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Abstract: In modeling time-to-event data with long-term survivors, the proportional hazards model
is widely used for its easy and direct interpretation as well as the flexibility to accommodate the past
information and allow time-varying predictors. This becomes most relevant when the mortality of
individuals converges with time, and the estimation and inference based upon the proportional odds
model can often yield more accurate and reasonable results than the classical Cox’s proportional
hazards model. Along with the fast development of the data science technologies, computational
challenges for survival data with increasing sample size and diverging parameter dimension exist.
Currently, existing methods for analyzing such data are computationally inconvenient. In this paper,
we propose efficient computational methods for analyzing survival data in the proportional odds
model, where the nonparametric maximum likelihood approach is combined with the minorization-
maximization (MM) algorithm and the regularization scheme to yield fast and accurate estimation
and inferential procedures. The illustration of the methodology using extensive simulation studies
and then the application to the Veterans’ Administration lung cancer data is also given.

Keywords: long-term survivor; model selection; regularization method; time-varying covariates
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1. Introduction

The proportional odds model was initially proposed by McCullagh [1,2] with the
purpose of analyzing ordinal data instead of censored survival data. Due to its easy and
direct interpretation, it has been widely used in practice. Ref. [3,4] extended the model
to fit survival data using the Newton-Raphson method. Many researchers started to use
this model in survival analysis also because of its good prediction performance. Ref. [5]
considered the rank-based estimation method. Ref. [6] proposed the semi-parametric pro-
portional odds model, which is one important case of the general linear transformation
model. In addition, ref. [7] employed the profiled likelihood method and developed the
model diagnostic procedures. For interval censored data, ref. [8,9] further introduced
the sieve maximum likelihood estimation and obtained the consistency and asymptotic
normality for the estimated parameters. Ref. [10] proposed an easy implementation of this
proportional odds model based on the conditional logistic regression. Ref. [11] considered
the semi-parametric proportional odds model, where the baseline function can be any non-
decreasing function. As for the improvement of the parameter estimation efficiency, ref. [12]
proposed the minorization-maximization (MM) algorithm for the proportional odds model
and this algorithm performswell given high-dimensional data. Ref. [13] adopted the cubic
spline for baseline estimation and [14] proposed to capture the spatial heterogeneity using a
Bayesian hierarchical model for the analysis of spatially related data. Similarly, ref. [15] also
proposed the semiparametric Bayesian proportional odds model, where the baseline is esti-
mated through a monotone increasing spline. The Bayesian model framework was further
extended to the application of clustered and multi-event data by [16]. Ref. [17] proposed an
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extension of the original model in order to fit the data with a multivariate response, random
intercept and non-linear effect of covariates. Furthermore, based on the interval censored
data and Bayesian estimation method, ref. [18] introduced the cure rate proportional odds
models for the corresponding data analysis. Different from the traditional proportional
odds model, ref. [19] discussed the quantile-based definition for this model and presented
the illustration using real life datasets. Ref. [20] added a log-concave constraint on the
baseline distribution and developed the corresponding parameter and density estimation.
Besides the MM algorithm, ref. [21] proposed an expectation-maximization (EM) scheme
for the parameter estimation with a good computational efficiency for both parameter and
baseline estimation. In addition, ref. [22] discussed the efficient estimation of the odds ratio
for the proportional odds model with censored time-lagged outcome. [23] has pointed out
the high computational complexity and inefficiency for the proportional odds model with
right censored data. For example, ref. [7]’s method cannot perform estimation appropri-
ately given the consecutively observed failure time. In addition, ref. [13] pointed out the
method proposed by [9] is very complex and computationally unachievable. Moreover,
the estimated baseline function from [13]’s method may not preserve the monotone prop-
erty constructed by the natural cubic spline. Therefore, to tackle these problems, ref. [23]
developed the EM algorithm for the proportional odds model with right censored data,
where the baseline function is estimated using the spline. The method can be applied to a
large dataset, while AIC or BIC criterion is applied to determine the optimal number of
knots for the natural cubic spline estimation.

The covariates are important for the regression analysis, where some covariates with a
tiny impact to the response might be captured during the estimation procedure. Therefore,
when constructing the regression model, it is essential to conduct a variable selection
procedure. The most popular way of variable selection is conducted by adding penalty
functions to the original objective. The parameters are then estimated by maximizing the
new objective function. In the survival analysis, the LASSO [24], SCAD [25], the adaptive
LASSO [26] and the elastic SCAD are commonly applied for the proportional hazard
models. As for the proportional odds model, only limited studies are conducted based
on the penalized regression. Ref. [27] studied the application of LASSO and the adaptive
LASSO in the proportional odds model, where the simulation results of the adaptive LASSO
demonstrate better performance in both variable selection and parameter estimation.

As for optimizing the likelihood function of the proportional odds model, the Newton-
Raphson method and EM algorithm perform well in finding the root without an explicit
form. Ref. [28] first developed the MM algorithm to optimize the convex function iteratively.
EM algorithm is a special case of the MM algorithm. The MM algorithm can help avoid
high-dimensional matrix inversion, separate the parameters, linearize the optimization
problem and transform the non-differentiable problem to smooth optimization. In real
applications, the MM algorithm has been applied to optimize the objective function from
statistical models such as quantile regression [28], Bradley-Terry model [29], zero-inflated
and zero-truncated models [30,31], high-dimensional covariates selection problem [32],
mixed Gaussian model [33] and finite mixture models. In addition, the MM algorithm has
been also applied to survival analysis. Ref. [34] has developed a MM algorithm to solve the
optimization problem based on the shared gamma frailty model. The estimation results
perform well in their simulation and real data analysis.

