
Citation: Nian, F.; Ding, L.; Hu, Y.;

Gu, Y. Multi-Level Cross-Modal

Semantic Alignment Network for

Video–Text Retrieval. Mathematics

2022, 10, 3346. https://doi.org/

10.3390/math10183346

Academic Editor: Jakub Nalepa

Received: 22 July 2022

Accepted: 10 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-Level Cross-Modal Semantic Alignment Network for
Video–Text Retrieval
Fudong Nian 1,2,* , Ling Ding 1 , Yuxia Hu 2 and Yanhong Gu 1

1 School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China
2 Anhui International Joint Research Center for Ancient Architecture Intellisencing and Multi-Dimensional

Modeling, Anhui Jianzhu University, Hefei 230601, China
* Correspondence: nianfd@hfuu.edu.cn

Abstract: This paper strives to improve the performance of video–text retrieval. To date, many
algorithms have been proposed to facilitate the similarity measure of video–text retrieval from
the single global semantic to multi-level semantics. However, these methods may suffer from the
following limitations: (1) largely ignore the relationship semantic which results in semantic levels are
insufficient; (2) it is incomplete to constrain the real-valued features of different modalities to be in
the same space only through the feature distance measurement; (3) fail to handle the problem that the
distributions of attribute labels in different semantic levels are heavily imbalanced. To overcome the
above limitations, this paper proposes a novel multi-level cross-modal semantic alignment network
(MCSAN) for video–text retrieval by jointly modeling video–text similarity on global, entity, action
and relationship semantic levels in a unified deep model. Specifically, both video and text are
first decomposed into global, entity, action and relationship semantic levels by carefully designing
spatial–temporal semantic learning structures. Then, we utilize KLDivLoss and a cross-modal
parameter-share attribute projection layer as statistical constraints to ensure that representations
from different modalities in different semantic levels are projected into a common semantic space.
In addition, a novel focal binary cross-entropy (FBCE) loss function is presented, which is the first
effort to model the unbalanced attribute distribution problem for video–text retrieval. MCSAN is
practically effective to take the advantage of the complementary information among four semantic
levels. Extensive experiments on two challenging video–text retrieval datasets, namely, MSR-VTT
and VATEX, show the viability of our method.

Keywords: video–text retrieval; multi-level space learning; cross-modal similarity calculation

MSC: 68T09

1. Introduction

With the popularity of online short video sharing platforms (e.g., TikTok), video–text
retrieval (using a video clip as query to find similar sentences and vice versa) becomes a
fundamental and crucial information retrieval problem for both users and platforms. As
a specific cross-modal retrieval [1] task, many research papers about video–text retrieval
have been presented and achieved remarkable progress from 2018 to the present [2–6].

Measuring the semantic similarity between any pair of video–text is very important for
video–text retrieval. Basically, existing studies on video–text retrieval can be summarized
into two categories according to the roughness of video and text semantic representations:
(1) The first one is single-level encoding methods [2,6–8], which leverage convolutional
neural networks (CNN), recurrent neural networks (RNN) or Transformer to learn global
representation (i.e., single level) of video/text. However, compacting video/text into a
single global level representation is insufficient due to neglecting the local and fine-grained
static/dynamic information that widely existed in video/text. (2) The second one is multi-
level encoding methods [3,4,9–11], which convert video/text into hybrid attribute spaces
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(e.g., global, entity and action). The total similarity of the video–text pair is the fusion of
the cross-modal similarities in different semantic levels.

Recently, large-scale visual-and-language pretraining (VLP) models (e.g., DALL-E [12],
CLIP [13] and MVP [14]), which can learn representations grounded in both visual textual
contexts via a self-supervised learning manner, have been successfully applied in various
downstream multi-modal tasks such as visual question answering [15], video caption-
ing [16] and visual reasoning [17]. Some video–text retrieval methods utilize VLP models
to obtain more representative video and text features [18–21]. Although these approaches
show promising performance on video–text retrieval tasks, training VLP means leveraging
lots of extra multi-modal training data and a video–text retrieval framework with the VLP
model also means adding a number of parameters.

Despite the significance and value of the methods in the above algorithms, they
still suffer from three critical shortcomings: (1) Semantic levels are insufficient. Though
action and entity semantic levels are considered in [3,9,11] and get better performance,
the semantic similarity in relationship level is ignored. However, several works [22–24]
demonstrate that modeling relationships can improve the performance of many multi-
modal understanding tasks significantly. Similarly, as shown in Figure 1, relationships are
also common clues in video–text retrieval scenarios. (2) Incomplete joint space representation.
To compare the cross-modal representations in different semantic levels, most existing
works [25,26] utilize ranking or classification losses. Although it has achieved certain
results, there is no statistical guarantee that real-valued vectors encoded from different
modalities are in a common space. (3) Unbalanced data distribution problem is neglected.
Figure 2 shows the number of five entities in MSR-VTT [27] dataset, from it we can see
that attributes distribution has a serious long tail effect. Unfortunately, to the best of our
knowledge, no video–text retrieval frameworks are handling this problem explicitly.

