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Abstract: Subgroup analysis with survival data are most essential for detailed assessment of the
risks of medical products in heterogeneous population subgroups. In this paper, we developed a
semiparametric mixture modeling strategy in the proportional odds model for simultaneous subgroup
identification and regression analysis of survival data that flexibly allows the covariate effects to
differ among several subgroups. Neither the membership or the subgroup-specific covariate effects
are known a priori. The nonparametric maximum likelihood method together with a pair of MM
algorithms with monotone ascent property are proposed to carry out the estimation procedures.
Then, we conducted two series of simulation studies to examine the finite sample performance of
the proposed estimation procedure. An empirical analysis of German breast cancer data is further
provided for illustrating the proposed methodology.

Keywords: heterogeneous covariate effects; mixture of proportional odds model; MM algorithm;
nonparametric maximum likelihood
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1. Introduction

In some clinical trials, a substantial proportion of patients respond favorably to a new
treatment while the others may eventually relapse. Subgroup analyses aim to classify the
patients into a few homogeneous groups and tailor a disease treatment specifically for
each subgroup to optimize the treatment effect. In recent years, subgroup identification
has received increasing attention in a wide range of fields such as clinical trials, public
management, econometrics, and social science. For example, Refs. [1,2] conducted sub-
group analysis in econometrics and marketing, while Refs. [3,4] implemented the subgroup
analysis in epidemiology and biology, respectively.

Statistical methods for subgroup analysis have also been greatly developed recently.
Among them, a finite mixture model has been recognized as an important tool and has been
widely used for analyzing data from a heterogeneous population [5]. For example, there are
many studies on the Gaussian mixture model for data clustering and classification [6–8].
Ref. [9] introduced a structured logistic-normal mixture model to identify subgroups in
randomized clinical trials with differential treatment effects. Refs. [10,11] extended the
mixture model-based approach to generalized linear models. Bayesian approaches for
mixture regression models are studied by [12]. Moreover, nonparametric mixture models
have also been under study in recent years. Ref. [13] studied a nonparametric mixture
model for cure rate estimation. Ref. [14] studied a semiparametric accelerated failure
time mixture model for estimation of a biological treatment effect on a latent subgroup of
interest in randomized clinical trials. Ref. [15] proposed a semiparametric Logistic–Cox
mixture model for subgroup analysis when the interested outcome is event time with
right censoring.
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Mixture models are deeply connected to the expectation–maximization (EM) algorithm.
The EM algorithm is a popular approach for maximum likelihood estimation in incomplete
data problems, of which finite mixtures are canonical examples because the unobserved
labels of the individuals (as in unsupervised clustering) give a direct interpretation of
missing data [16]. Actually, the EM algorithm is a special member of the general family of
MM algorithms [17]. The MM algorithm possesses great flexibility in solving optimization
problems because the basic idea of MM algorithm is to convert a difficult optimization
problem into a series of simpler ones. The MM algorithm has been a powerful tool for
optimization problems and enjoys its greatest vogue in computational statistics. Thus far,
the MM algorithm has been widely used in many statistical optimization problems. We
can find applications of MM principle in a broad range of statistical contexts, including the
Bradley–Terry model [18], quantile regression [19], variable selection [20,21], the propor-
tional odds model [22], the shared frailty model [23], distance majorization [24] and so on.
The key property of MM principle is that it can decompose a high-dimensional objective
function into separable low-dimensional functions by the construction of surrogate func-
tion. In this paper, we introduce the general MM principle to the semiparametric mixture of
proportional odds model for simultaneous subgroup identification and regression analysis.

The rest of the paper is organized as follows. We first review the MM algorithm in
Section 2. In Section 3, we present the latent proportional odds model and develop a pair
of estimation procedures for the proposed model using the MM algorithm. In Section 4, we
provide two parts of simulation studies to select the number of subgroups and assess the
finite-sample performances of the proposed methods. We further provide an application
of the German breast cancer study data to illustrate the practical utilities of the proposed
methods in Section 5.

