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Abstract: Heimburg and Jackson devised a mathematical model known as the Heimburg model to 

describe the transmission of electromechanical pulses in nerves, which is a significant step forward. 

The major objective of this paper was to examine the dynamics of the Heimburg model by ex-

tracting closed-form wave solutions. The proposed model was not studied by using analytical 

techniques. For the first time, innovative analytical solutions were investigated using the 

exp�−�(�)� −expansion method to illustrate the dynamic behavior of the electromechanical pulse 

in a nerve. This approach generates a wide range of general and broad-spectral solutions with 

unknown parameters. For the definitive value of these constraints, the well-known periodic- and 

kink-shaped solitons were recovered. By giving different values to the parameters, the 3D, 2D, and 

contour forms that constantly modulate in the form of an electromechanical pulse traveling 

through the axon in the nerve were created. The discovered solutions are innovative, distinct, and 

useful and might be crucial in medicine and biosciences. 

Keywords: nonlinear partial differential equations; exp�−�(�)� −expansion method; Heimburg 

model; traveling wave solutions 
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1. Introduction 

Nonlinear partial differential equations (NLPDEs) have recently proven to be a 

powerful tool in multidisciplinary studies [1–11]. Exact solutions to these equations are 

crucial in a variety of physical phenomena, including fluid mechanics, control theory, 

hydrodynamics, geochemistry, optics, plasma, and so on. So far, a number of innovative 

techniques for obtaining traveling wave solutions of these equations have recently been 

developed. The modified Jacobian elliptic function expansion technique was imple-

mented to extract soliton solutions for the modified Liouville equation and for the system 

of shallow water wave equations by Zahran et al. [12]. The extended simple equation 

method was implemented to obtain soliton solutions of a modified Benjamin–Bona–

Mahony equation, shallow water wave equations, and the nonlinear microtubules model 

by Khater [13]. Nonlinear evolution equations (NLEEs) were examined using the tanh 

method by Wazwaz [14]. An extended tanh method was applied to extract the exact sol-

iton solutions of NLEEs by El-Wakil and Abdou [15]. The KdV equation was examined 

using the sine–cosine method [16]. The homogeneous balance method was implemented 

to obtain the exact solutions of the Gardner equation and the burger equation by Radha1 
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and Duraisamy [17]. Ren and Zhang [18] investigated the (2 + 1)-dimensional Nizhnik–

Novikov–Veselov model using the F-expansion method. The kink soliton solutions of the 

B-type Kadomtsev–Petviashvili equation were explored via the multiple exp-function 

method by Darvishi et al. [19]. Using the exp-function method, the exact solutions of the 

(2 + 1)-dimensional nonlinear system of Schrödinger equations were explored by Khani et 

al. [20] and so on [21–26]. 

Aside from these models, the Heimburg model of the nerve impulse is another im-

portant one. The soliton model is a mathematical model that represents mechanical pro-

cesses in biomembranes. The model assumes that the nerve axon, which is modeled as a 

cylinder-shaped biomembrane, transits from the fluid to a gel structure at a suitable 

temperature below normal temperature [27]. Lautrup et al. [28] analyzed the Heimburg–

Jackson model numerically, while Peets et al. [29] reported the solitonic solutions of the 

modified Heimburg–Jackson model. 

The main goal of this work was to use the exp�−�(�)� −expansion method to find 

some exact traveling wave solutions of the Heimburg model. For the first time, innova-

tive analytical solutions were investigated using the exp�−�(�)� −expansion method to 

demonstrate the dynamic behavior of the electromechanical pulse in a nerve. This 

method is commonly used to find the various types of soliton solutions of nonlinear dif-

ferential equations (NLDEs). For example, the exp�−�(�)� −expansion method was im-

plemented to explore the exact solutions of the nonlinear double-chain model of DNA 

and a diffusive predator–prey model by Mahmoud et al. [30], the exp(−�(�)) −expan-

sion technique was used for soliton solutions of the nonlinear Schrödinger system by 

Pankaj et al. [31]. 

The following is the structure of the paper: In Section 2, we summarize the nonlinear 

Heimburg model. The third section is about the methodology. In the fourth section, we 

analyze the nonlinear Heimburg model using the exp�−�(�)� −expansion technique. 

The results are discussed with the help of graphs in the fifth section. Finally, we draw 

some conclusions. 