In the following article, we first review the MM algorithm in Section 2. Then, we apply
the usage of the MM algorithm in the proportional odds model in Section 3. In Section 4,
we further conduct a variable selection procedure based on the proportional odds model
using the MM algorithm. Simulation studies and real data analysis are conducted in
Sections 5 and 6. Finally, we conclude the performance of our proposed methods and
discuss the future work in Section 7.
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2. MM Algorithm
2.1. Basic Principle

The MM algorithm performs optimization by constructing a simple surrogate function
for the original objective function. Then, instead of optimizing the original objective
function, we optimize the surrogate function with simplified expression. The process of
the MM algorithm involves two steps; the first M step is the minorization step, which
constructs a proper minorization function under the following conditions (1) and (2) by
some commonly used inequations. The second M step is the maximization step, where a
minorization function is maximized via the Newton-Raphson method or a quasi-Newton
method, since the constructed minorization function is usually parameter-separable.

Let `(θ | Yobs) is the log-likelihood of observed data Yobs, θ̂ is the parameter estima-
tion through the maximization of log-likelihood. Assume θ(t) is the t-th iteration of θ̂,
Q
(

θ | θ(t)
)

is the surrogate function determined by θ(t). If θ(t) satisfy,

Q
(

θ | θ(t)
)
6 `(θ | Yobs ) ∀θ, θ(t) ∈ Θ, and (1)

Q
(

θ(t) | θ(t)
)
= `
(

θ(t) | Yobs

)
. (2)

Then, we call Q
(

θ | θ(t)
)

to be the minorization function of `(θ | Yobs). The maximiz-

ing of Q
(

θ | θ(t)
)

can substitute the maximization of the original objective. If Q
(

θ | θ(t)
)

obtains the optimal at θ(t+1),

θ(t+1) = arg max
θ∈Θ

Q
(

θ | θ(t)
)

.

From (1) and (2), we have

`
(

θ(t+1) | Yobs

)
> Q

(
θ(t+1) | θ(t)

)
> Q

(
θ(t) | θ(t)

)
= `
(

θ(t) | Yobs

)
.

The MM algorithm is a stable optimization procedure and has a convergence property
due to the increase in the objective in every iteration. EM algorithm is a special case of
MM algorithm and its first M step (also called E step) is to calculate the expectation of the
complete-data log-likelihood function.

2.2. Commonly Used Inequalities

The key step of the MM algorithm is to find the appropriate surrogate function for
the objective with less computational cost. In real applications, in order to construct
the surrogate function, we suggest the following ways based on the commonly used
algebraic inequalities.

The first method is Jensen’s inequality. Assume that X is a random variable, and ϕ is a
concave function, then

ϕ(E[X]) ≥ E[ϕ(X)].

In contrast, if ϕ is convex, then,

ϕ(E[X]) ≤ E[ϕ(X)].

In real applications, we always use the continuous and discrete version of Jensen’s
Inequality. The continuous version is

ϕ

(∫
Ω

f (x) · g(x)dx
)
≥
∫

Ω
ϕ( f (x)) · g(x)dx,
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where Ω is the subset of the real line R. f (·) is defined real function on Ω, g(·)is the density
function on Ω. Discrete version,

ϕ

(
n

∑
i=1

aixi

)
≥

n

∑
i=1

ai ϕ(xi),

where ϕ(·) is a concave function, ai ≥ 0 and ∑n
i=1 ai = 1.

The second method is the inequality of arithmetic and geometric means,

−
n

∏
i=1

xai
i ≥ −

n

∑
i=1

ai
‖a‖1

x‖a‖1
i .

where xi and ai are nonnegative. The left-hand side of the inequality is a product of xai
i

and the other side of this inequality is the sum of x‖a‖1
i for i = 1, . . . , n. The structure of

this inequality says that it can be used to minorize product terms into the summation of
other terms.

The third method is the supporting hyperplane inequality,

− log(x) ≥ − log(x0)−
x− x0

x0
.

3. Proportional Odds Model

Let T denotes the failure time, X is the covariate of p× 1 dimension, β is the corre-
sponding coefficient. Suppose that given X, T follow the proportional odds model

logit {F(t | X)} = log Λ0(t) + X>β,

where F(t | X) denotes the cumulative distribution function of T given X, Λ0(t) denotes a
cumulative baseline function, and logit (x) = log x

1−x .
Based on the assumption above, we can easily obtain the survival and density function

of the proportional odds model

S(t | X) =
1

1 + Λ0(t) exp
(
X>β

)
and

f (t | X) =
λ0(t) exp

(
X>β

)[
1 + Λ0(t) exp

(
X>β

)]2 ,

respectively, with the hazard rate

λ(t | X) =
λ0(t) exp

(
X>β

)
1 + Λ0(t) exp

(
X>β

) ,

where λ0(t) = dΛ0(t)/dt.
Here, we consider the failure time T with a right censoring structure, and a failure

time study that consists of n independent individuals. Let Ti, Ci and Xi denote the failure
time, the censoring time and the covariate of the ith individual, respectively. Moreover,
we assume the Ti and Ci are independent. In addition, let ti = min(Ti, Ci) denote the
observation time of event, and δi = I(Ti ≤ Ci) is the censoring indicator based on the
observed data {ti, δi, Xi}, i = 1, . . . , n. Then, the likelihood function is