1. A black and white horse runs around.

2. A horse galloping through an open field. 

3. A horse is running around in green lush grass.

4. There is a horse running on the grassland.

5. A horse is riding in the grass.
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Figure 1. An illustration of both video and text are decomposed into global, entity, action and
relationship semantic levels.

To tackle these limitations, in this paper, we present a novel Multi-Level Cross-Modal
Semantic Alignment Network (MCSAN) for video–text retrieval by jointly modeling the
video/text context information and unbalanced attributes distribution challenges in a
unified deep model. To achieve a robust video–text retrieval, as shown in Figure 1, besides
the global representation, we first construct multi-level semantic dictionaries (entity, action
and relationship) from the corpus. Then, we design several practical semantic encoding
modules including CNN, RNN, GNN [28] and Multi-head self-attention [29], which are
utilized to encode both video and text into multi-level semantic spaces (i.e., global, entity,
action and relationship). Meanwhile, not only using feature distance, we also utilize
KLDivLoss and a cross-modal parameter-share attribute projection layer as statistical
constraints to ensure that representations from different modalities in different semantic
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levels are projected into a common semantic space. In addition, we design a novel multi-
label regression loss to handle the unbalanced attributes distribution problem. Extensive
experimental results on two widely-used video–text retrieval benchmark datasets, i.e., MSR-
VTT [27] and VATEX [30], to validate the effectiveness and superiority of our MCSAN.
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Figure 2. The number of 5 entities in MSR-VTT corpus, we can see that attributes distribution is
very uneven.

In summary, this paper makes the following contributions.

• A novel Multi-Level Cross-Modal Semantic Alignment Network (MCSAN) is devel-
oped for video–text retrieval tasks. The semantic similarity between video and text
is fully considered at four semantic levels (global, action, entity and relationship) by
carefully designing spatial–temporal semantic learning structures and cross-modal
representation distribution constraints in an end-to-end framework, which offers an
alternative orientation for video–text retrieval.

• Compared with existing works, we are the first to measure the similarity of video–text
pairs using relationship semantic level. We demonstrate that relationship, which is
also a complementary and crucial clue for video–text retrieval.

• We introduce a novel focal binary cross-entropy (FBCE) loss function for multi-label
attributes regression. Though several papers adopt attributes to improve the perfor-
mance of video–text retrieval, to the best of our knowledge, this is the first effort to
consider and handle the unbalanced attributes distribution problem in video–text
retrieval scenarios.

• By carefully incorporating spatial–temporal semantic learning structures, cross-modal
representation distribution constraints, novel multi-label classification loss function,
adaptive graph learning, and cross-modal contextual attention module, our pro-
posed method can jointly enjoy the merits of alleviate semantic gap and long-tailed
multi-level multi-modal attributes learning for video–text retrieval. Moreover, we
conduct extensive experiments on two popular benchmarks, i.e., MSR-VTT [27] and
VATEX [30], demonstrating the rationality and effectiveness of the proposed multi-
level cross-modal semantic alignment network.

The remainder of this paper is organized as follows: Section 2 reviews the related work.
We present the detailed architecture of the multi-level cross-modal semantic alignment
network in Section 3, while Section 4 describes the datasets, settings, implementation
details, experimental results, and limitations. Finally, we conclude the paper with future
work in Section 5.
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2. Related Work

The general process of the current video–text retrieval framework can be roughly
divided into two blocks, namely, modality encoding (embedding video and text into
vectors), and similarity calculation (predicting the similarity score of two modalities).
Therefore, in this section, we briefly review typical video–text retrieval algorithms in the
above two views.

2.1. Modality Encoding

Existing video and text encoding methods can be roughly divided into two categories.
The first one is single-level encoding methods [2,6–8,31,32], which leverage convolutional
neural networks (CNN), recurrent neural networks (RNN) or Transformer to learn global
representation (i.e., single level) of video/text. However, compacting video/text into a
single global level representation is insufficient due to neglecting the local and fine-grained
static/dynamic information that widely existed in video/text. The second one is multi-level
encoding methods [3,4,9–11], which convert video/text into hybrid attribute spaces (e.g.,
global, entity and action). The total similarity of the video–text pair is the fusion of the
cross-modal similarities in different semantic levels. The popular pipeline for video/text
encoding is that: (1) For video encoding, using the pre-trained image classification or
video clip classification model to extract the frame-wise feature. For text encoding, using
Word2Vec, Glove, or Bert to extract the word-wise feature. (2) Utilizing CNN, RNN, or
Transformer to handle temporal information of both video and text.

To enhance the representation ability, Yang et al. [33] constructed a tree structure to
model text. Dong et al. [34] proposed a reading-strategy-inspired visual representation
learning framework to represent videos. Some works [35–38] made full use of multi-modal
cues, e.g., appearance, audio, motion, OCR and face, for video encoding. Although these
methods have made some progress, the training pipeline of these methods are very complex,
and even a large amount of additional annotation information is required.