2. Heimburg Model Equation 

The voltage variation across the nerve membrane is most frequently described as a 

propagating version of the action potential [32–35]. This voltage difference, which mani-

fests as an electrical pulse going up the nerve axon, is caused by unequal distributions of 

positive and negative ions on each side of the membrane. The nerve axon is viewed as an 

electrical circuit in the Hodgkin–Huxley model [32–34], in which proteins are repre-

sented as resistors and the membrane as capacitors. The membrane’s ion currents pro-

duce a voltage pulse that travels along the nerve axon. Consider the nerve axon as a 

one-dimensional cylinder that experiences lateral density excitations. The following 

equation governs sound propagation in the absence of dispersion: 

��∆��

���
=

�

��
���

�∆��

��
�, (1)

where � is the time, � is the position along the nerve axon, ∆�� = �� − ��
� is the dif-

ference in nerve axon area density between the density of the gel state (��) and the den-

sity of the fluid state (��
�), and � = �1

κ�
����  is the sound velocity which depends on 

density. We did not attempt to derive the aforementioned equation here because it is 

connected to the hydrodynamic Euler equation. 

The phases of gel and liquid are essentially incompressible. A minor increase in 

pressure can lead to a considerable rise in density by changing liquid into gel at densities 

close to the phase transition where the two phases coexist. The compression modulus is 

significantly smaller close to this phase transition. As a result, we can approximate the 

sound speed, c, as 
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�� =
1

��κ�
�

= ��
� + �∆�� + �(∆��)�, (2)

with � < 0 and � > 0. Additionally, the velocity of sound is frequency dependent 

[36]. This indicates that the system is dispersive, which is required for the formation of 

solitons. For unilamellar dipalmitoyl phosphatidylcholine (DPPC) vesicles, one gets �� =

176.6 m
s⁄ , � = −

16.6��
�

��
��  and � =

79.5��
�

(��
�)��  with ��

� = 4.035 × 10��g/m2 

, assuming a bulk temperature of T=450 C [37]. By introducing a dispersive term, we are 

able to approximate the dispersive effects outlined above, −ℎ
��∆��

���  with ℎ > 0, in 

Equation (1), and we obtain 

��∆��

���
=

�

��
�[��

� + �∆�� + �(∆��)�]
�∆��

��
� + �

��

���
�

�∆��

��
� − ℎ

��∆��

���
. (3)

Equation (3) is known as the Heimburg model [27] with a damping term added to 

the system. According to Heimburg and Jackson [37], the density change that causes the 

nerve impulse and the mechanical responses that accompany it might be characterized 

by Equation (3). It describes how an area density pulse ∆�� propagates through the 

nerve axon when damping is taken into consideration. The equation implies that nerve 

impulses propagate through a nerve axon via contraction and viscous dissipation of lipid 

molecules, with � being the position of the nerve impulse at time �, and � and ℎ de-

noting the friction of the nerve axon and dispersion, respectively. 

The axon’s lateral compressibility is accounted for by ��
� , while ��

� =
�

��
���

� , � =

−
�

��
����

��
�,  and � =

�

��
����

��
�.  Take the following dimensionless variables � , � , and � 

which are given below: 

� =
∆��

��
� , � =

���

√ℎ
, � =

��
��

√ℎ
. (4)

We obtain the following dimensionless density–wave equation Equation (3) with 

these new variables: 

���

���
=

�

��
�(1 + �� + ���)

��

��
� −

���

���
+ �

���

�����
, (5)

where � =
�

√�
, � =

���
��

�

��
� �, and � =

��
�

��
� �. 

3. Analysis of method 

Consider the general form of the NLPDE 

�(�, ��, ��, ���, ���, … ) = 0, (6)

Here, � is polynomial in �(�, �). The main steps of this method are outlined below: 

Step1: Consider the transformation: 

�(�, �) = �(�), � = � − ��, (7)

where � is the velocity of the density pulse. Equation (7) transforms Equation (6) into 

the following form: 

�(�, ��, ���, ����, … ) = 0. (8)

Step 2: Assume that the solution of Equation (8) can be written as follows by a pol-

ynomial in exp�−�(�)�. 
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�(�) = ��(exp (−�(�)))� + ����(exp (−�(�)))��� + ⋯.  (9)

In the above equation, �� and ���� are the constants such that �� ≠ 0, and �(�) 

satisfies the following ODE: 

��(�) = exp�−�(�)� + � exp��(�)� + �,  (10)

where � and P are arbitrary constants. 

Step 3: To obtain integer �, we apply the homogeneous principle in Equation (8). 