Lobs =
n

∏
i=1

{
λ0(ti) exp

(
X>i β

)
1 + Λ0(ti) exp

(
X>i β

)}δi
1

1 + Λ0(ti) exp
(
X>i β

) .
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with the corresponding log-likelihood function

`obs =
n

∑
i=1

{
δi log λ0(ti) + δiX>i β− (δi + 1) log

[
1 + Λ0(ti) exp

(
X>i β

)]}
. (3)

In Equation (3), using the supporting hyperplane inequality,

− log(x) ≥ − log(x0)−
x− x0

x0
.

we have

−(δi + 1) log
[
1 + Λ0(ti) exp

(
X>i β

)]
≥− (δi + 1) log(A(k)

i )

− (δi + 1)
1 + Λ0(ti) exp

(
X>i β

)
− A(k)

i

A(k)
i

,

where A(k)
i = 1 + Λ(k)

0 (ti) exp
(

X>i β(k)
)

. Then, we can obtain the surrogate function of `obs,
as follows

Q11(Λ0, β | Λ(k)
0 , β(k)) =

n

∑
i=1

{
δi log λ0(ti) + δiX>i β−

(δi + 1)Λ0(ti) exp
(
X>i β

)
A(k)

i

}
.

After the minimization step, we then apply two methods to estimate the surrogate
function derived above.

3.1. Profile MM Method

Given the value of β, we can obtain the estimate of Λ0

dΛ̂0(ti) =
δi

∑n
j=1 I

(
tj > ti

)(
δj + 1

)
exp

(
X>j β

)
/A(k)

j

. (4)

Substitute (4) into Q11

(
Λ0, β | Λ(k)

0 , β(k)
)

, we have

Q12

(
β | Λ(k)

0 , β(k)
)
=

n

∑
i=1

δiX>i β−
n

∑
i=1

{
δi log

n

∑
j=1

I
(
tj > ti

)(
δj + 1

)
exp

(
X>j β

)
/A(k)

j

}
+ c1,

where c1 is a constant. Using the supporting hyperplane inequality again to minimize
Q12

(
β | Λ(k)

0 , β(k)
)

, we have

Q13

(
β | Λ(k)

0 , β(k)
)
=

n

∑
i=1

δiX>i β−
n

∑
i=1

δi ∑n
j=1 I

(
tj > ti

)(
δj + 1

)
exp

(
X>j β

)
/A(k)

j

B(k)
i

+ c2, (5)

where c2 is a constant and B(k)
i = ∑n

j=1 I
(
tj > ti

)(
δj + 1

)
exp

(
X>j β

)
/A(k)

j .

Taking first and second derivatives for Q13

(
β | Λ(k)

0 , β(k)
)

to β, then

Q′13

(
β | Λ(k)

0 , β(k)
)
=

n

∑
i=1

δiX>i −
n

∑
i=1

δi ∑n
j=1 I

(
tj > ti

)(
δj + 1

)
exp

(
X>j β

)
X>j /A(k)

j

B(k)
i

,

Q′′13

(
β | Λ(k)

0 , β(k)
)
= −

n

∑
i=1

δi ∑n
j=1 I

(
tj > ti

)(
δj + 1

)
exp

(
X>j β

)
X>j Xj/A(k)

j

B(k)
i

.
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The estimation function for β is

β(k+1) = β(k) −Q′′13

(
β(k) | Λ(k)

0 , β(k)
)−1

Q′13

(
β(k) | Λ(k)

0 , β(k)
)

.

The algorithm is given below,

1. Let the initial value for (β, Λ0) be (β(0), Λ(0)
0 ).

2. Update the estimate of β by Equation (5).
3. Using the updated value of β, calculate the estimate of Λ0 by Equation (4).
4. Iterate step 2 and 3 until it converges.

3.2. Non-Profile MM Method

Use the inequality of arithmetic and geometric means

−
n

∏
i=1

xai
i ≥ −

n

∑
i=1

ai
‖a‖1

x‖a‖1
i

to minimize Q11(Λ0, β | Λ(k)
0 , β(k)), let x1 = Λ0(ti)/Λ(k)

0 (ti) and x2 = exp(X>i β)/ exp(X>i β(k)),
we have

−
Λ0(ti) exp(X>i β)

Λ(k)
0 (ti) exp(X>i β(k))

≥ −
Λ2

0(ti)

2Λ2(k)
0 (ti)

−
exp(2X>i β(k))

2 exp(2X>i β(k))
.

By computation, we obtain

−Λ0(ti) exp(X>i β) ≥ −
exp(X>i β(k))

2Λ(k)
0 (ti)

Λ2
0(ti)−

Λ(k)
0 (ti)

2 exp(X>i β(k))
exp(2X>i β).