Recently, thanks to the rapid development of VLP models [12–14], there are some
works [18–21] tend to utilize the VLP model encoding the video and text directly. Although
these approaches show promising performance on video–text retrieval tasks since they
have better feature representation ability, training VLP means leveraging lots of extra
multi-modal training data and the video–text retrieval framework with the VLP model also
means adding a mount of parameters. Moreover, due to the training codes of these VLP
based video–text retrieval algorithms are not publicly available, we have not compared
these methods in this paper.

2.2. Similarity Calculation

The most common method of calculating cross-modal similarity in video–text retrieval
task is that first project video and text into a common semantic space and then compute the
feature distance in the common space [34,39–42]. Additionally, Lei et al. [39] concatenated
video and text features, and fed them into a transformer for multi-modal fusion. Directly
predicting the cross-modal similarity by fusing multi-modal representations without learn-
ing the common semantic space explicitly in other cross-modal understanding tasks [43,44]
is not uncommon. Yu et al. [43] proposed a guided attention module to fuse text and
image representations for visual question answering. Yu et al. [44] presented a multi-modal
Transformer to cascade the image and text features in depth. for image captioning. Though
the recent image-text retrieval literature [45] has demonstrated that multi-modal fusion can
make the model more stable, extending it for video retrieval is unwise because it is at the
expense of efficiency. It should be noted that all existing methods (whether it is common
space base framework) calculate the similarity score either in global or entity and action
semantic levels, which neglect the relationship information widely existing in multimedia
data. Instead, we are the first to measure the similarity of video–text pairs using relationship
semantic level, which is also a complementary and crucial clue for video–text retrieval.
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3. Methodology
3.1. Problem Statement

Video–text retrieval includes two aspects: (1) Providing a sentence as a query and
return the corresponding videos. (2) Providing a video as a query and return the corre-
sponding sentences. The major challenge to achieve these goals is modeling the similarity
between any video–text pairs. Formally, given a video V and a sentence T, the video–text
retrieval model will output S(V, T) = (0, 1) to indicate the similarity of this video–text pair,
where the larger the value of S(V, T), the more similar the semantics of video V and text T.

3.2. Overall Framework

We introduce a novel multi-level cross-modal semantic alignment network (MCSAN)
to improve the performance of video–text retrieval tasks. In order to precisely handle
both the semantics of video and sentence, we employ several carefully designed spatial–
temporal representation structures to encode both video and sentence into four semantic
levels (global, action, entity and relationship). To calculate the similarity of video and
sentence, we utilize metric learning, statistical distribution constraints and cross-modal
parameter-share attribute projection layers to ensure multi-level representations extracted
from different modalities are in multi-level common spaces. As the semantic distribution is
seriously uneven, we propose a novel multi-label regression loss that can automatical focus
on samples that are hard to be identified. The overall architecture of MCSAN is illustrated
in Figure 3; in that which follows, we depict it in detail.
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Figure 3. Framework of the proposed multi-level cross-modal semantic alignment network (MCSAN).

The proposed MCSAN is reasonable: (1) Obviously, as shown in Figure 3, a query
sentence (e.g., “Cars racing on a road surrounded by lots of people.”) corresponding to a spe-
cific video clip has multiple semantic levels including global-level (the whole sentence),
verb-level (actions), and noun-level (entities). The multiple semantic levels involves compli-
cated interactions between them, which are actually organized as a relationship structure,
indicating that a textual query can be effectively grounded onto the video by properly
aligning different semantic levels with the corresponding video parts. Although some
previous methods attempt to utilize the multi-level semantic structure, they fail to capture
the fine-grained and explicit relationship information. (2) Intuitively, in video retrieval
or video captioning tasks, humans usually takes the relation-aware context of the visual
structure into consideration and select the correct temporal moment.
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3.3. Multi-Level Attributes Vocabulary Construction

As mentioned above, besides global representation, we also represent both video and
text into three attribute spaces, i.e., action, entity and relationship. To achieve this goal,
attribute vocabulary is necessary for training the encoding modules. In this work, we
employ the Stanford CoreNLP Natural Language Processing Toolkit [46] to build action,
entity and relationship vocabularies. Specifically, for a video–text retrieval dataset, we
collect all sentences as original corpus, and extract nouns, verbs and subject–verb–object
(SVO) triplets, which are deemed as entity, action and relationship, respectively. Then, we
lemmatize all words to eliminate duplication of attributes. Finally, based on the frequency
statistics, we select the top Ke nouns, Ka verbs and Kr SVO triplets as the final entity, action
and relationship vocabularies, respectively.

3.4. Multi-Level Text and Video Semantics Encoding

In this section, we detail how to encode both video/text into global, entity, action and
relationship semantic spaces.

3.4.1. Multi-Level Text Semantics Encoding

(1) Text parsing and initial embedding.
For a given sentence T, we first utilize the pre-trained word embedding model as the

textual encoder to extract word initial embeddings E = [e1, e2, ..., eM], where M denotes the
number of words in sentence T.