There are the following five cases: 

Case 1: When  �� − 4� > 0 and � ≠ 0, 

�(�) = �� �
1

2�
�−��� − 4����ℎ �

�P� − 4�

2
(� + ��)� − Q��. (11)

Case 2: When �� − 4� < 0 and � ≠ 0, 

�(�) = �� �
1

2�
�−P + �4� −  P���� �

�4� −  P�

2
(� + ��)���. (12)

Case 3: When � ≠ 0 and � = 0, 

�(�) = −�� �
�

�exp�P(� + ��)� − 1�
�. (13)

Case 4: When  �� − 4� = 0 and � ≠ 0, � ≠ 0, 

�(�) = �� �
2��(� + ��)� + 2

 P�(� + ��)
�. (14)

Case 5: When � = 0 and � = 0, 

�(�) = ��(� + ��), (15)

where �� is the constant of integration. 

Step 4: By inserting Equation (9) into (8) along with (10), Equation (8) converts into a 

polynomial in exp�−�(�)�. We obtain a series of equations for ��, �, �, and � by set-

ting each coefficient of this polynomial to 0. From these equations, the unknown con-

stants ��, �, �, and � can be obtained using computational tools such as Maple, and the 

novel soliton solutions of Equation (6) can be generated by utilizing these values in 

Equation (9). 

4. Application of the method 

Utilizing the exp�−�(�)� −expansion method, we created exact traveling wave so-

lutions to the Heimburg model. By using Equation (7) in (5), we obtain: 

����� − ��(��)� − 2���(��)�−���−������ − ������� + ��� + ������ = 0, (16)

where �� = � and �� = �. Balancing between the terms ��� and ����� in Equation (14) 

yields � = 1 as shown in Appendix A. 

Hence, from Equation (9), we obtain: 

�(�) = �� + �����(�), (17)

where ��  and ��  are arbitrary constants. Putting Equation (17) into (16) with (10), 

Equation (16) converts into the polynomial in exp�−�(�)�. By setting the coefficients of 
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the polynomial equal to 0, a set of equations for ��, ��, �, and � is obtained as shown in 

Appendix A. By solving these equations using computational software Maple 18, we 

obtain: 

1st Solution Set: 

� =
1

√6���

�−2����(6 − ��) + 3��
� + 12��(2� − 1), 

�� =
��

√6���

−
��

2��
−

1

2��

�2����(6 − ��) + 3��
� + 12��(2� − 1), 

�� = −
√6

���

. (18)

By using these results in Equation (17), we obtain: 

�(�) =
��

√6���

−
��

2��
−

1

2��

�2����(6 − ��) + 3��
� + 12��(2� − 1) −

√6

���

���(�), (19)

Case 1: For �� − 4� > 0 and � ≠ 0, we obtain: 

�(�) =
��

√6���

−
��

2��
−

1

2��

�2����(6 − ��) + 3��
� + 12��(2� − 1)

+  
2√6�

��� �� P� − 4����ℎ �
� P� − 4�

2
(� + ��)� + P�

. (20)

Case 2: For �� − 4� < 0 and � ≠ 0, we obtain: 

�(�) =
��

√6���

−
��

2��
−

1

2��

�2����(6 − ��) + 3��
� + 12��(2� − 1) − 

2√6�

��� �−P + �4� −  P���� �
�4� −  P�

2
(� + ��)��

. (21)

Case 3: For � ≠ 0 and � = 0, we obtain: 

�(�) =
��

√6���

−
��

2��
−

1

2��

�2����(6 − ��) + 3��
� + 12��(2� − 1) − 

�√6

����exp�P(� + ��)� − 1�
. 

(22)

Case 4: For  �� − 4� = 0 and � ≠ 0, � ≠ 0, we obtain: 

�(�) =
��

√6���

−
��

2��
−

1

2��

�2����(6 − ��) + 3��
� + 12��(2� − 1) − (23)
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√6 ��

���

 P�(� + ��)

(2P(� + ��) + 2 )
. 

Case 5: For � = 0 and � = 0, we obtain: 

�(�) =
��

√6���

−
��

2��
−

1

2��

�2����(6 − ��) + 3��
� + 12��(2� − 1) − 

√6

���(� + ��)
. 