Therefore, the surrogate function is

Q14(Λ0, β | Λ(k)
0 , β(k)) = Q14(Λ0 | Λ(k)

0 , β(k)) + Q14(β | Λ(k)
0 , β(k)),

where

Q14(Λ0 | Λ(k)
0 , β(k)) =

n

∑
i=1

δi log λ0(ti)−
n

∑
i=1

(δi + 1) exp
(

X>i β(k)
)

2A(k)
i Λ(k)

0

Λ2
0,

Q14(β | Λ(k)
0 , β(k)) =

n

∑
i=1

δiX>i β−
n

∑
i=1

(δi + 1)Λ(k)
0

2A(k)
i exp

(
X>i β(k)

) exp
(

2X>i β
)

. (6)

Let ∂Q14(Λ0,β|Λ(k)
0 ,β(k))

∂Λ0
= 0, the estimation equation of Λ0 is

dΛ̂0(ti) =
δi

∑n
j=1 I

(
tj > ti

)(
δj + 1

)
exp

(
X>j β

)
/A(k)

j

. (7)

The first and second derivatives of β are

Q′14(β | Λ(k)
0 , β(k)) =

n

∑
i=1

δiX>i −
n

∑
i=1

(δi + 1)Λ(k)
0

A(k)
i exp

(
X>i β(k)

) exp
(

2X>i β
)

X>i ,

Q′′14(β | Λ(k)
0 , β(k)) = −

n

∑
i=1

2(δi + 1)Λ(k)
0

A(k)
i exp

(
X>i β(k)

) exp
(

2X>i β
)

X>i Xi.
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Thus, we have the estimation function of β which is

β(k+1) = β(k) −Q′′14(β(k) | Λ(k)
0 , β(k))−1Q′14(β(k) | Λ(k)

0 , β(k)).

The algorithm is as follows,

1. Let the initial value of (β, Λ0) to be (β(0), Λ(0)
0 ).

2. Update β using Equation (6).
3. Use the updated value of β, calculate the estimate of Λ0 using Equation (7).
4. Iterate step 2 and 3 until convergence.

To sum up, both profile MM and non-profile MM methods have decomposed the
objective function into two separate parts. That is, the non-parametric component Λ0 is
separated from the regression vector β, which makes the next maximization step more
simple than directly optimizing the objective log-likelihood function. It is worth noting that
the parameter-separable feature is one of the advantages of the MM algorithm, which can
easily incorporate the quasi-Newton acceleration and other simple off-the-shelf accelerators
for boosting computational effectiveness.

4. Variable Selection in the Proportional Odds Model
4.1. Parameter Separated Estimation Method

Notice that the estimate of β relies on the Newton-Raphson algorithm, which is sensi-
tive to the initial value, and may lead to computational inefficiency due to the inappropriate
choice of initial value. Particularly, the higher the dimension of β, the higher order the
matrix of Henssian from the Newton-Raphson method with a high computational cost in
doing matrix inverse. Under this circumstance, the proposed MM method can avoid such a
matrix inversion problem with much lower computational cost. In the following section,
we describe in detail on the parameter-separated estimation method following the previous
two methods of Section 3.

First, let

X>i β =
p

∑
q=1

ωiq

[
ω−1

iq xiq(βq − β
(k)
q ) + X>i β(k)

]
, (8)

when xiq = 0, we let 1/ωiq = 0. Then, using the discrete form of Jensen’s inequality,

ϕ

(
n

∑
i=1

aixi

)
≥

n

∑
i=1

ai ϕ(xi), (9)

where, ϕ(·) is a concave function, ai ≥ 0 and ∑n
i=1 ai = 1.

Let ϕ(·) = − exp(·) in Equation (9) and use the expression form of Equation (8), we
can minimize Equation (5) by

Q15(β | Λ(k)
0 , β(k)) =

p

∑
q=1

Q15q(βq | Λ(k)
0 , β(k)), (10)

where

Q15q(βq | Λ(k)
0 , β(k))

=
n

∑
i=1

δixiqβq −
δi ∑n

j=1 I
(
tj > ti

)(
δj + 1

)
ωjq exp(ω−1

jq xjq(βq − β
(k)
q ) + X>i β(k))/A(k)

j

B(k)
i

.
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Similarly, let ϕ(·) = − exp(·) in Equation (9) and use the expression form of Equation (8),
we can also minimize Equation (6) by

Q16(β | Λ(k)
0 , β(k)) =

p

∑
q=1

Q16q(βq | Λ(k)
0 , β(k)), (11)

where

Q16q(βq | Λ(k)
0 , β(k))

=
n

∑
i=1

δixiqβq −
(δi + 1)Λ(k)

0

2A(k)
i exp

(
X>i β(k)

)ωiq exp(2ω−1
iq xiq(βq − β

(k)
q ) + 2X>i β(k))

.

From Equations (10) and (11), it can be observed that the two resulting MM methods
only involves p + 1 separate univariate optimizations in its maximization step and matrix
inversion is not needed. Thus, the proposed methods can highly reduce the computa-
tional cost.

4.2. The Variable Selection Based on SCAD and MCP Penalties

The variable selection is an important field in high-dimensional data analysis. Using
variable selection methods to select significant explanatory variables and remove the
insignificant ones can improve the prediction accuracy of the statistical model. In this
article, we applied the SCAD and MCP penalties with oracle properties to conduct variable
selection in the proportional odds model. The penalized log-likelihood function becomes
the new objective to be minimized, which can be written as,

`pen(β) = `obs(β)− n
p

∑
q=1

ρ(
∣∣∣βq

∣∣∣ | ε, γ),

where ρ(· | ε, γ) is the penalized term. Where the SCAD proposed by [35] is

ρ(t | ε) = ε
∫ t

0
min

{
1,

(γ− x/ε)+
γ− 1

}
dx, t ≥ 0, ε ≥ 0, γ ≥ 2,

γ is suggested to take value 3.7 and the MCP proposed by [36] is

ρ(t | ε) = ε
∫ t

0
(1− x

εγ
)dx, t ≥ 0, ε ≥ 0, γ > 1,

where γ here takes 3.
In order to handle the singularity around the origin of ρ(

∣∣∣βq

∣∣∣ | ε, γ), [35] suggested to
use the quadratic local approximation of the penalized term, which can be written as

−ρ
(∣∣βq

∣∣ | ε, γ
)
≥ −ρ

(∣∣∣β(k)
q

∣∣∣ | ε, γ
)
−

ρ′
(∣∣∣β(k)

q

∣∣∣ | ε, γ
)

2
∣∣∣β(k)

q

∣∣∣
(

β2
q − β

(k)2
q

)
.

