
����������
�������

Citation: Cao, L.; Guo, R. Partial

Anti-Synchronization Problem of the

4D Financial Hyper-Chaotic System

with Periodically External

Disturbance. Mathematics 2022, 10,

3373. https://doi.org/10.3390/

math10183373

Academic Editor: António Lopes

Received: 7 August 2022

Accepted: 14 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Partial Anti-Synchronization Problem of the 4D Financial
Hyper-Chaotic System with Periodically External Disturbance
Lin Cao and Rongwei Guo *

School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250353, China
* Correspondence: rwguo@qlu.edu.cn

Abstract: This paper is concerned with the partial anti-synchronization of the 4D financial hyper-
chaotic system with periodically external disturbance. Firstly, the existence of the partial anti-
synchronization problem for the nominal 4D financial system is proven. Then, a suitable filter is
presented, by which the periodically external disturbance is asymptotically estimated. Moreover, two
disturbance estimator (DE)-based controllers are designed to realize the partial anti-synchronization
problem of such a system. Finally, numerical simulation verifies the effectiveness and correctness of
the proposed results.
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1. Introduction

Since Pecora and Carroll first presented chaos synchronization [1] in 1990, the syn-
chronization problem of chaotic systems has been widely applied in engineering, science,
and communications [2–6]. Many types of synchronization problems have been examined,
such as complete synchronization, anti-synchronization, lag synchronization, projective
synchronization, and so on. Anti-synchronization [7–13] is an important type of synchro-
nization. It is a phenomenon whereby the state vectors of the slave systems have the same
amplitude but opposite signs to those of the master system, i.e., the sum of two signals is
expected to converge to zero when anti-synchronization appears. This type of synchroniza-
tion has found distinctive applications in some fields, such as in communication systems,
in which the system’s security and secrecy can be deeply strengthened by transforming
from complete synchronization and anti-synchronization periodically in the process of
digital signal transmission. As is shown in [7], the existence of the anti-synchronization
problem is f (−x) = − f (x) for a given chaotic system ẋ = f (x). It should be pointed out
that the famous Lorenz system does not meet this necessary condition. A natural question
arises as to whether the variables of chaotic systems meet such a condition or not. Recently,
the partial anti-synchronization [14] was presented, which is a new kind of synchronization
and is introduced in the next section.

Consider the following nonlinear system

ẋ = f (x) (1)

where x ∈ Rn is the state, and f (x) ∈ Rn is a continuous function.
There exists a non-singular transformation (X, Z)T = Px by which the system (1) can

be divided into the following two subsystems:

Ẋ = M(X, Z) (2)

Ż = G(X, Z) (3)
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where P ∈ Rn×n is a constant matrix, X ∈ Rm, 1 ≤ m < n, Z ∈ Rn−m, M(X, Z) ∈ Rm meets
M(−X, Z) = −M(X, Z), and G(X, Z) ∈ Rn−m.

The controlled system (2) is presented as follows:

Ẋ = M(X, Z) + BU (4)

where X and M(X, Z) are given in Equation (2), B ∈ Rm×r, 1 ≤ r < n is a constant
matrix, (M(X, Z), B) is assumed to be controllable according to Z, and U ∈ Rr, r ≥ 1 is the
controller to be designed.

Let the system (4) be the master system, and the slave system is given as

Ẏ = M(Y, Z) (5)

where Y ∈ Rm and Z is given in Equation (3).
Next, let E = X + Y, and the sum system is given as

Ė = M(X, Z) + M(Y, Z) + BU (6)

where E ∈ Rm is the state, and B, U are given in Equation (4).

Definition 1 ([14]). For the system (6), if lim
t→∞
‖E(t)‖ = 0, then the master system (4) and

the slave system (5) are considered to be anti-synchronized, which implies that the partial anti-
synchronization problem of the system (1) is realized.

It should be pointed out that among the abovementioned results, the external dis-
turbance is not considered completely. Unfortunately, there are still many deficiencies in
the current research, and in practice this is not the case. For the robust stabilization prob-
lems of the nonlinear systems, many methods have been reported, e.g., [15,16]. However,
the obtained results are only robust, i.e., the disturbance is not asymptotically estimated
by the observers or filters. More importantly, the robust control and disturbance rejection
problems in the abovementioned works are mainly solved by the linear matrix inequalities
(LMIs). It is well known that the stability conditions that are derived by the LMIs are only
sufficient conditions and often result in conservative conclusions. Recently, the uncertainty
and disturbance estimator (UDE)-based control method [17–23] emerged as an effective
method to deal with the model uncertainty and external disturbance, and it has been widely
applied in various systems. However, for the periodically external disturbance A sin(t) +C,
where A and C are unknown constants, the proposed filter in [17] cannot asymptotically
estimate such disturbance, so the obtained results are only robust, or practical. It is impor-
tant to propose a suitable filter that can asymptotically estimate the periodically external
disturbance. Inspired by the UDE-based control method, this paper shall propose a suitable
filter in Section 3.