(24)

2nd Solution Set: 

� =
1

24��

(2����(�� − 6) + 6��(�� + 2) − 3��
�), 

�� =
1

6��
��6��(�ω − 3P) − 3���, �� = −

√6

���

. (25)

By using these results in Equation (17), we obtain: 

�(�) =
1

6��
��6��(�ω − 3P) − 3��� −

√6

���

���(�), (26)

Case 1: For �� − 4� > 0 and � ≠ 0, we obtain: 

�(�) =
1

6��
��6��(�ω − 3P) − 3��� +

2√6�

��� �� P� − 4�����ℎ �
� P� − 4��

2
(� + ��)� + P�

. 
(27)

Case 2: For �� − 4� < 0 and � ≠ 0, we obtain: 

�(�) =
1

6��
��6��(�ω − 3P) − 3��� +  

2√6�

��� �−�4� −  P���� �
�4� −  P�

2
(� + ��)� + ��

. 
(28)

Case 3: For � ≠ 0 and � = 0, we obtain: 

�(�) =
1

6��
��6��(�ω − 3P) − 3��� −

P√6

����exp�P(� + ��)� − 1�

. 
(29)

Case 4: For  �� − 4� = 0 and � ≠ 0, � ≠ 0, we obtain: 

�(�) =
1

6��
��6��(�ω − 3P) − 3��� −

√6 P�

���

 P�(� + ��)

(2P(� + ��) + 2 )
. (30)

Case 5: For � = 0 and � = 0, we obtain: 

�(�) =
1

6��
��6��(�ω − 3P) − 3��� −

√6

���(� + ��)
. (31)

3rd Solution Set: 
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� =
1

6���

�−2√6���� + 2����� − ��√6�, 

� =
1

36��
�−2√6��

�
��

ω��� + 4������ − �6������ + 6��
���

� − 18���� + 6������ − 3��
�

+ 18��� ,  �� = −
√6

���

. 

(32)

By using these results in Equation (17), we obtain: 

�(�) = �� −
√6

���

���(�), (33)

Case 1: For �� − 4� > 0 and � ≠ 0, we obtain: 

�(�) = �� +
2√6�

��� �� P� − 4����ℎ �
� P� − 4�

2
(� + ��)� + P�

. 
(34)

Case 2: For �� − 4� < 0 and � ≠ 0, we obtain: 

�(�) = �� −
2√6�

��� �−P + �4� −  P���� �
�4� −  P�

2
(� + ��)��

. 

(35)

Case 3: For � ≠ 0 and � = 0, we obtain: 

�(�) = �� −
�√6

����exp�P(� + ��)� − 1�

. 
(36)

Case 4: For  �� − 4� = 0 and � ≠ 0, � ≠ 0, we obtain: 

�(�) = �� −
√6

���

 P�(� + ��)

(2P(� + ��) + 2 )
. (37)

Case 5: For � = 0 and � = 0, we obtain: 

�(�) = �� −
√6

���(� + ��)
. (38)

In all the above cases, � = � − ��. 

It is important to note that the acquired traveling wave solutions of the stated model 

are diversified and that for certain values of the free parameters, new and more general 

solutions are found. The accuracy of the obtained findings is also ensured by plugging 

the obtained solutions into the given equation with the Maple 18 software. The key ben-

efit of the suggested approach is that, when we vary � and � with some free parame-

ters, it provides a number of new exact traveling wave solutions that are more general. 

The exact solutions are crucial for understanding the underlying internal dynamics of 

natural phenomena. The explicit solutions representing several forms of solitary wave 

solutions are regulated in the typical nerve impulse shape based on the variation in the 

physical parameters. 
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5. Results and Discussion 

The 2D, 3D, and contour shapes of some of the collected results are revealed with the 

help of Wolfram Mathematica. We discovered that set-1 comprises solutions (20)–(24). 

These solutions have a large number of parameters. Because the parameters influence the 

shape of the solution, we can generate a wide range of graphs by inputting arbitrary 

values for the parameters. Using the graphs shown, we can determine the nature of sol-

itons. Furthermore, set-2 provides adequate new solutions (27)–(30), and set-3 comprises 

solutions (34)–(38). Figures 1–4 show the 2D, 3D, and contour conspiracies of some of the 

obtained findings. For the sake of clarity, the graphs of some of the discovered solutions 

are provided here. 

  

 

Figure 1. Three-dimensional, two-dimensional, and contour conspiracies for solution (20) for �� =
−0.9, �� = 2, � = 1, � = 0.8, � = 2, � = 0.8, �� = 5. 
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Figure 2. Three-dimensional, two-dimensional, and contour conspiracies for solution (22) for �� =
−1.5, �� = 2, � = 1, � = 1, � = 1, �� = 1. 
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Figure 3. Three-dimensional, two-dimensional, and contour conspiracies for solution (27) �� =
−0.9, �� = 2, � = 1, � = 0.8, �� = 5. 

  

 

Figure 4. Three-dimensional, two-dimensional, and contour conspiracies for solution (35) for �� =
−4, �� = 3, � = 1, � = 5.6, �� = 5. 

The many types of graphs are created using the wave solution. When the free pa-

rameters associated with the solution are altered, the shape of the traveling wave 

changes. From the Heimburg model equation, we acquire the number of exact solutions 

along with unknown parameters. 