Thus, the penalized surrogate function can be written as

Qpen(β) = `obs(β)− n
p

∑
q=1

ρ′
(∣∣∣β(k)

q

∣∣∣ | ε, γ
)

2
∣∣∣β(k)

q

∣∣∣ β2
q.

where `obs(β) can be minorized by Equation (10) or Equation (11).
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In order to obtain a good variable selection result, we applied the BIC criterion to select
the tuning parameter ε. The likelihood function with BIC criterion suggested by [37] is

BIC = −2`(Λ̂0, β̂) + q log(n),

where n is the sample size and q denotes the dimension of β̂, which is the number of
selected non-zero parameters. For the exact process of tuning parameters’ selection, we first
find the the proper range of λ values by searching from (0,+∞) using this BIC criteria with
an initial sequence s1, s2, ..., sk1 . The solution path can be plotted using this sequence and si
is selected where the minimum BIC is obtained. Then, some grid points are constructed
in a range (si−1, si+1) for a more accurate search where the optimal λ is selected from this
sequence with the minimum BIC score.

5. Simulation Study

According to the estimation equation derived in previous sections, we simulate the
data to analyze the estimation result at a finite sample size.

5.1. Parameter Estimation of the Proportional Odds Model

Case 1: The data is simulated to verify the method given from Section 3. Let
(X1, X2, X3)

> be the covariates, which follow the standard normal distribution and the true
parameter β is set to be (2, 1,−3)>, Λ0(t) = (t/2)2. The censoring times are generated
from the uniform distribution U(0, b) to yield two censoring proportions of about 30% or
50% separately. We take sample size to be 250 and 500, the corresponding censoring rate
are 30% and 50%. The simulation is conducted 500 times repeatedly. The BIAS, MSE (mean
square error), SD (standard deviation) and median number of iterations (K) are reported in
the following Tables 1 and 2.

Case 2: Let X1, X2 follows standard normal distribution, X3 follows bernoulli distribu-
tion with rate 0.5, the true parameters β are set to be (2, 1,−1)>, Λ0(t) = log(t + 1). The
censoring times are also generated from uniform distribution U(0, b). The simulation result
under 50% censoring rate is given by Table 3.

From Tables 1–3, we can observe that the two proposed MM algorithms in Section 3
perform similarly well with small MSEs and SDs at different sample sizes and censoring
proportions. The estimation for both the parametric part and nonparametric part are accu-
rate with small estimation bias. Moreover, with the increasing of sample size, the estimation
result becomes more stable for both the Profile MM method and Non-profile MM method.
In addition, compared with the Non-profile MM methods, the Profile MM algorithm per-
forms much more efficiently with less iteration numbers. From Figure 1, we set sample size
as 250; the dotted line can fit the solid line well when the censoring rate is 30% and 50%,
respectively. Similarly, from Figure 2, when the right censoring rate is 50%, the curves of
the true baseline cumulative hazard function and estimated baseline cumulative hazard
function are coincident in both cases, where the sample size is 250 and 500, which indicates
the consistency of our estimator. The results demonstrated in the Figures 1 and 2 are
consistent with those shown in Tables 1–3, and we can conclude that our proposed methods
have an excellent performance in estimating the baseline cumulative hazard function and
other parameters, given the high right censoring rate and small sample size.
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Table 1. The estimation result of Case 1 with 30% censoring rate.

n Parameter
Profile MM Non-Profile MM

BIAS MSE SD K BIAS MSE SD K

250 β1 −0.0066 0.0316 0.1777 0.0024 0.0324 0.1801

β2 −0.0077 0.0204 0.1426 0.0092 0.0182 0.1348

β3 −0.0001 0.0513 0.2267 104 −0.0139 0.0486 0.2203 298

Λ0(0.5) 0.0085 0.0003 0.0172 0.0002 0.0003 0.0166

Λ0(1) 0.0052 0.0035 0.0593 0.0004 0.0028 0.0528

500 β1 −0.0068 0.0143 0.1195 −0.0085 0.0151 0.1226

β2 0.0007 0.0089 0.0943 0.0016 0.0101 0.1008

β3 −0.0154 0.0241 0.1545 102 −0.0128 0.0219 0.1474 289

Λ0(0.5) −0.0002 0.0001 0.0114 0.0005 0.0001 0.0120

Λ0(1) −0.0028 0.0013 0.0362 −0.0004 0.0014 0.0368

Table 2. The estimation result of Case 1 with 50% censoring rate.

n Parameter
Profile MM Non-Profile MM

BIAS MSE SD K BIAS MSE SD K

250 β1 −0.0029 0.0462 0.2151 −0.0100 0.0369 0.1921

β2 −0.0021 0.0235 0.1534 0.0037 0.0249 0.1580

β3 0.0001 0.0682 0.2614 106.5 0.0027 0.0648 0.2548 310

Λ0(0.5) −0.0003 0.0003 0.0166 0.0004 0.0003 0.0177

Λ0(1) −0.0001 0.0032 0.0565 −0.0003 0.0035 0.0531

500 β1 0.0012 0.0196 0.1402 −0.0033 0.0184 0.1359

β2 −0.0105 0.0116 0.1076 −0.0078 0.0131 0.1145

β3 0.0063 0.0348 0.1867 105 0.0020 0.0310 0.1763 304

Λ0(0.5) −0.0002 0.0002 0.0125 0.0005 0.0002 0.0126

Λ0(1) −0.0017 0.0018 0.0422 0.0027 0.0016 0.0395

Table 3. The estimation result of Case 2 with 50% censoring rate.