(2) Text global semantic encoding.
The text global semantic encoding Fg

t is calculated by pre-trained Sentence_BERT [47]
since it sets a new state-of-the-art performance on semantic textual similarity task:

Fg
t = Sentence_BERT(T), (1)

(3) Text entity, action semantic encoding.
Since prior works [10,11] demonstrate that relational GCN [48] performs well on

local-level text representations, we adopt relational GCN to encode the semantics of text
entity and action, which are denoted as Fe

t and Fa
t , respectively. The structure of relational

GCN is the same as [11] except not handle global feature, please refer to [11] for details.
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Position-wise 
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Figure 4. Text relationship semantic encoding architecture.
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(4) Text relationship semantic encoding.
Compared with entity or action, the relationship in a sentence is complex, e.g., “A dog

is chasing a frisbee on the grass” includes two relationships (“dog chasing frisbee” and “dog
on grass”) and words in these relationships are nonadjacent. Addressing it, we utilize a
Transformer with multi-head self-attention block (as shown in Figure 4) to encode the text
relationship semantic.

Specifically, the self-attention layer produces the attention output as follows:

Sr
t = so f tmax(

QtK>t√
d

)Vt, (2)

where d indicates the feature dimension. Qt, Kt and Vt are Query, Key and Value matrixes
of the self-attention layer, which are based on the original word initial embedding with
positing encoding Ê:

Qt = Wq
t Ê, K = Wk

t Ê, V = Wv
t Ê, (3)

where Wq
t , Wk

t , and Wv
t are the embedding weights of the self-attention layer.

Based on several affinity matrixes, then compute the context representation Hr
t :

Ĥr
t = LayerNorm(Sr

t + Ê), (4)

Hr
t = LayerNorm(Ĥr

t + Linear(ReLU(Linear(Ĥr
t )))), (5)

where LayerNorm is the layer normalization operation and Linear(ReLU()) is a fully con-
nected position-wise FFN layer.

Finally, the text relationship semantic encoding Fr
t is obtained by applying mean

pooling on Hr
t , that is:

Fr
t =

1
N

N

∑
i=1

Hr
ti

, (6)

where Hr
ti

is the context representation of i-th word.

3.4.2. Multi-Level Video Semantics Encoding

Parallel to multi-level text semantics encoding, we also encode video into global,
action, entity and relationship spaces.

(1) Video parsing and initial embedding.
Given a video V, we first uniformly sample N frames, then use the pre-trained feature

extraction model to extract general frame-wise features, i.e., F = [ f1, f2, ..., fN ], here, fi
represents the i-th frame general feature of video V. We then leverage four residual
sub-networks to convert the general frame-level features to level-specific frame initial
embeddings as follows:

Fg = ReLU(F + FCg(F)), (7)

Fe = ReLU(F + FCe(F)), (8)

Fa = ReLU(F + FCa(F)), (9)

Fr = ReLU(F + FCr(F)), (10)

where Fg = [ f g
1 , f g

2 , ..., f g
N ] ∈ RN×Dv , Fe = [ f e

1 , f e
2 , ..., f e

N ] ∈ RN×Dv , Fa = [ f a
1 , f a

2 , ..., f a
N ] ∈

RN×Dv and Fr = [ f r
1 , f r

2 , ..., f r
N ] ∈ RN×Dv are frame-wise global, entity, action and relation-

ship initial embeddings, respectively. Here, Dv is the dimension of the extracted visual
feature. FCg, FCe, FCa and FCr are four different fully connected layers.
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(2) Video global semantic encoding.
Bi-directional recurrent neural network [49] is an effective structure to handle both

past and future contextual information of a given video sequence. We adopt a bidirectional
GRU with soft attention (BiGRU-SA) structure to learn video global semantic encoding
from frame-wise global initial embedding Fg.

As shown in Figure 5, to extract more salient global semantic and suppress unimpor-
tant frames automatically, we first utilize the attention mechanism to refine the Fg, i.e.,

F̂g = αFg, (11)

where F̂g is frame-wise global initial embedding after soft attention, and α is the attention
score which is computed as follows:

α = so f tmax(FgW), (12)

where W is the learnable weight matrix.

Soft Attention

GRU GRU GRU GRU

GRU GRU GRU GRU

concat

Figure 5. Video global semantic encoding architecture.

Let
−→

GRU and
←−

GRU indicate the forward and backward GRUs,
−→
h and

←−
h are corre-

sponding hidden states generated as follows:

−→
h =

−→
GRU(F̂g), (13)

←−
h =

←−
GRU(F̂g), (14)

Finally, we concatenate the last hidden states of
−→
h and

←−
h to obtain the final video

global semantic encoding:

Fg
v = concat(

−→
hN ,

←−
h1 ), (15)

where concat denotes the concatenate operation,
−→
hN represents the hidden vector at the

N-th time step of the forward GRU layer, and
←−
h1 represents the hidden vector at the 1-th

time step of the backward GRU layer.
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(3) Video entity semantic encoding.
Intuitively, the video entity depends on each frame. To be specific, on the one hand, if

any frame contains a certain entity means that the entire video also has this entity concept.
On the other hand, if the video does not contain a certain entity concept means that all
frames do not contain this entity concept. We adapt 1D CNN with kernel size 1 to model
this characteristic, as illustrated in Figure 6a, the final video entity semantic encoding Fe

v
can be represented as follows:

Fe
v = ReLU(Conv1dk=1(Fe)), (16)

(4) Video action semantic encoding.
We also adapt 1D CNN to encode video action semantic. However, different from

entity, action is motion information, which depends on several continuous video frames.
Therefore, we integrate three 1D CNN with different kernel sizes to handle this challenge,
the final video action semantic encoding Fa

v can be represented as follows:

Fa
v = β1ReLU(Conv1dk=2(Fe)) + β2ReLU(Conv1dk=3(Fe)) + β3ReLU(Conv1dk=5(Fe)), (17)

where β1, β2, and β3 serve as the balance factor.
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!"