2. MM Principle

The MM algorithm is an important and powerful tool for optimization problems
and enjoys its greatest vogue in computational statistics. For example, `(α|Yobs) is the
objective log-likelihood function, α = (α1, . . . , αq)T ∈ Θ are the vector of parameters to be
estimated, and Θ is the parameter space. The maximum likelihood estimate of α is α̂ =
arg maxα∈Θ `(α|Yobs). The MM principle provides a general frame for constructing iterative
algorithms with monotone convergence, which involves double duty. In maximization
problems, the first M stands for minorize and the second M for maximize. The minorization
step first constructs a surrogate functionQ(α|α(k)) such that

Q(α|α(k)) ≤ `(α|Yobs), ∀α, α(k) ∈ Θ, Q(α(k)|α(k)) = `(α(k)|Yobs), (1)

where α(k) denotes the current estimate of α in the k-th iteration. The maximization step
then updates α(k) by α(k+1), which maximizes the surrogate function Q(·|α(k)) instead of
`(α|Yobs), that is,

α(k+1) = arg max
α∈Θ

Q(α|α(k)).

Since
`(α(k+1)|Yobs) ≥ Q(α(k+1)|α(k)) ≥ Q(α(k)|α(k)) = `(α(k)|Yobs),

the constructed MM algorithm can increase the objective function at each iteration and
possess the ascent property driving the objective optimization function `(α|Yobs) uphill.

3. Proportional Odds Model with Individual-Specific Covariate Effects

Let T be time to event. The proportional odds model postulates that

λi(t | X) =
λ0(t) exp

(
X>i β

)
1 + Λ0(t) exp

(
X>i β

) ,
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where λi(t) is the hazard function of Ti given the covariates Xi. Let the conditional survival
function of T be S(t|X) = P(T > t|X). We know that λ(t|X) = − d(− log S(t|X))

dt . In the
proportional odds model, β is the regression coefficients, quantifying the effect of the
covariates X on the time to event T through the conditional hazard function. It is assumed
to be the same for all subjects in the population. In practice, however, subjects may
come from different subgroups, the covariate effects may differ and therefore it is more
appropriate to assume the following proportional odds model with individual-specific
covariate effects:

λi(t | X) =
λ0(t) exp

(
X>i βi

)
1 + Λ0(t) exp

(
X>i βi

) .

In this model, we assume that the covariate effects βi for the subject i may differ. For both
parsimony and better interpretation, it is reasonable to assume that βi = β0,m with probabil-
ity πm, m = 1, ...M. In other words, there are only M different subgroups for the covariate
effects βi, where β0,m, m = 1, ..., M are M different regression coefficients. It is of our
interest to estimate the number of groups M, β0,m, m = 1, ..., M and πm, m = 1, ..., M. Note

that
M
∑

m=1
πm = 1.

3.1. Heterogeneity Regression Pursuit via MM Algorithm

The joint density function of (T, δ) can be written as

f (t, δ|X) =
M

∑
m=1

πm fm(t, δ|X)

where

fm(t, δ|X) =

{
λ0(t) exp

(
X>βm

)
1 + Λ0(t) exp

(
X>βm

)}δ
1

1 + Λ0(t) exp
(
X>βm

)
denotes the density function of the m-th subgroup, m = 1, 2, ..., M, βm is the corre-
sponding effect parameter of X in the m-th subgroup. Given the observed data Yobs =
({ti}n

i=1, {di}n
i=1, {Xi}n

i=1), we have the observed log-likelihood function as

`(Λ0, β, π|Yobs) =
n

∑
i=1

log

{
M

∑
m=1

πm fm(ti, δi|Xi)

}
.

where Λ0(t) = ∑n
i I(ti 6 t)λ0(ti), β = (βT

1 , . . . , βT
M)T , π = (π1, . . . , πM). Given the

parameters in the k-th iteration and denoting

υ
(k)
mi =

π
(k)
m · f (k)m (ti, δi|Xi)

∑K
m=1 π

(k)
m · f (k)m (ti, δi|Xi)

,

then we can rewrite `(Λ0, β, π|Yobs) as

`(Λ0, β, π|Yobs) =
n

∑
i=1

log

{
M

∑
m=1

υ
(k)
mi ·

πm · fm(ti, δi|Xi)

υ
(k)
mi

}
. (2)

By the continuous version of Jensen’s inequality as ϕ
(∫

Ω f (x) · g(x)dx
)
≥
∫

Ω ϕ( f (x)) ·
g(x)dx, we can transfer the function ϕ(·) outside the integral to the inside of the inte-
gral, where g(x) is a density function. Inspired by this feature, we construct a density
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function υ
(k)
mi in Equation (2) which plays the role of function g(x), the rest of the part