n Parameter
Profile MM Non-Profile MM

BIAS MSE SD K BIAS MSE SD K

250 β1 0.0147 0.0336 0.1831 0.0316 0.0435 0.2065

β2 0.0075 0.0207 0.1438 0.0129 0.0258 0.1604

β3 −0.0328 0.0777 0.2772 53 −0.0049 0.0768 0.2774 151

Λ0(0.5) 0.0074 0.0089 0.0945 −0.0068 0.0082 0.0908

Λ0(1) 0.0138 0.0242 0.1553 −0.0090 0.0233 0.1527

500 β1 0.0041 0.0186 0.1367 0.0134 0.0199 0.1409

β2 −0.0042 0.0120 0.1096 0.0027 0.0135 0.1166

β3 −0.0015 0.0398 0.1998 53 −0.0001 0.0371 0.1929 148

Λ0(0.5) −0.0015 0.0039 0.0625 −0.0020 0.0043 0.0659

Λ0(1) −0.0005 0.0115 0.1075 −0.0043 0.0114 0.1068
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Figure 1. True and estimated baseline cumulative functions with different censoring rate when
sample size is 250. The solid and dotted lines plot the true and estimated baseline cumulative hazard
functions, respectively. The estimated baseline cumulative hazard function is the empirical average
of the estimated baseline cumulative hazard functions based on 500 replications.
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(d) Non−profile MM Method, sample size = 500
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Figure 2. True and estimated baseline cumulative functions with different sample size when censoring
rate is 50%. The solid and dotted lines plot the true and estimated baseline cumulative hazard
functions, respectively. The estimated baseline cumulative hazard function is the empirical average
of the estimated baseline cumulative hazard functions based on 500 replications.



Mathematics 2022, 10, 3362 12 of 17

5.2. Simulation on Variable Selection

Case 3: We simulate the data to verify the method discussed in Section 4.1. The di-
mension of the covariates is set to be 10 and they follow standard normal distribution. Let
Λ0(t) = (t/2)2, the censoring times are generated from uniform distribution U(0, b) to
yield a censoring proportion of about 50%, assume β = (−4,−4,−2,−2, 1, 1, 3, 3, 5, 5)>.
Based on 500 replications, the BIAS, MSE (mean square error), SD (standard deviation) and
median number of iterations (K) of the estimated parameters are reported in the Table 4.

Table 4. The results via parameter separated estimation method of Case 3 at 50% censoring rate.

n Parameter
Profile MM Non-Profile MM

BIAS MSE SD K BIAS MSE SD K
200 β1 −0.0711 0.1664 0.4020

4251

−0.0840 0.1842 0.4213

2016
β3 −0.0208 0.0640 0.2524 −0.0515 0.0697 0.2593
β5 0.0020 0.0433 0.2083 0.0174 0.0443 0.2099
β7 0.0496 0.1134 0.3335 0.0691 0.1150 0.3323
β9 0.1008 0.2523 0.4925 0.0966 0.2571 0.4983

400 β1 −0.0230 0.0663 0.2567

3959

−0.0108 0.0714 0.2673

1851
β3 −0.0149 0.0317 0.1777 −0.0005 0.0313 0.1771
β5 0.0093 0.0177 0.1328 0.0065 0.0189 0.1375
β7 0.0139 0.0451 0.2121 −0.0026 0.0471 0.2172
β9 0.0372 0.0982 0.3114 0.0080 0.1068 0.3271

Case 4: Let X1, X2, · · · , X7, X8 follows standard normal distribution, X9, X10 follows
bernoulli distribution with rate 0.5, Λ0(t) = 2t, parameters β = (1, 1, 1, 1,−2,−2,−2,−2, 2,−1)>,
the simulation result under 30% censoring rate is presented by Table 5.

Table 5. The result via parameter separated estimation method of Case 4 with 30% censoring rate.

n Parameter
Profile MM Non-Profile MM

BIAS MSE SD K BIAS MSE SD K
200 β1 0.0135 0.0253 0.1587

1076

0.0273 0.0304 0.1724

467
β5 −0.0474 0.0438 0.2040 −0.0419 0.0458 0.2102
β9 0.0216 0.0977 0.3122 0.0368 0.1120 0.3330
β10 0.0060 0.0899 0.3000 0.0064 0.0975 0.3125

400 β1 0.0085 0.0127 0.1125

1025.5

0.0128 0.0128 0.1128

446
β5 −0.0178 0.0193 0.1382 −0.0167 0.0203 0.1418
β9 0.0337 0.0465 0.2133 0.0228 0.0484 0.2191
β10 −0.0084 0.0411 0.2029 −0.0027 0.0371 0.1928

From the simulation results demonstrated in Tables 4 and 5, the proposed parameter
separated MM method in Section 4.1 can estimate the parameters accurately with small
estimation bias and we also observe that the MSE, SD and K decrease with the sample size
increases. Different from the results in Tables 1–3, the non-profile MM method has fewer
iterations than profile MM method in Tables 4 and 5.

