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Abstract: In this paper, the improved split-step 6 method, named the split-step composite § method,
is proposed to study the mean-square stability for stochastic differential equations with a fixed
time delay. Under the global Lipschitz and linear growth conditions, it is proved that the split-
step composite § method with 6§ > 0.5 shows mean-square stability. An approach to improving
numerical stability is illustrated by choices of parameters of this method. Some numerical examples
are presented to show the accordance between the theoretical and numerical results.
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1. Introduction

Stochastic delay differential equations have been widely applied in many applications
such as signal processing, biological systems, and financial engineering [1-3]. As one of cen-
tral problems in numerical analysis of stochastic systems, the stability theory has attracted
a great deal of attention [4,5]. Due to the characteristics of stochastic delay differential
equations themselves, it is not easy to obtain an analytical solution of equations; therefore,
numerical solution analysis has certain theoretical value and practical significance.

Stability analysis of numerical methods for stochastic delay differential equations
has made some achievements [6,7]. The split-step 8 method, as an important numerical
method, has been applied to various stochastic systems. Rathinasamy [8] investigated mean-
square stability of the split-step § method for stochastic delay Hopfield neural networks
under suitable conditions. Cao et al. [9] studied the exponential mean-square stability
of the split-step 6 method for stochastic differential equations with a fixed time delay.
Huang [10] proved that the split-step 6 method with 8 > 0.5 still unconditionally preserves
the exponential mean-square stability of the underlying systems under a coupled condition
on the drift and diffusion coefficients. Rathinasamy and Balachandran [11] analyzed the T-
stability of the split-step 6 method for linear stochastic delay integro-differential equations.
The mean-square stability of the split-step composite § method for stochastic differential
equation has been introduced by Guo et al. [12].

In the paper, we construct the split-step composite 6 method for stochastic delay
differential equations and improve stability by changing the values of parameters § and A.
It is proved that the mean-square stability of the split-step composite  method is superior
to that of the split-step # method. In Section 2, we introduce the split-step composite 6
method. The stability of this method for linear stochastic delay differential equations is
analyzed in Section 3. In Section 4, corresponding numerical examples further illustrate the
obtained theoretical results. The conclusions will be expressed in the last section.
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2. Preliminaries and the Split-Step Composite 6 Method

Throughout this paper, unless otherwise specified, let (Q}, F, P) be a complete prob-
ability space with a filtration (F;);>0, which increases and is right-continuous, and F;
contains all P-null sets. Q2 and P are the sample space and probability, respectively. Let | - |
be the Euclidean norm. The Wiener process W(t) is defined on (Q), F, P) [13].

Consider the following stochastic delay differential equation [13]

{dx(t) = f(t,x(t),x(t — 7))dt + g(t, x(t), x(t — 7))dW(t)

x(t) = g(t) @

where t € [—-7,0], T > 0 is a constant. Let the C([—7,0];R)-valued initial segment ¢(t)
be an Fy-measurable one-dimensional random variable such that E||p||> < oo, where
||| = sup_,—;< l@(t)]. W(t) is one-dimensional Wiener process.

We impose some assumptions for Equation (1).

Assumption1. f:[0,T] x RxR — Rand g: [0, T] x R x R — R satisfy the global Lipschitz
condition and the linear growth condition.

(1). Global Lipschitz condition: there is positive constant K, such that for all x1,x2,y1,y2 € R,
and t € [0, T]

max{|f(t, x1,y1) — f(t, x2,v2) %, |8(t, x1, 1) — §(t, %2, 2) |*}
< K(|x1 — 22> + |y1 — v2*);

(2). Linear growth condition: there is positive constant L > 0, such that

max{|f(t,x,y)|% |g(t,x,y) P} < LA+ |x* + |y|*)

holds for every x1,y1 € Rand t € [0, T).

The split-step composite § method is an improved numerical method, parameter A is
introduced on the basis of the split-step # method. Now, we present the split-step composite
0 method [12]

Xy = Xn + (0 (tn, X530, X5 ) + (L= 0) f (tn, Xn, X)) @)
X1 = X + (AG(tn, X3, X3 ) + (1= A)g (b, X, Xnwm ) ) AWy

where parameters 6 and A € [0,1], x, is an approximation to analytical solution x(t,),
h = % is the given step-size with T = mbh for a positive integer m, N is a given positive
integer, t, = nh, AW, = W(t,11) — W(t,) are independent N (0, 1) distributed stochastic
variables, x; = xp = ¢(ph), and —m < p < 0. When the parameter A = 1, it is the
split-step 6 method [14,15]. When the parameters § = 1 and A = 1, it is the split-step
back-Euler method [16,17]. When the parameters 8 = 0 and A = 1, it is the split-step
forward-Euler method [18]. The split-step 6 method, split-step back-Euler method, and
split-step forward-Euler method are different numerical methods. The split-step § method
achieves stability by changing the value of 6, while the other two methods are ysed to
adjust the stability by changing the step size or equation coefficients [19,20].

Definition 1 ([13]). If there is a constant p > 0 and ||¢|| < p, such that

lim E|x(t)|P =0 (©)]

t—o0

then the solution of Equation (1) is said to be pth-moment exponentially stable, E is expectation.
When p = 2, it is said to show mean-square stability.
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3. Stability of the Split-step Composite 6 Method

In this section, we will discuss the stability of the split-step composite 6 method for
linear stochastic delay differential equations

4)

dx(t) = ax(t)dt + (bx(t) +cx(t — 7))dW(t),t > 0
x(t) = ¢(t),t € [-7,0]

where a,b,c € R.