πm · fm(ti, δi|Xi)/υ
(k)
mi plays the role of function f (x). By the following calculation,

n

∑
i=1

log

{
M

∑
m=1

υ
(k)
mi ·

πm · fm(ti, δi|Xi)

υ
(k)
mi

}
>

n

∑
i=1

M

∑
m=1

υ
(k)
mi ·

{
log πm + log fm(ti, δi|Xi)

}
,

the logarithmic function on the outside is transferred to the inside of the integral, which
breaks down the product terms into a summation. Hence, we construct the surrogate
function for `(Λ0, β, π|Yobs) as

Q(Λ0, β, π|Λ(k)
0 , β(k), π(k)) =

n

∑
i=1

M

∑
m=1

υ
(k)
im ·

{
log πm + log fm(ti, δi|Xi)

}
,

=̂Q(π|Λ(k)
0 , β(k), π(k)) + Q(Λ0, β|Λ(k)

0 , β(k), π(k)),

where

Q(π|Λ(k)
0 , β(k), π(k)) =

n

∑
i=1

M

∑
m=1

υ
(k)
im · log πm, (3)

and

Q(Λ0, β|Λ(k)
0 , β(k), π(k))

=
n

∑
i=1

M

∑
m=1

υ
(k)
im log fm(ti, δi|Xi),

=
n

∑
i=1

δi log λ0(ti) +
n

∑
i=1

M

∑
m=1

υ
(k)
im δiX>i βm −

n

∑
i=1

M

∑
m=1

υ
(k)
im (δi + 1) log

[
1 + Λ0(ti) exp(X>i βm)

]
.

(4)

The surrogate function Q(Λ0, β, π|Λ(k)
0 , β(k), π(k)) separates the parameters π and

(Λ0, β) into (3) and (4), respectively. All the parameters {πm}K
m=1 in (3) are separated from

each other so that updating πm is as straightforward as

π̂m =
∑n

i=1 υ
(k)
im

n
, m = 1, . . . , M. (5)

To update (Λ0, β), we apply the supporting hyperplane inequality to Equation (4) to
release the object x from the logarithmic function,

− log(x) ≥ − log(x0)−
x− x0

x0
,

we have

− log
[
1 + Λ0(ti) exp

(
X>i βm

)]
≥− log(A(k)

im )

−
1 + Λ0(ti) exp

(
X>i βm

)
− A(k)

im

A(k)
im

,

whereA(k)
im = 1 + Λ(k)

0 (ti) exp
(

X>i β(k)
m

)
. Then, we obtain the following surrogate function

for Q(Λ0, β|Λ(k)
0 , β(k), π(k)),

Q1(Λ0, β|Λ(k)
0 , β(k), π(k))

=
n

∑
i=1

δi log λ0(ti) +
n

∑
i=1

M

∑
m=1

υ
(k)
im δiX>i βm −

n

∑
i=1

M

∑
m=1

υ
(k)
im (δi + 1)

Λ0(ti) exp(X>i βm)

A(k)
im

.
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3.2. Profile MM Method

Following [25,26], we consider the profile estimation approach and first profile out Λ0

in Q1(Λ0, β|Λ(k)
0 , β(k), π(k)) for any given β. This leads to the estimate of Λ0 given β as

λ̂0(ti) =
δi

∑n
j=1 I

(
tj > ti

)
∑M

m=1 υ
(k)
jm
(
δj + 1

)
exp

(
X>j βm

)
/A(k)

jm

. (6)

Substituting (6) into Q1(Λ0, β|Λ(k)
0 , β(k), π(k)) yields the function

Q2(β|Λ(k)
0 , β(k), π(k))

=
n

∑
i=1

M

∑
m=1

υ
(k)
im δiX>i βm −

n

∑
i=1

δi log

[
n

∑
j=1

I
(
tj > ti

) M

∑
m=1

υ
(k)
jm
(
δj + 1

)
exp

(
X>j βm

)
/A(k)

jm

]
.