Case 5: In this part, we illustrate the utility of the proposed MM method for the
regularized estimation in the sparse high-dimensional proportional odds regression model
with 10 covariates (X1, · · · , X10)

>. Let Λ0(t) = (t/2)2, the censoring times are generated
from uniform distribution U(0, b) to yield a censoring proportion of about 30%, where the
marginal distribution of (X1, · · · , X10)

> is the standard normal with correlation ρ = 0.2.
Assume the true value of β is (−2, 1, 3, 0, 0, 0, 0, 0, 0, 0), where β1, β2, β3 are non-zero param-
eters. The simulation is repeated 500 times.
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In order to assess the effectiveness of our methods, we calculate the RMSE to test the
average difference between the true and estimated parameters.

RMSE =

√√√√ 1
p

p

∑
j=1

(
β j − β̂ j

)2
,

where p is the number of explanatory variables. Moreover, we calculate the FDR (false
discovery rate) and PSR ( positive select rate) proposed by [38]

FDR =

{ FP
TP+FP , TP + FP > 0,

0, TP + FP = 0,

PSR =
TP
m

,

where FP (false positive) is the number of parameters, which are estimated to be non-zero
with true value equals to zero, TP (true positive) denotes the correctly excluded insignificant
parameters, and m denotes the number of non-zero parameters. Thus, the low FDR or high
PSR indicates the good parameter selection result.

According to Table 6, the regularized estimation methods proposed in this paper can
correctly select the significant parameters. With the increase in sample size, we can observe
that the parameter selection results perform better. Under the same framework, the results
produced by Profile MM method and Non-profile MM method are similar as well. In both
cases, where the sample size is 200 and 400, no parameter with true value equals to 0 is
selected. For the selection of true parameters, both penalties generate good results with
PSR greater than 0.9, while SCAD performs slightly better than MCP. As presented by
Table 7, the estimation of BIAS, MSE and SD are small for non-zero parameters, which
indicates a good estimation performance. That is, the MM method can effectively deal with
the parameter selection for the proportional odds model under SCAD and MCP penalties.

Table 6. The simulation result of varibale selection in Case 5.

n Index Profile MM Non-Profile MM
SCAD MCP SCAD MCP

200 FDR 0 0 0 0
PSR 0.9927 0.9387 0.996 0.9333

RMSE 0.1205 0.1480 0.1182 0.1574
400 FDR 0 0 0 0

PSR 0.9987 0.9740 1 0.9686
RMSE 0.0794 0.0927 0.0733 0.1054

Table 7. The estimation results of non-zero coefficients in Case 5.

Method n Parameter Profile MM Non-Profile MM
BIAS MSE SD BIAS MSE SD

SCAD 200 β1 0.0242 0.0475 0.2167 0.0279 0.0495 0.2210
β2 −0.0639 0.1089 0.3242 −0.0510 0.0990 0.3108
β3 −0.0215 0.0628 0.2501 −0.0270 0.0632 0.2502

400 β1 0.0143 0.0295 0.1714 0.0026 0.0207 0.1440
β2 −0.0228 0.0381 0.1941 −0.0127 0.0276 0.1658
β3 −0.0007 0.0357 0.1892 −0.0027 0.0285 0.1692

MCP 200 β1 0.0707 0.0692 0.2537 0.0971 0.0702 0.2468
β2 −0.1722 0.2078 0.4225 −0.2093 0.2544 0.4594
β3 −0.0619 0.0707 0.2588 0.0571 0.0637 0.2462

400 β1 0.0376 0.0388 0.1935 0.0504 0.0358 0.1827
β2 −0.0735 0.0894 0.2902 −0.1179 0.1421 0.3584
β3 −0.0348 0.0334 0.1796 −0.0262 0.0329 0.1796
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6. Real Data Analysis

We apply our methods to the Veterans’ administration lung cancer study data with
sample size 137, and the number of covariate is 8. The data can be retrieved from the R
package “survival” and the information for the covariates are given in Table 8.

Table 8. Covariates of lung cancer data.

Covariate Detailed Description

Trt treatment, 1 = Standard 2 = test
Celltype Squamous, smallcell, adeno, large

Time Survival time
Status Censoring status
Karno Karnofsky performance score (100 = good)

Diagtime Months from diagnosis to randomisation
Age In years
Prior Prior therapy (0 = no, 10 = yes)

This dataset is generally applied for the illustration of the proportional odds model.
For the purpose of comparing against other studies, we use the data of patient with no
prior therapy where the censoring rate is 6.19% and the covariates are “celltype” and
“karno”. Two MM algorithms are applied to estimate the parameters. Moreover, the stan-
dard deviation is estimated by 1000 times of bootstraps, where β̂∗g, g = 1, · · · , G is the
estimate of gth bootstrap. We construct the 100(1− α)% confidence interval of β using
normal approximation. (

β̄
∗ ± zα/2ŝe∗(β̂)

)
, (12)

where β̄
∗
= (1/G)∑G

g=1 β̂
∗
g and

ŝe∗(β̂) =

√√√√(1/(G− 1))
G

∑
g=1

(
β̂
∗
g − β̄

∗
)2

(13)

bootstrap confidence interval of 100(1− α)% is(
β̂
∗
L, β̂
∗
U

)
, (14)

where β̂
∗
L and β̂

∗
U denotes the quantile of

{
β̂
∗
1 , . . . , β̂

∗
G

}
’s α/2 and 1 − α/2 separately.