#$

%

& = 2

& = 3

& = 5

!"

 

 

 

'

#"
$

()

(*

(+

(b) Video action semantic encoding architecture.

Figure 6. The structures of video entity and action semantic encoding using different 1D CNN.

(5) Video relationship semantic encoding.
Different from entity and action, the relationship semantics associated two objects may

appear in discontinuous frames. To address this challenge, consistent with text relation
semantic extraction, we also present a self-attention based transformer encoder (as shown in
Figure 7) to compute the final video relationship semantic encoding Fr

v from the frame-wise
relationship initial embedding Fr.
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Figure 7. Video relationship semantic encoding architecture.

Specifically, the self-attention layer produces the attention output Sr
v as follows:

Sr
v = so f tmax(

QvK>v√
d

)Vv, (18)

where d indicates the feature dimension. Qv, Kv and Vv are query, key and value matrixes
of the self-attention layer, which are based on the original frame-wise relationship initial
embedding with positing encoding F̂r:

Qv = Wq
v F̂r, K = Wk

v F̂r, V = Wv
v F̂r, (19)

where Wq
v , Wk

v , and Wv
v are the embedding weights of the self-attention layer.

Based on several affinity matrixes, then compute the context representation Hr
v:

Ĥr
v = LayerNorm(Sr

v + F̂r), (20)

Hr
v = LayerNorm(Ĥr

v + Linear(ReLU(Linear(Ĥr
v)))), (21)

where LayerNorm is the layer normalization operation and Linear(ReLU()) is a fully con-
nected position-wise FFN layer.

Finally, the video relationship semantic encoding Fr
v is obtained by applying mean

pooling on Hr
v, that is:

Fr
v =

1
N

N

∑
i=1

Hr
vi

, (22)

where Hr
vi

is the context representation of ith frame.

3.5. Multi-Level Text and Video Semantics Alignment

In this section, we detail how to project the real-valued semantic vectors extracted
from different modalities into a common space and calculate their similarity at different
semantic levels.
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3.5.1. Global Alignment

In order to make different dimensions in Fg
v and Fg

t fully interactive, we first use
Holographic Embeddings [50] to fusion Fg

v and Fg
t , then leverage a fully connected layer

(FC) to calculate the similarity of Fg
v and Fg

t , formally:

sim(Fg
v , Fg

t ) = σ(FC(Fg
v ? Fg

t )), (23)

where sim(Fg
v , Fg

t ) denotes the global semantic similarity, σ is Sigmoid non-linear function
which projects the similarity score into (0, 1), ? represents circular correlation operation,

i.e., [a ? b]k = ∑
d f−1
i=0 aibk+i%d f

, here d f is feature dimension.

3.5.2. Entity, Action and Relationship Alignment

(1) Statistical distribution constraints.
In order to ensure entity, action and relationship features extracted from different

modalities that are projected into a common space, we leverage cross-modal parameter-
share attribute projection layer (i.e., FCshare

∗ ) in different semantic levels. That is,

pe
v = ReLU(FCshare

e (Fe
v)), pe

t = ReLU(FCshare
e (Fe

t )), (24)

pa
v = ReLU(FCshare

a (Fa
v )), pa

t = ReLU(FCshare
a (Fa

t )), (25)

pr
v = ReLU(FCshare

r (Fr
v)), pr

t = ReLU(FCshare
r (Fr

t )), (26)

where pe
v, pa

v and pr
v are the predicted entity, action and relationship of the video. pe

t , pa
t and

pr
t are the predicted entity, action and relationship of the text.

In addition, we also consider minimizing the cross-modal feature distribution in
different semantic levels as follows:

min(distribution(Fe
v), distribution(Fe

t)), (27)

min(distribution(Fa
v), distribution(Fa

t )), (28)

min(distribution(Fr
v), distribution(Fr

t)), (29)

where F denotes semantic representation matrix of a mini-batch.
(2) Similarity calculation.
We use the cosine similarity to measure cross-modal similarity in entity, action and

relationship levels, that is:
sim(Fe

v , Fe
t ) = cos(Fe

v , Fe
t ), (30)

sim(Fa
v , Fa

t ) = cos(Fa
v , Fa

t ), (31)

sim(Fr
v , Fr

t ) = cos(Fr
v , Fr

t ), (32)

where sim(Fe
v , Fe

t ), sim(Fa
v , Fa

t ) and sim(Fr
v , Fr

t ) denote the entity, action and relationship
semantic similarities of the video V and the sentence T, respectively.