The attained solutions (20) and (22) involve the parameters ��, ��, �, �, P, and ��. 

For the values of �� = −0.9, �� = 2, � = 1, � = 2, � = 0.8, and �� = 5, in solution (20), the 

kink-shaped input is regulated and permanently stabilized in the typical pulse shape 

along the nerve axon (Figure 1). Similarly, for �� = −1.5, �� = 2, � = 1, � = 1, � = 1, and 

�� = 1 in solution (22), the kink-shaped input is regulated and permanently stabilized in 

the typical pulse shape along the nerve axon (Figure 2). For �� = −0.9, �� = 2, � = 2, � =
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0.8,and �� = 5, in Equation (27), the kink-shaped input is obtained (Figure 3). For �� =

−4, �� = 3, � = 5.6, and �� = 5, in Equation (35), the periodic-shaped input is regulated 

in the typical pulse shape (Figure 4). The 3D and contour plots are shown for −50 ≤

�, � ≤ 50, and the 2D conspiracy is shown for −50 ≤ � ≤ 50, x = 1, in Figures 1 and 3; the 

3D and contour plots are shown for −30 ≤ �, � ≤ 3, and the 2D conspiracy is shown for 

−30 ≤ � ≤ 30, x = 1, in Figure 2; the 3D and contour plots are shown for −2 ≤ �, � ≤ 2, 

and the 2D conspiracy is shown for −2 ≤ � ≤ 2, x = 1, in Figure 4. 

The Heimburg model’s nonlinear dynamic nature is shown in Figures 1–4. Different 

varieties of traveling waves are described in the inferred graphical renderings. Numer-

ous novel exact solutions, including periodic kink, and singular-kink soliton solutions are 

discovered. The graphical presentation shows that the four distinct profiles constantly 

modulate in the form of an electromechanical pulse traveling through the axon in the 

nerve [27]. The findings demonstrate that the implemented technique is reliable, profi-

cient, and dominant when it comes to analyzing different kinds of NLPDEs. 

6. Conclusions 

Not just in neurophysiology but also in mathematical physics, the process by which 

the nerve impulse is generated and propagated across the axon has been a critical chal-

lenge. We discovered the exact traveling wave solutions of the Heimburg model of neu-

roscience which is one of the most intriguing topics in modern bio-physics since the 

nerve is the foundation of life. The exp�−�(�)� −expansion method was utilized to ana-

lyze the Heimburg model in this research article. Traveling wave solutions were explored 

using the above-mentioned model. This method yields traveling wave solutions with ar-

bitrary parameters expressed as kink, singular-kink, and periodic-wave solutions. The 

graphical presentation shows that the four distinct profiles constantly modulate into the 

pulse pattern as they travel through the axon. It is worth noting that the findings of this 

study are revealed for the first time, in comparison to earlier investigations. The accuracy 

of the results was tested using Maple 18 and putting the obtained findings into the orig-

inal equation. The solutions provided are novel, distinctive, and practical and might be 

essential in the fields of medicine and biosciences. In other words, the analytical expres-

sion of solitary solutions may be useful for the precise determination of the control 

pulse’s magnitude. Additional research is required on the fascinating challenge of wave 

propagation in biomembranes. A thorough analysis of the dissipative effects and cou-

pling with the action potential will be discussed in the next work. 
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Appendix A 

Balancing between the terms ��� and ����� in Equation (14) yields 

� + 4 = 2� + � + 2, 



Mathematics 2022, 10, 3372 12 of 13 
 

 

� = 1. 

Putting Equation (15) into (14) with (8), Equation (14) converts into the polynomial 

in exp�−�(�)�. By setting the coefficients of the polynomial equal to 0, a set of equa-

tions for ��, ��, �, and � is obtained as follows: 

2�������� + ����� + ������
� + 2��� + ������ + ������ − ��� − ���� − 

8��� + �� = 0, 

2����
��� + 6�������� + ���� + ������

� + 8���� + 3������ + 2�����
� + 

������ − �� − ���� + 2����� − 22��� − 2��� − 16�� + �� + 2� = 0, 

5����
��� + 4�������� + 8������� + 7���� + 2������ + 3�����

� + 8��� + 

4����� + 3����� − 15�� − 3��� − 60�� + 3� = 0, 

3����
��� + 62����

�� + 10������� + 12��� + 5����� + 2����
� + 2���� − 

50�� − 2�� − 40� + 2 = 0,  

7����
�� + 6������ + 6�� + 3���� − 60� = 0, 

4����
� − 24 = 0. (A1)
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