We use the supporting hyperplane inequality again to deal with Q2(β|Λ(k)
0 , β(k), π(k)), then

we obtain the follwing Q3(β|Λ(k)
0 , β(k), π(k)) where all βm(m = 1, . . . , M) are separated

from each other,

Q3(β|Λ(k)
0 , β(k), π(k))

=
n

∑
i=1

M

∑
m=1

υ
(k)
im δiX>i βm −

n

∑
i=1

δi
∑n

j=1 I
(
tj > ti

)
∑M

m=1 υ
(k)
jm
(
δj + 1

)
exp

(
X>j βm

)
/A(k)

jm

B(k)
i

=
M

∑
m=1

 n

∑
i=1

υ
(k)
im δiX>i βm −

n

∑
i=1

δi
∑n

j=1 I
(
tj > ti

)
υ
(k)
jm
(
δj + 1

)
exp

(
X>j βm

)
/A(k)

jm

B(k)
i


=

M

∑
m=1

Q3(βm|Λ
(k)
0 , β(k), π(k)),

where B(k)
i = ∑n

j=1 I
(
tj > ti

)
∑M

m=1 υ
(k)
jm
(
δj + 1

)
exp

(
X>j β(k)

m

)
/A(k)

jm . Finally, the estimate of
each βm can be obtained by one step Newton iteration.

3.3. Non-Profile MM Method

For the above profile MM method, the estimate of Λ0 is highly related to the estimate
of β because we treat nonparametric component Λ0 as a function of β in the profile
step. Inspired by the parameter-separable property of the MM principle, we further
separate the nonparametric part Λ0 with the β according to the decomposition rules. That
is, we use the following inequality of arithmetic and geometric means to the function
Q1(Λ0, β|Λ(k)

0 , β(k), π(k)) as

−
n

∏
i=1

xai
i ≥ −

n

∑
i=1

ai
‖a‖1

x‖a‖1
i .

Here, we let x1 = Λ0(ti)/Λ(k)
0 (ti) and x2 = exp(X>i βm)/ exp(X>i β(k)

m ), then we have

−
Λ0(ti) exp(X>i βm)

Λ(k)
0 (ti) exp(X>i β(k)

m )
≥ −

Λ2
0(ti)

2Λ2(k)
0 (ti)

−
exp(2X>i β(k)

m )

2 exp(2X>i β(k)
m )

.

That is,

−Λ0(ti) exp(X>i βm) ≥ −
exp(X>i β(k)

m )

2Λ(k)
0 (ti)

Λ2
0(ti)−

Λ(k)
0 (ti)

2 exp(X>i β(k)
m )

exp(2X>i βm).
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Substituting the above inequality back to Q1(Λ0, β|Λ(k)
0 , β(k), π(k)), we may obtain

Q4(Λ0, β|Λ(k)
0 , β(k), π(k))

=
n

∑
i=1

δi log λ0(ti) +
n

∑
i=1

M

∑
m=1

υ
(k)
im δiX>i βm

−
n

∑
i=1

M

∑
m=1

υ
(k)
im (δi + 1)

[
exp(X>i β(k)

m )

2Λ(k)
0 (ti)

Λ2
0(ti) +

Λ(k)
0 (ti)

2 exp(X>i β(k)
m )

exp(2X>i βm)

]
/A(k)

im

=̂Q4(Λ0|Λ
(k)
0 , β(k), π(k)) + Q4(β|Λ(k)

0 , β(k), π(k)),

where

Q4(Λ0|Λ
(k)
0 , β(k), π(k)) =

n

∑
i=1

δi log λ0(ti)−
n

∑
i=1

M

∑
m=1

υ
(k)
im (δi + 1)

exp(X>i β(k)
m )

2Λ(k)
0 (ti)

Λ2
0(ti)/A(k)

im

and
Q4(β|Λ(k)

0 , β(k), π(k))

=
n

∑
i=1

M

∑
m=1

υ
(k)
im δiX>i βm −

n

∑
i=1

M

∑
m=1

υ
(k)
im (δi + 1)Λ(k)

0 (ti)

2 exp(X>i β(k)
m )

exp(2X>i βm)/A(k)
im .

It is observed that the parameters Λ0 and βm are completely separated, then the corre-
sponding parameter estimators can be obtained by differentiating them separately. Letting
∂Q4(Λ0|Λ

(k)
0 , β(k), π(k))/∂Λ0 = 0, we obtain the estimate of Λ0 by

λ̂0(ti) =
δi

∑n
j=1 I

(
tj > ti

)
∑M

m=1 υ
(k)
jm
(
δj + 1

)
exp

(
X>j βm

)
/A(k)

jm

.