3.6. Training and Inference
3.6.1. Training

Once all similarity scores in four semantic levels are computed, the similarity between
the video V and the sentence T is calculated by:

sim(V, T) = (sim(Fg
v , Fg

t ) + sim(Fe
v , Fe

t ) + sim(Fa
v , Fa

t ) + sim(Fr
v , Fr

t ))/4, (33)

where sim(V, T) denotes the overall similarity of the the video V and the sentence T.
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We use the triplet ranking loss with hard negative sampling strategy (i.e., Lrank) to
optimize MCSAN, that is:

Lrank = max(0, m+ sim(V, T−)− sim(V, T)) +max(0, m+ sim(V−, T)− sim(V, T)), (34)

where (V, T) are the positive pair, T− and V− are the hardest negatives of text and video
in a mini-batch, and m is a positive constant, which we term the margin.

In addition, we also use a novel multi-label regression loss for entity, action and
relationship semantic learning. The original video–text retrieval dataset has no attribute
annotations. Therefore, annotating entity, action and relationship for each video/text is
crucial for learning multi-level representations. To ensure video and text share a common
attribute space, we annotate video/text with the same vocabulary (Section 3.3). To be
specific, for each sentence, we also use Standford NLP ToolKit to parse its entity, action and
relationship as annotations. For each video, we parse all corresponding sentences and take
their union as the annotations. Finally, all annotations are labeled in one-hot format based
on the vocabulary (that is, entity, action and relationship can be predicted by a multi-label
regression manner).

As illustrated in Section 1, the distribution of attributes (i.e., entity, action and relation-
ship) is very imbalanced. Thus, the widely-used binary cross-entropy (BCE) loss may affect
the generalization performance of the video–text retrieval model. To address it, inspired by
the Focal loss [51], which performed successfully on unbalanced object detection tasks, we
propose a novel focal binary cross-entropy (FBCE) loss for entity, action and relationship
learning as:

Le = −
1
K

K

∑
i=1

(ye
v,iαe(1− pe

v,i)
γe log(pe

v,i) + (1− ye
v,i)αe(1− pe

v,i)
γe log(1− pe

v,i))

− 1
K

K

∑
i=1

(ye
t,iαe(1− pe

t,i)
γe log(pe

t,i) + (1− ye
t,i)αe(1− pe

t,i)
γe log(1− pe

t,i)),

(35)

La = −
1
K

K

∑
i=1

(ya
v,iαa(1− pa

v,i)
γa log(pa

v,i) + (1− ya
v,i)αa(1− pa

v,i)
γa log(1− pa

v,i))

− 1
K

K

∑
i=1

(ya
t,iαa(1− pa

t,i)
γa log(pa

t,i) + (1− ya
t,i)αa(1− pa

t,i)
γa log(1− pa

t,i)),

(36)

Lr = −
1
K

K

∑
i=1

(yr
v,iαr(1− pr

v,i)
γr log(pr

v,i) + (1− yr
v,i)αr(1− pr

v,i)
γr log(1− pr

v,i))

− 1
K

K

∑
i=1

(yr
t,iαr(1− pr

t,i)
γr log(pr

t,i) + (1− yr
t,i)αr(1− pr

t,i)
γr log(1− pr

t,i)),

(37)

where K is the batch size. ye
v,i, ya

v,iand yr
v,i are the ground-truth entity, action and relationship

of the i-th video. ye
t,i, ya

t,iand yr
t,i are the ground-truth entity, action and relationship of the

i-th text. Please refer to [51] for the details of factors α and γ.
In addition, we leverage Kullback–Leibler divergence loss (KLDivLoss) to constrain

that features from different modalities have the same distribution. That is:

Le_kl = KLDivLoss(Fe
v, Fe

t), (38)

La_kl = KLDivLoss(Fa
v, Fa

t ), (39)

Lr_kl = KLDivLoss(Fr
v, Fr

t), (40)

Finally, we combine the above losses to obtain the total objective function Ltotal
as follows:
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Ltotal = Lrank + λ1(Le + La + Lr) + λ2(Le_kl + La_kl + Lr_kl), (41)

where λ1, λ2 are trade-off hyper-parameters.

3.6.2. Inference

We simply sort the similarity scores of all video–text pairs for video–text retrieval.

4. Experiments and Results

To justify the effectiveness of our MCSAN model, we carried out extensive experiments
under the bidirectional retrieval scenario including (1) text-to-video retrieval, i.e., retrieving
videos that are semantically consistent with a given sentence query; and (2) video-to-text
retrieval, i.e., retrieving sentences that are semantically consistent with a given video query.
In this section, we first give the details about experimental settings, including datasets,
evaluation metrics and implementation details. Then, we compare our MCSAN with
several state-of-the-art baselines. Next, we explore the effectiveness of each component in
our model via ablation studies. Finally, several qualitative and visualization experimental
results are reported.