Tables 9 and 10 present the estimation result of two MM algorithms, where the standard esti-
mated error (SE) is defined by Equation (13) and the 95% confidence interval (CI1) is defined
by Equation (12). Moreover, the 95% confidence interval (CI2) is defined by Equation (14).
In addition, the estimated cumulative hazard function are plotted in Figure 3.

Table 9. The estimation result from profile MM method.

Variable MLE SE CI1 CI2

karno −0.0532 0.0105 [−0.0741,−0.0329] [−0.0714,−0.0363]
squamous vs large −0.1814 0.6382 [−1.4255,1.0761] [−1.2761,0.8135]
small vs large 1.3827 0.4816 [0.4820,2.3699] [0.6734,2.2438]
adenovs large 1.3138 0.4691 [0.4521,2.2910] [0.6341,2.1755]
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Table 10. The estimation result from non-profile MM method.

Variable MLE SE CI1 CI2

karno −0.0532 0.0106 [−0.0746,−0.0329] [−0.0722,−0.0377]
squamous vs large −0.1814 0.6589 [−1.4696,1.1134] [−1.2175,0.8777]
small vs large 1.3827 0.5105 [0.4431,2.4442] [0.6459,2.2644]
adeno vs large 1.3138 0.4659 [0.4654,2.2919] [0.6267,2.1613]
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Figure 3. Estimated baseline cumulative functions for lung cancer data.

From Tables 9 and 10, for the same patient, every increase of 1 degree of “karno”,
the decrease in possibility of death is exp(−0.0532) = 0.9482. From Figure 3, the estimation
results of the baseline cumulative hazard function of two MM methods are almost the same.
We can find that our method produces a similar result, as concluded by [3], and is a little
bit different from the result presented by [5,7,11], which is shown by Table 11 from [11].

Table 11. Estimation result from other studies.

Variable (Bennett, [3]) (Pettitt, [5]) (Murphy et al., [7]) (Lam & Leung, [11])

karno −0.053 −0.055 −0.055 −0.053
squamous vs large −0.181 −0.177 −0.217 −0.247
small vs large 1.383 1.438 1.440 1.367
adeno vs large 1.314 1.302 1.339 1.316

Then, we consider all eight covariates for model fitting where the censoring rate is
6.57%. We first use the method from Section 4.1 to estimate the parameters. After obtaining
the estimation results, we apply the SCAD and MCP penalties discussed in Section 4.2 for
parameter selection, and the result is presented by Table 12.

From Table 12, the Profile MM method and Non-profile MM method produce sim-
ilar results. Without considering the penalties, the results of parameter separated MM
algorithms demonstrate that four parameters including “small vs large”, “adeno vs large”,
“karno” and “prior” significantly affect the death rate. After introducing the penalties,
we conduct the variable selection and 5 covariates are shrunk to 0. Only three significant
parameters are preserved, which are “small vs large”, “adeno vs large” and “karno”. “small
vs large” and “adeno vs large” lead to a positive effect to the death rate while “karno” is
negatively related to the death rate, which is in line with the common sense in reality.
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Table 12. The result of variable selection for lung cancer data.

Variable Profile MM Non-Profile MM
MLE SCAD MCP MLE SCAD MCP

trt −0.0141 0 0 −0.0141 0 0
squamous vs large −0.0348 0 0 −0.0348 0 0
small vs large 1.2412 1.1960 1.1944 1.2412 1.1873 1.1859
adeno vs large 1.3251 1.3653 1.3670 1.3250 1.3596 1.3593
karno −0.0597 −0.0582 −0.0590 −0.0597 −0.0589 −0.0590
diagtime −0.0025 0 0 −0.0025 0 0
age −0.0141 0 0 −0.0141 0 0
prior −0.1663 0 0 −0.1663 0 0

7. Conclusions and Future Work

The proportional odds models are more competitive than proportional hazards models
in dealing with right-censored survival data, where mortality tends to be uniform over
time. The MM algorithm has the advantages of simple structure, strong interpretability
and easy implementation. Hence, it is a useful tool for optimization problems and has a
broad range of applications in statistics. In this work, we introduce the MM algorithm
into the estimation of the proportional odds model. We first develop two MM algorithms
for the estimation of proportional odds models, which greatly simplify the estimation
process by constructing two simple surrogate functions for the log-likelihood function.
The proposed MM algorithms successfully separate the parameters and decompose the
high-dimensional maximization into separated low-dimensional ones, which may avoid
the matrix inversion and can be used to more general scenarios. Moreover, we apply
the MM methods to the regularized estimation in sparse high-dimensional proportional
odds regression models with SCAD and MCP penalties. We find that the proposed MM
algorithms with the property of separating parameters can mesh well with the SCAD
and MCP penalties, which yield good results in simultaneous parameter estimation and
variable selection.

The advantage of our algorithm is that we separate the estimation of the baseline
hazard and other parameters, which makes the estimation process more efficient. In future
studies, such technique derived from the semi-parametric model can be further extended to
the application of parameter estimation for fully non-parametric models. In addition, as we
mentioned in previous sections, the existing methods for the proportional odds model
with right censored data involve high computation complexity when dealing with high-
dimensional data. However, our proposed algorithm can help to avoid matrix inversion,
which is capable of high-dimensional regression analysis. Furthermore, the advantage of
our algorithm is that it can mesh well with the existing quasi-Newton acceleration and
other simple off-the-shelf accelerators to further boost the estimation process. Although our
proposed MM algorithms are developed for the proportional odds models, a parallel
approach can essentially be developed for the more general transformation models. We
will investigate this in our future work.
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