To update βm, we calculate the first and second derivatives of Q4(β|Λ(k)
0 , β(k), π(k)) as

follows:

Q′4βm
(β|Λ(k)

0 , β(k), π(k))

=
n

∑
i=1

M

∑
m=1

υ
(k)
im δiX>i −

n

∑
i=1

M

∑
m=1

υ
(k)
im (δi + 1)Λ(k)

0 (ti)

exp(X>i β(k)
m )

exp(2X>i βm)X>i /A(k)
im

and

Q′′4βm
(β|Λ(k)

0 , β(k), π(k)) = −
n

∑
i=1

M

∑
m=1

υ
(k)
im (δi + 1)Λ(k)

0 (ti)

exp(X>i β(k)
m )

exp(2X>i βm)X>i Xi/A(k)
im .

Then, βm can be estimated by

β(k+1)
m = β(k)

m −Q′′4βm
(β(k)

m |Λ
(k)
0 , β(k), π(k))−1Q′4βm

(β(k)
m |Λ

(k)
0 , β(k), π(k)).

4. Simulation Study

According to the estimation equation derived in previous sections, we simulate the
data to analyze the estimation result at finite sample size. As the number of groups M in
the mixture of proportional odds model is unknown and will be estimated by a data-driven
manner. Here, we use the modified Bayesian information criterion (BIC [19]) to choose the
number of components M by minimizing the criterion function:

BICM = −2 ∗ `(Λ̂0, β̂, π̂|Yobs) + M ∗ q ∗ log(n).
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where n is the sample size and q is the dimension of βm. Note that this is strictly related to
the marginal likelihood computation as can be seen in [27–29].

Scenario 1. We generate clustered right-censored data from a mixture of proportional
odds model with two subgroups and two covariates

λi(t | X) =
λ0(t) exp

(
X>i βi

)
1 + Λ0(t) exp

(
X>i βi

) ,

where the two covariates Xi1 and Xi2 are independent and follow the standard normal
distribution, Λ0(t) = (t/2)2, We randomly assign the sample size n into two subgroups
with equal probabilities, i.e., we let P(i ∈ G1) = P(i ∈ G2) = 0.5 so that βi = (3,−1)>

for i ∈ G1, βi = (−3, 2)> for i ∈ G2. We choose different sample sizes n = 150, 250, 500
and set the censoring proportion at 30% to assess their performance of the proposed
estimation procedures.

Table 1 reports the mean and median of the estimator M̂ and the proportion of M̂ equal
to the true number of subgroups based on 500 replications. Table 2 reports the empirical
bias, mean square error (MSE), and standard error (s.d.) of the estimators π̂, β1, and β2
based on 500 replications. We found that the mean of M̂ gradually approaches the true
number of subgroups 2, and the median of M̂ remains at 2, and the proportion of correctly
identifying the true number of subgroups is close to 1 with the increase of sample size.
Moreover, our methods can estimate the parameters well with small empirical bias, small
MSE, and small standard error, even at small sample sizes.

Table 1. The mean, median, standard error (s.d.), and the proportion (Pro) of M̂ in Scenario 1.

Method n Mean Median Pro

Profile MM
150 2 2 1

250 2.03 2 0.97

500 2 2 1

Non-profile MM
150 2.03 2 0.97

250 2.03 2 0.97

500 2.005 2 0.995

Table 2. Parameter estimation results in Scenario 1.

n Parameter True
Profile MM Non-Profile MM

BIAS MSE s.d. BIAS MSE s.d.

150 π1 0.5 −0.0014 0.0029 0.0543 −0.0035 0.0032 0.0565
β11 3 0.0162 0.1731 0.4162 0.0235 0.1812 0.4255
β12 −1 −0.0216 0.0977 0.3122 0.0047 0.0925 0.3045
β21 −3 −0.0085 0.1785 0.4228 −0.0233 0.1913 0.4372
β22 2 −0.0011 0.1234 0.3516 0.0332 0.1267 0.23548

250 π1 0.5 0.0013 0.0019 0.0441 0.0018 0.0017 0.0417
β11 3 −0.0106 0.0911 0.3019 −0.0112 0.1038 0.3222
β12 −1 −0.0119 0.0551 0.2347 −0.0134 0.0487 0.2206
β21 −3 −0.0100 0.1068 0.3270 −0.0067 0.1030 0.3212
β22 2 0.0032 0.0744 0.2730 −0.0059 0.0724 0.2693