On the other hand, the novel chaotic finance system [24] was presented in 2001. This
system model is described by three state variables of the time variations: x1 stands for
the interest rate; x2 and x3 are the investment demand and the price index, respectively.
Recently, a four-dimensional finance system [25,26] was proposed. There are four sub-
blocks that construct the system model, i.e., money, production, labor force, and stock.
In our previous work [27], some control problems have been investigated by the adaptive
control method. However, the impact of disturbance, especially the periodically external
disturbance, is not considered. Therefore, it is very important and necessary to study
the partial anti-synchronization problem of the 4D financial hyper-chaotic system with
periodically external disturbance.

The main contributions of this paper are summarized as follows

(1). The existence of the partial anti-synchronization problem of the 4D financial system
is proven;
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(2). A suitable filter that can asymptotically estimate the periodically external disturbance
is proposed;

(3). Two DE-based controllers are designed and used to realize the partial anti-synchroni-
zation problem.

The rest of this paper is organized as follows. Section 2 introduces the problem
formation, Section 3 presents the main results of this paper, Section 4 provides the numerical
simulation results, and Section 5 gives the conclusions.

For subsequent use, the dynamic feedback control method is introduced in the
next section.

Lemma 1 ([28]). Consider the following system

q̇ = H(q) + bu (7)

where q ∈ Rn is the state; b ∈ Rn×l , l ≥ 1, and u is the controller to be designed. If (H(q), b) can
be stabilized, then the controller u is

u = K(t)q (8)

where K(t) = k(t)bT and

k̇(t) = −qTq = −‖q(t)‖2 = −
n

∑
i=1

q2
i (9)

2. Problem Formation

The controlled 4D hyper-chaotic system with periodically external disturbance is
given as

ẋ = f (x) + bu + w(t) =


(x2 − 0.9)x1 + x3 + x4 + u + w1(t)
1− 0.2x2 − x2

1
−x1 − 1.5x3
−0.2x1x2 − 0.17x4

(10)

where x ∈ R4 is the state,

f (x) =


(x2 − 0.9)x1 + x3 + x4
1− 0.2x2 − x2

1
−x1 − 1.5x3
−0.2x1x2 − 0.17x4

, b =


1
0
0
0

, w(t) =


w1(t)
0
0
0

, (11)

u ∈ R1 is the controller to be designed, w1(t) = A sin(t)+C, and A, C are unknown constants.
If u = w(t) ≡ 0, then the system (11) becomes

ẋ = f (x) =


(x2 − 0.9)x1 + x3 + x4
1− 0.2x2 − x2

1
−x1 − 1.5x3
−0.2x1x2 − 0.17x4

(12)

which is given in Refs. [25–27].
The main goal of this paper is to investigate the partial anti-synchronization problem

of the system (10), and present some new results.

3. Main Results
3.1. The Existence of the Partial Anti-Synchronization Problem

In this section, the existence of the partial anti-synchronization problem for the
system (12) is investigated and a conclusion is derived as follows.
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Theorem 1. Considering the system (12), there exists a non-singular transformation:

(
X
Z

)
=


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

x, (13)

by which the system (12) can be divided into the following two subsystems

Ẋ = M(Z)X (14)

Ż = G(X, Z) (15)

where X ∈ R3, Z ∈ R1, and

M(Z) =

 Z− 0.9 1 1
−1 −0.5 0
−0.2Z 0 −0.17

 (16)

G(X, Z) = 1− 0.2Z + X2
1 (17)

which implies that the partial anti-synchronization problem of the system (12) exists.

The proof of Theorem 1, please see Appendix A.1.
By the transformation (13), the system (10) is also divided into the following subsystems

Ẋ = M(Z)X + BU + W(t) (18)

and the subsystem given in Equation (15), where

B =

 1
0
0

, W(t) =

 W1(t)
0
0

 =

 A sin(t) + C
0
0

, (19)

and U ∈ R1 is the controller to be designed.
Let the subsystem (18) be the master system, and the slave system is presented as follows

Ẏ = M(Z)Y (20)

where Y ∈ R3 and Z ∈ R1 is given in Equation (15),
Let E = X + Y, and the sum system is given as

Ė = M(Z)E + BU + W(t) (21)

where E ∈ R3 is the state, and B, U are given in Equation (18).
Next, the controller U = Us + Uw is designed by two steps. In the first step, Us is

proposed for the nominal system Ė = M(Z)E + BUs, and Uw is obtained by designing a
suitable filter G f (s) for the periodically external disturbance in the second step.