4.1. Experimental Settings
4.1.1. Datasets

We conduct extensive experiments on two most widely-used video–text retrieval
datasets, namely, MSR-VTT [27] and VATEX [30], to evaluate our proposed method and
several state-of-the-art baselines.

MSR-VTT consists of 10,000 video clips, where each video is described by 20 different
sentences. Following the official setting, this dataset is split into 6573 training videos,
497 validation videos, and 2990 testing videos.

VATEX is a large-scale dataset including more than 30,000 video clips, where each
video is associated with 10 English and 10 Chinese sentences. Here, only English sentences
are used in our experiments. Following the settings in previous work [3,9,11], where 25,991,
1500, 1500 video clips are utilized for training, validation and testing, respectively.

4.1.2. Evaluation Metrics

Following prior cross-modal retrieval works [11,52], rank-based metric, i.e., Recall at
K (R@K for short), Sum of all Recalls (SumR for short), are adopted to measure the overall
video–text retrieval performance. The higher R@K and SumR indicate that the model has
better retrieval performance.

4.1.3. Implementation Details

For a fair comparison with all the compared methods, we apply the same feature as
HANet [11]. To be specific, for visual embedding, we use the pre-trained ResNet152 [53]
and I3D [54] to extract frame features of MSR-VTT and VATEX, respectively. For text
embedding, we use the pre-trained Glove [55] to extract word features of both MSR-VTT
and VATEX. Here, the dimension of text embedding is 300 (extracted from Glove), and the
dimension of visual embedding are 2048 (extracted from ResNet152) and 1024 (extracted
from I3D) for MSR-VTT and VATEX, respectively. We optimized our MCSAN using
PyTorch on 1 GeForce RTX 2080Ti GPU. Following HANet [11], the Adam [56] optimizer is
employed with learning rate of 1× 10−4 and the model is trained for 50 epochs with the
batch size of 64. The trade-off hyper-parameters λ1 and λ2 are empirically set to 0.1 and
0.001, respectively. We estimate the hyperparameter margin m by running a grid search
on the corresponding dataset, and the optimal value of m is empirically set to 0.25. In our
FBCE loss, following the original Focal loss [51], αe, αa and αr are empirically set to 0.25, γe,
γa and γr are empirically set to 2. Note that, the model with the highest SumR value on
validation set is deemed as the best model to report the performance on the test set.
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4.2. Comparison with State-of-the-Art Methods

We compare our model with two types of baselines: compute the similarity between
video and text only using the global features, i.e., VSE [57], VSE++ [58], Mithum et al. [2],
W2VV [41], W2VV++ [8], Dual Encoding [3], CE [36], TCE [33], Zhao et al. [59], and
compute the similarity between video and text using several level features, i.e., HGR [9],
HANet [11], HSL [60]. The experimental results of our proposed MCSAN and all baseline
approaches are reported in Tables 1 and 2. Note that all models are trained using the same
initial video/text features on the same dataset. From Tables 1 and 2, we can have the
following observations:

(1) In the two datasets, methods utilizing multi-level features perform better than
these algorithms only use the global feature significantly, indicating that representations
extracted from different semantic levels are complementary for video–text retrieval task.

(2) For all video–text retrieval methods, video-to-text has better performance than
text-to-video. We think the reason is that on existing video–text retrieval dataset, one video
corresponds to multiple sentences; however, one text can only correspond to one video.
The results indicate that collecting a new video–text retrieval dataset with proportional
numbers of video and text may be a feasible research direction.

(3) The proposed MCSAN outperforms all the baselines on MSR-VTT and VATEX
datasets. The results demonstrate that the proposed model can jointly model multi-
modal context information and multi-level semantics of both video and text in a unified
deep model, which can better capture the underlying complementary representation of
video/text, so as to improve the performance of video–text retrieval.

Table 1. Comparisons with the state-of-the-art video–text retrieval methods on the MSR-VTT dataset.
The best performance are marked in bold. Our proposed model performs the best.

Method Text-to-Video Video-to-Text SumR
R@1 R@5 R@10 R@1 R@5 R@10

VSE [57] 5.0 16.4 24.6 7.7 20.3 31.2 105.2
VSE++ [58] 5.7 17.1 24.8 10.2 25.4 35.1 118.3

Mithum et al. [2] 5.8 17.6 25.2 10.5 26.7 35.9 121.7
W2VV [41] 6.1 18.7 27.5 11.8 28.9 39.1 132.1

Dual Encoding [3] 7.7 22.0 31.8 13.0 30.8 43.3 148.6
TCE [33] 7.7 22.5 32.1 - - - -

Zhao et al. [59] 8.8 25.5 36.5 14.0 33.1 44.9 162.8
HGR [9] 9.2 26.2 36.5 15.0 36.7 48.8 172.4

HANet [11] 9.3 27.0 38.1 16.1 39.2 52.1 181.8
HSL [60] 10.8 29.2 38.5 20.3 45.1 55.9 201.7

MCSAN 10.9 29.6 40.1 21.1 46.8 57.4 205.3

Table 2. Comparisons with the state-of-the-art video–text retrieval methods on the VATEX dataset.
The best performance are marked in bold. The overall performance are indicated by Sum of Recalls
(SumR). MCSAN is the best.