500 π1 0.5 0.0002 0.0008 0.0287 −0.0014 0.0008 0.0277
β11 3 0.0089 0.0431 0.2076 0.0085 0.0462 0.2150
β12 −1 −0.0082 0.0240 0.1550 0.0043 0.0220 0.1483
β21 −3 −0.0096 0.0485 0.2202 −0.0158 0.0434 0.2079
β22 2 0.0076 0.0318 0.1784 −0.0053 0.0349 0.1870
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Scenario 2. We generate right-censored data from a proportional odds model with
three covariates

λi(t | X) =
λ0(t) exp

(
X>i βi

)
1 + Λ0(t) exp

(
X>i βi

) ,

where the three covariates Xi1, Xi2 and Xi3 are independent and follow the standard normal
distribution. We set β = (1,−3, 2)> and Λ0(t) = (t/2)2 for all subjects. Note that the model
corresponds to the latent proportional odds model with the true number of subgroups
M being 1. We set the censoring proportion at 30% and choose different sample sizes
n = 250, 500 to assess their performance of the proposed estimation procedures.

Table 3 reports the mean and median of the estimator M̂ and the proportion of M̂ equal
to the true number of subgroups based on 200 replications. Table 4 reports the empirical
bias, mean square error (MSE), and standard error (s.d.) of the estimators β based on 500
replications. Based on the profile MM method, we observed that the median of M̂ is equal
to the true number 1, the mean also gets closer to 1, and the empirical percentage of M̂ is
close to 1 as the sample size increases. Based on the non-profile MM method, we found that
the mean and median of M̂ are both the true number 1, and the proportion of M̂ is 1 when
the sample sizes are 250 and 500. Furthermore, our methods show excellent performance
in parameter estimation. We obtain great estimates of β under different sample sizes.

Table 3. The mean, median, and the proportion (Pro) of M̂ in Scenario 2.

Method n Mean Median Pro

Profile MM 250 1.005 1 0.995

500 1 1 1

Non-profile MM 250 1 1 1

500 1 1 1

Table 4. Parameter estimation results in Scenario 2.

n Parameter True
Profile MM Non-Profile MM

BIAS MSE s.d. BIAS MSE s.d.

250 β1 1 0.0021 0.0185 0.1361 −0.0049 0.0206 0.1436
β2 −3 0.0194 0.0517 0.2268 0.0078 0.0449 0.2121
β3 2 −0.0190 0.0319 0.1779 0.0060 0.0309 0.1760

500 β1 1 −0.0012 0.0093 0.0966 0.0004 0.0097 0.0986
β2 −3 −0.0014 0.02439 0.1563 0.0001 0.0247 0.1574
β3 2 0.0114 0.0167 0.1288 −0.0013 0.0149 0.1221

Scenario 3. We generate clustered right-censored data from a mixture of proportional
odds model with two subgroups and two correlated covariates

λi(t | X) =
λ0(t) exp

(
X>i βi

)
1 + Λ0(t) exp

(
X>i βi

) ,

where the two covariates are generated from a multivariate normal distribution with mean
zero and a first-order autoregressive structure ρ|r−s| for r, s = 1, 2. Set Λ0(t) = (t/2)2,
sample size n = 200. Then, we randomly assign the sample size n into two subgroups
with equal probabilities, i.e., we let P(i ∈ G1) = P(i ∈ G2) = 0.5 so that βi = (3,−1)>

for i ∈ G1, βi = (−3, 2)> for i ∈ G2. We choose different values of ρ with ρ = 0.2, 0.8
and set the censoring proportion at 30% to assess their performance of the proposed
estimation procedures.

Table 5 reports the mean and median of the estimator M̂ and the proportion of M̂ equal
to the true number of subgroups based on 500 replications. Table 6 reports the empirical
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bias, mean square error (MSE), and standard error (s.d.) of the estimators π̂, β1, and β2
based on 500 replications. In Table 5, the results of the profile MM method and non-profile
MM method are basically consistent, the proportions of M̂ are very close to 1 and the
smaller the value of ρ, the larger the value of Pro. it shows that our proposed methods can
accurately identify the number of subgroups. In Table 6, the estimation results at a smaller
value of ρ perform better and more stably than the results at a larger value of ρ for both the
profile MM method and the non-profile MM method.

Table 5. The mean, median, and the proportion (Pro) of M̂ in Scenario 3.

Method ρ Mean Median Pro

Profile MM 0.2 2.005 2 0.995

0.8 2.015 2 0.985

Non-profile MM 0.2 2.005 2 0.995

0.8 2.015 2 0.985

Table 6. Parameter estimation results in Scenario 3.

