an example, see Figure 5. In the case
both signals are TRUE, the cross-over gadget works as a conjunction gate. No prior signal
coordination is needed.

Figure 4. Cross-over gadget.

t = 0 t = 7 t = 8

t = 14 t = 26 t = 39

Figure 5. Cross-over gadget behavior with one TRUE input.

Finally, as the space is an undirected graph, but circuits are defined over directed graph,
we need diodes making the signals going only in directions west-east and north-south
(Figure 6). For a better understanding of the diode behavior, see Figures 7 and 8.
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(a) (b)

Figure 6. Diode gadgets. The vertical diode allows signal to pass only from top to bottom, while the
horizontal diode allows the signal to go only from left to right. (a) Vertical diode; (b) horizontal diode.

t = 0 t = 6 t = 7 t = 14

Figure 7. Horizontal diode behavior when a signal comes from the west.

t = 0 t = 5 t = 6

Figure 8. Horizontal diode behavior when a signal comes from the east.

These diodes have to be appended to every gadget’s outputs. In Figure 9, we depict
the complete conjunction, disjunction and crossing gadgets, including the output diodes.
Observe that, in at most 39 time-steps, the gadgets will produce the output values. In fact,
the latter upper-bound is uniform for all the gadgets.

Figure 9. Disjunction (left), Conjunction (middle) and crossing gadgets (right) including their
output diodes.

5. Conclusions

In this paper, we study the computational complexity of the HMCA in one and two-
dimensional grids. For the one-dimensional HMCA, the prediction problem turns out to be
in the class NL while in two dimensions it is P-Complete.

On the upper-bound side, we showed that the dynamic given by two iterations of the
HMCA induce a 2-change CA. Obviously, this property is preserved when a homogeneous
(biased or stable) one-dimensional majority cellular automata is considered. We believe
that such a property can be extended to more dimensions. Nevertheless, it is unlikely that
such techniques can be extended to show non-trivial complexity upper-bounds for the
Prediction problem. Indeed, there exist two-dimensional bounded-change (even 1-change)
cellular automata that are P-Complete(see, for instance, [21]).

Our proof of P-completeness shows that it is possible to simulate cable crossings in a
two-dimensional grid under monotone dynamics. Whether this property can be preserved
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using a uniform majority automata is a difficult open question that remains open. In
addition, a related question that could be interesting to explore is whether we can simulate
circuits using another type of tie-breaking rules, such as the unstable majority, in which, in
the tie case, a cell will always change its state. Finally, another interesting open question is
the one related to the simulation capabilities of HMCA equipped with other neighborhood
topologies, such as the Moore neighborhood or the Toom neigborhood.
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