Definition 2 ([13]). The numerical method applied to Equation (1) is said to present mean-square
stability if for every step size h, the numerical approximation {x,} produced by the split-step
composite 6 method satisfies

lim E|X,|* =0 ()

Theorem 1. Let a, b, c be the coefficients of Equation (4), 0 and A be parameters, and h be the step
size. If a, b, ¢ satisfy

a+%(\b|+\c\)2<0 ©)

and the parameter 6 > max{ %, A— ﬁ }, then the split-step composite 6 method shows mean-square
stability.

Proof. The split-step composite § method is applied to Equation (4). The numerical scheme
is constructed as follows:

X = X + [0ax;, + (1 — 0)ax,|h )
X1 = Xy + [A(bxyy, +cxpy_p) + (1 — A) (bxn + cxp—m] ) AWy,
namely
(1—0ah)x; = (14 (1 —06)ah)x,,
«  1+(1—06)an
T T Tgan ®
1+ (1—6)ah
Gon = Y gy
substituting (8) into the second equation of (7), we have
Xpi1 = (L+ADAWy)x) + AcAWy x5 + [(1— A) (bxy + cxpm) | Wy
A4+ ADAW,) (1 + (1 —0)ah)
= T + (1= A)bAW,]xy
(AcAW,) (1 + (1 — 6)ah)
+ [ T—oah + (1= A)cAWy]xp—m.
Squaring both the above equation, we obtain
(1—0ah)*x2 4 = [1+ (1 — 0)ah + bAW, + (A — 0)abh AW, *x3
+ [cAW, + (A — 0)ach AW, 2x2_, +2[1+ (1 — 0)ah ©)

+ AW, 4 (A — 0)abh AW, ] [c AW,
+ (A = 0)ach AWy | xpXpy—m.
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Using the inequality 2af < a? + p? and taking mathematical expectation on (9),

we obtain
(1 — 0ah)?E|x,41|* < [(1 4 (1 — 0)ah)? + bPh + (A — 0)%a*b*H®
+2(A — 0)ab*h*Ex2 + [*h + (A — 0)%a>2h3 10)
+2(A — 0)ac®h?)Ex?_,, + [|bc|h 4+ 2(A — 6) |abe|h?
+ (A — 60)2a?|bc|h3] (Ex2 + Ex2_,).
that is
(1 — 6ah)?E|x,41)*> < A(a,b,c,h,0,\)Ex% + B(a,b,c,h,0,A\)Ex>_,, (11)
where
A(a,b,c,h,0,A) = (14 (1 —6)ah)? + b*h + (A — 0)?a®b*h® 4 2(A — 0)abh?
+ |be|h +2(A — 8)|abe|h? + (A — 6)2a?|be|H®
B(a,b,c,h,0,A) = 2h+ (A — 0)%a*c*h® + 2(A — 0)ac*h® + |be|h
+2(A — 8)|abe|h* + (A — 6)2a|be| 3,
1 — Oah > 0 and the condition (6) holds. It is obvious that if
A(a,b,c,h,0,A) + B(a,b,c,h,0,A) < (1—6ah)?,
the above inequality is equivalent to
(1—260)a?h +2a + (1+ (A — 8)ah)*(|b| + |c|)? <0, (12)

If |1+ (A — 0)ah| < 1, then from condition (6) we have a < 0 and
2a+ (1+ (A —0)ah)*(|b| + |c[)* < 0,

Thus, when 6 > 0.5, the inequality (12) holds. We obtain the relationship of k,0, A
from |1+ (A — 0)ah| < 1, thatis
2

)
D)

The theorem is proven. [

4. Numerical Example

Taking coefficients of Equation (13) as a = —20,b = 4, c = 2. The coefficients satisfy
the condition (6). We use Matlab to randomly generate 2000 discrete trajectories, that is

1 20
Y, = —— L
1= 3000 &= Vi

where y;- is the numerical solution of i trajectories at the time ¢;.

Parameter A = 0.8 can be fixed with step-size i = 1. Figure 1 shows that the split-
step composite 6 method does not show mean-square stability when 6 = 0.5, while for
6 = 0.8, the split-step composite § method is stable. When the parameter 6 is closer to 1,
the split-step composite 6 method is more stable.
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(a) (b)
Figure 1. The split-step composite § method with (a) 6 = 0.5; (b) 6 = 0.8.

Parameter § = 0.5 can be fixed with step-size i1 = 0.25. We change the value of
parameter A = 1 to A = 0.8, as shown in Figure 2. From Figure 2, the second-order moment
of numerical solution blows up when A = 1 and tends to be zero for A = 0.8, as observed.
Appropriately adjusting the parameter value A can improve stability.

Fix parameters 6§ = 0.5 when A = 0.8. We choose the step-size h = 0.5, h = 0.25,
and the computer simulation result is shown in Figure 3. It is shown that the split-step
composite § method can maintain stability when i = 0.25.
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Figure 2. The split-step composite § method with (a) A = 1; (b) A = 0.8.
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Figure 3. The split-step composite § method with (a) & = 0.5; (b) h = 0.25.
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5. Conclusions

We discuss the stability of the split-step composite § method for stochastic delay differential
equations in the paper. It is proven that the split-step composite # method with 6 > 0.5 shows
mean-square stability. We can maintain and improve the stability of the split-step composite 6
method for stochastic systems by adjusting the values of parameters § and A. Meanwhile, it is
proven that the split-step composite & method is superior to that of the split-step 6 method.
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