ρ Parameter
Profile MM Non-Profile MM

BIAS MSE s.d. BIAS MSE s.d.

0.2 π1 0.0003 0.0023 0.0487 −0.0036 0.0023 0.0484
β11 0.0285 0.1228 0.3502 −0.0146 0.1356 0.3689
β12 0.0161 0.0625 0.2502 0.0095 0.0822 0.2873
β21 −0.0356 0.1194 0.3446 −0.0021 0.1351 0.3684
β22 −0.0149 0.0866 0.2945 −0.0059 0.0918 0.3037

0.8 π1 0.0023 0.0043 0.0661 −0.0022 0.0039 0.0630
β11 0.0251 0.2466 0.4972 −0.0131 0.2413 0.4923
β12 −0.0155 0.1753 0.4195 −0.0005 0.1648 0.4070
β21 −0.0990 0.3442 0.5797 −0.0209 0.2590 0.5098
β22 0.0965 0.2601 0.5020 0.0108 0.2128 0.4624

5. Real Data Analysis

Now, we apply the proposed method to analyze the German Breast Cancer Study
data which can be available from R package “pec”. The data contain the observations
of 686 women where the censoring rate is 56.41%. In order to analyze whether there
is heterogeneity in the data, we consider “tgrade(I vs. III, II vs. III )” and “pnodes” as
explanatory variables of interest, where “tgrade” indicates tumor grade which is an ordered
factor at levels I vs. III or II vs. III, “pnodes” indicates the number of positive lymph nodes.
Then, we use the BIC criterion function to determine the number of subgroups M. In Table 7,
we report the maximum log-likelihood values (LL), the BIC values (BIC), and the estimated
parameters under the number of subgroups M = 1, 2, 3. Based on the results in Table 7,
we found that the optimal M is 1 by comparing the BIC values. The estimated regression
coefficients are detailed in Table 7.
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Table 7. Estimation results for breast cancer data.

Method M LL BIC Estimated Parameters

Profile MM

1 −2049.165 4117.923 β̂ = (−1.3489,−0.3919,−0.0937)

2 −2046.936 4133.057 π̂1 = 0.7012, β̂1 = (−1.2093,−0.0392, 0.0630)
π̂2 = 0.2988, β̂2 = (−1.6508,−1.2284, 0.2415)

3 −2044.792 4148.361
π̂1 = 0.2680, β̂1 = (−1.6517,−1.4040, 0.2596)
π̂2 = 0.0757, β̂2 = (−2.1672, 0.5394, 0.5748)

π̂3 = 0.6563, β̂3 = (−1.1245,−0.0477, 0.0658)

Non-profile MM

1 −2049.165 4117.923 β̂ = (−1.3489,−0.3918,−0.0937)

2 −2046.936 4133.057 π̂1 = 0.7012, β̂1 = (−1.2093,−0.0393, 0.0630)
π̂2 = 0.2988, β̂2 = (−1.6508,−1.2282, 0.2415)

3 −2044.792 4148.361
π̂1 = 0.2680, β̂1 = (−1.6516,−1.4038, 0.2596)
π̂2 = 0.0757, β̂2 = (−2.1672, 0.5392, 0.5748)

π̂3 = 0.6563, β̂3 = (−1.1245,−0.0477, 0.0658)

6. Conclusions

In this work, we introduce the MM algorithm into a semiparametric mixture modeling
strategy in the proportional odds model for subgroup analysis of survival data that flexibly
allows the covariate effects to differ among several subgroups. Both proposed MM methods
to the semiparametric mixture of proportional odds model are able to conduct simulta-
neous subgroup identification and regression analysis, which provides a general frame
for constructing iterative algorithms with monotone convergence. The main advantage
of our MM algorithm is that it can separate the nonparametric baseline hazard rate with
other regression parameters and can help to avoid matrix inversion in high-dimensional
regression analysis, which makes the estimation process more efficient. Furthermore, our
algorithm can mesh well with the existing quasi-Newton acceleration and other simple off-
the-shelf accelerators to further boost the estimation process. Such estimation procedures
derived for the semiparametric mixture proportional odds model can be easily extended
to other semiparametric or nonparametric mixture models. Although our proposed MM
algorithms are developed for the mixture of proportional odds models, a parallel approach
can essentially be developed for the more general mixture of transformation models. We
will investigate this in our future work.
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