Method Text-to-Video Video-to-Text SumR
R@1 R@5 R@10 R@1 R@5 R@10

W2VV [41] 14.6 36.3 46.1 39.6 69.5 79.4 285.5
VSE++ [58] 31.3 65.8 76.4 42.9 73.9 83.6 373.9

CE [36] 31.1 68.7 80.2 41.3 71.0 82.3 374.6
W2VV++ [8] 32.0 68.2 78.8 41.8 75.1 84.3 380.2

Dual Encoding [3] 31.1 67.4 78.9 - - - -
HGR [9] 35.1 73.5 83.5 - - - -
HSL [60] 36.8 73.6 83.7 46.8 75.7 85.1 401.7

HANet [11] 36.4 74.1 84.1 49.1 79.5 86.2 409.4

MCSAN 36.6 74.2 84.1 51.4 81.3 86.8 411.8
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4.3. Ablation Studies

Because the proposed MCSAN contains multiple key components, we additional
compare variants of MCSAN with respect to the following perspectives to verify the
effectiveness of each component in MCSAN: (1) the effect of the relationship information,
(2) the impact of the statistical distribution constraints, and (3) the effect of the proposed
FBCE loss for handling unbalanced attributes. The following MCSAN variants are designed
for comparison. The following MCSAN variants are designed for comparison.

(1) MCSANqR: A variant of MCSAN with the relationship encoding level being removed.
(2) MCSANqS: A variant of MCSAN with the statistical distribution constraints being

removed.
(3) MCSANqL: A variant of MCSAN with the FBCE loss being removed, and only

using the conventional BCE loss for entity, action and relationship learning.
The ablation study results are shown in Table 3. We can observe that the combination of

all three components has the best performance and the performance will degrade if remove
any components. The results demonstrate that all components in our MCSAN are effective.
Moreover, we can also observe that if the relationship encoding is removed, the performance
will degrade the most, which indicates that explicitly relationship understanding is crucial
for video–text retrieval.

Table 3. Results of comparison among different variants in MCSAN on MSR-VTT dataset. The best
performance are marked in bold. MCSAN exploiting all the four semantic levels (global, entity, action
and realtionship) is the best.

Method Text-to-Video Video-to-Text SumR
R@1 R@5 R@10 R@1 R@5 R@10

MCSANqR 9.4 27.1 37.9 17.2 42.3 54.7 195.8
MCSANqS 10.1 27.8 39.8 19.9 45.9 57.0 202.6
MCSANqL 10.6 28.8 39.2 20.8 46.4 56.6 203.7

MCSAN 10.9 29.6 40.1 21.1 46.8 57.4 205.3

4.4. Qualitative Analyses

We visualize three text-to-video retrieval examples on the MSR-VTT test set in Figure 8.
For each query sentence, Figure 8 shows the top-3 scored videos evaluated by our MCSAN.
We find that the proposed model is able to recognize the relationship “man at top speed”
since comprehensive relationship between concepts is explicitly modeled in our framework.
The results demonstrate that the proposed method can handle different types of video/text
semantics well.
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Query: a group of women are singing

Query: some cartoon characters are dancing

Query: a man is riding a horse at top speed in a race and celebrates as he crosses the finish line

Figure 8. Top 3 text-to-video retrieval examples on the MSR-VTT test set.

4.5. Limitations

Although we achieve good results in the previous experiments, there are still some
inevitable problems. Note that Rao et al. [45] demonstrated that modality embedding is
crucial for the cross modal retrieval performance improvement. However, only simple
CNN/Transformer structures are adopted in this paper. Thus, we will explore a more
effective way to extract text/video semantic features in the future. Moreover, we will try
to leverage additional knowledge information (e.g., knowledge embedding learnt from
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the external sentence corpus) since it can provide useful complementary information for
video–text retrieval.

5. Conclusions

In this paper, we propose a novel Multi-Level Cross-Modal Semantic Alignment Net-
work (MCSAN) for video–text retrieval tasks. The semantic similarity between video and
text is fully considered at four semantic levels (global, action, entity and relationship) by
carefully designed spatial–temporal semantic learning structures and cross-modal repre-
sentation distribution constraints in an end-to-end framework. We make the first attempt
to handle the cross-modal relationship semantic consistency without relying on any extern
corpus in video–text retrieval task. Moreover, we introduce a novel focal binary cross-
entropy (FBCE) loss function, which also is the first effort to model the unbalanced attribute
distribution problem for video–text retrieval. We conduct extensive experiments on two
video–text retrieval benchmarks, i.e., MSR-VTT and VATEX. The quantitative and qualita-
tive experimental results demonstrate the effectiveness of the proposed framework. We
achieve state-of-the-art performance against existing non-VLP-based video–text retrieval
frameworks. Due to that most recent VLP based video–text retrieval algorithms are not
publicly available, we hope that future work in the field of video–text retrieval should pay
more attention to the reproducibilities and capabilities of the model, rather than use all the
tricks to report a hard-to-reproduce better performance.
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