3.2. The Controllers Are Designed for the Nominal System

Theorem 2. Regarding the nominal system Ė = M(Z)E + BUs, the dynamic feedback controller
Us is proposed as follows

Us = K(t)E (22)

where K(t) = k(t)BT , and
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k̇(t) = −ETE = −‖E(t)‖2 = −
3

∑
i=1

E2
i (23)

The proof of Theorem 2, please see Appendix A.2.
It is noted that the nominal system Ė = M(Z)E + BUs has a simple form; another

linear feedback controller is proposed in the next step.

Theorem 3. For the nominal system Ė = M(Z)E + BUs, the linear feedback controller Us is
proposed as follows

Us = −ZE1 − E2 − E3 (24)

The proof of Theorem 3, please see Appendix A.3.

3.3. A Suitable Filter Is Designed for the Periodically External Disturbance

Theorem 4. For the periodically external disturbance W1(t) = A sin(t) + C, a suitable filter
G f (s) is presented as follows

G f (s) =
s4 + 4s3 + 6s2 + 3s + 2

s5 + 4s4 + 8s3 + 9s2 + 6s + 2
(25)

where G f (s) = `{g f (t)},

g f (t) = 2e−t − e−t(cos(t)− 3 sin(t))− 4
√

3
3

e−
t
2 sin

(√
3t

2

)
(26)

and meets the following performance:

Ŵ1(t) = W1(t) ∗ `−1
[

G f (s)
]
= W1(t) ∗ g f (t)→W1(t), as t→ ∞, (27)

“`” represents the Laplace transform, “`−1” represents the inverse Laplace transform, “∗” represents
the convolution.

The proof of Theorem 4, please see Appendix A.4.

3.4. The DE-Based Controller Is Designed for Periodically External Disturbance

Theorem 5. For the sum system (21), the DE-based controller Uw is presented as follows

Uw = B+

{
`−1

[
G f (s)

1− G f (s)

]
∗ F(Z)− `−1

[
sG f (s)

1− G f (s)

]
∗ E

}
, (28)

where B+ = (BT B)−1BT , F(Z) = M(Z) + BUs.

The proof of Theorem 5, please see Appendix A.5.

4. Numerical Simulation
4.1. Comparison with the Effect of Parameters of Periodically External Disturbance

The initial conditions of the master subsystem given in Equation (18) and the slave
subsystem given in Equation (20) are chosen as X(0) = [1, 2, 3], Y(0) = [−2,−1,−2], re-
spectively, and Z(0) = 1. Without loss of generality, the controller Us given in Equation (24)
is taken as an example.

Case 1: A = 10, C = 2.
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From Figure 1, it can be seen that the sum system is asymptotically stable. Figure 2
shows the states of the master subsystem and the slave subsystem, respectively. It is easy
to see that the state vectors of the slave subsystem have the same amplitude but opposite
signs to those of the master subsystem, which implies that the partial anti-synchronization
problem of the 4D financial hyper-chaotic system is realized. Figure 3 shows that Ŵ1(t)
tends to W1(t) as t→ +∞. Figure 4 shows the state of control signal U(t).

0 10 20 30 40 50

times/t

-1

-0.5

0

0.5

1

1.5

E
1,E

2,E
3

E
1

E
2

E
3

Figure 1. The sum system (21) is asymptotically stable.

0 10 20 30 40 50
-5

0

5

X
1,Y

1

0 10 20 30 40 50
-2

0

2

X
2,Y

2

0 10 20 30 40 50
-5

0

5

X
3,Y

3

Figure 2. The states of the master subsystem and the slave subsystem.
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time/s

-10

-5

0

5

10

15

W1(t) Ŵ1(t)

Figure 3. Ŵ1(t) tends to W1(t).

0 10 20 30 40 50

time/s

-350

-300

-250

-200

-150

-100

-50

0

50

U

Figure 4. The state of control signal U(t).

Case 2: A = 100, C = 20.
Figure 5 shows that the sum system is asymptotically stable. Figure 6 shows the states

of the master subsystem and the slave subsystem, respectively. It is easy to see that the
state vectors of the slave subsystem have the same amplitude but opposite signs to those of
the master subsystem, which implies that the partial anti-synchronization problem of the
4D financial hyper-chaotic system is realized. Figure 7 shows that Ŵ1(t) tends to W1(t) as
t→ +∞. Figure 8 shows the state of control signal U(t).
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Figure 5. The sum system (21) is asymptotically stable.
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Figure 6. The states of the master subsystem and the slave subsystem.
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Figure 7. Ŵ1(t) tends to W1(t).
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Figure 8. The state of control signal U(t).

Remark 1. From the above figures, it can be seen that the effect of the disturbance parameters
(A and C) on the anti-synchronization problem is very small.

4.2. Comparison with the Same Control Strategy

The initial conditions of the master subsystem given in Equation (18) and the slave
subsystem given in Equation (20) are chosen as X(0) = [1, 2, 3], Y(0) = [−2,−1,−2],
respectively, and Z(0) = 1, and A = 100, C = 20. The controller Us given in Equation (24)
is chosen here.
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Figure 9 shows that the sum system is asymptotically stable. Figure 10 shows the
states of the master subsystem and the slave subsystem, respectively. It is easy to see that
the state vectors of the slave subsystem have the same amplitude but opposite signs to
those of the master subsystem, which implies that the partial anti-synchronization problem
of the 4D financial hyper-chaotic system is realized. Figure 11 shows that Ŵ1(t) tends to
W1(t) as t→ +∞. Figure 12 shows the state of control signal U(t).
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Figure 9. The sum system (21) is asymptotically stable.
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Figure 10. The states of the master subsystem and the slave subsystem.
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Figure 11. Ŵ1(t) tends to W1(t).
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Figure 12. The state of control signal U(t).

Remark 2. From the above figures, it can be seen that the effect of the controller Us given in
Equation (24) is stronger than that given in Equation (22).

5. Conclusions

The partial anti-synchronization problem of the 4D financial hyper-chaotic system
with periodically external disturbance has been investigated. Firstly, the partial anti-
synchronization problem of the nominal 4D financial system has been proven. Then,
by designing a suitable filter, two disturbance estimator (DE)-based controllers have been
presented and used to realize the partial anti-synchronization problem. It has been proven
that the proposed filter can asymptotically estimate the periodically external disturbance.
Finally, the effectiveness and correctness of the proposed results have been verified by
numerical simulation.
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Appendix A

Appendix A.1. The Proof of Theorem 1

Proof. Let β = Diag{β1, β2, · · · , β4}, |βi| 6= 0, 1, i = 1, 2, · · · , 4, and it is easy to judge that

γ =


β1
β3
β4
β2

 =


−1
−1
−1
1

 (A1)

is a solution of the following equations about β
f1(βx)− β1 f1(x) = (β1β2 − β1)x1x2 + (β3 − β1)x3 + (β4 − β1)x4 ≡ 0
f3(βx)− β3 f3(x) = −(β1 − β3)x1 ≡ 0
f4(βx)− β4 f4(x) = −0.2(β1β2 − β4)x1x2 ≡ 0

(A2)

i.e., 
β1β2 = β1 and β1 = β3 and β1 = β4
β1 = β3
β1β2 = β4

(A3)

Thus, the transformation (13) is obtained, which completes the proof.

Appendix A.2. The Proof of Theorem 2

Proof. Since (M(Z), B) is controllable regardless of Z, the controller Us given in Equa-
tion (22) is proposed according to Lemma 1.

Appendix A.3. The Proof of Theorem 3

Proof. Substituting the controller Us given in Equation (24) into the nominal system Ė =
M(Z)E + BUs, we find that

Ė = M(Z)E + BU =

 −0.9 0 0
−1 −0.5 0
−0.2Z 0 −0.17

E

is asymptotically stable, which completes the proof.
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Appendix A.4. The Proof of Theorem 4

Proof. Since

(A sin(t) + C) ∗ g f (t) =
∫ t

0
(A sin(τ) + C)g f (t− τ)dτ

= A sin(t) + C
+e−t(A− 2C) + e−t(A− C)

(
cos(t) + sin(t)

(
2A−3C

A−C − 1
))

−e−
t
2

(
cos(

√
3t

2 ) + 2(A− C)
√

3
3 sin(

√
3t

2 )
)

→ A sin(t) + C, as t→ ∞

(A4)

Thus, the designed filter G f (s) is suitable.

Appendix A.5. The Proof of Theorem 5

Proof. Substituting U = Us + Uw into the system (21), where Us is given in Equation (22)
or Equation (24) and Uw is presented in Equation (28), results in

Ė = M(Z)E + BUs + BUw + W(t) = F(Z) + BUw + W(t) (A5)

where F(Z) = M(Z)E + BUs.
According to Theorem 2 and Theorem 3, the system Ė = F(Z) is asymptotically stable.
If

BUw = −Ŵ(t)→ −W(t), as t→ ∞. (A6)

then the following system
Ė = F(Z, E) + W̃(t) (A7)

is asymptotically stable, where W̃(t) = W(t)− Ŵ(t).
As a matter of fact, for the system Ė = F(Z, E) + BUw + W(t), we obtain

BUw = −Ŵ(t) = −
(
Ė− F(Z, E)− BUw)

)
∗ g f (t). (A8)

Performing a Laplace transformation along the both sides of the Equation (A8), the
controller Uw given in Equation (28) is obtained. Thus, the conclusion is proven, which
completes the proof.
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